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Abstract— Multi-string pattern matching is a crucial building
block for many network security applications and thus of great
importance. Since every byte of a packet has to be inspected
by a large set of patterns, it often becomes a bottleneck of
these applications and dominates the performance of an entire
system. Many existing studies have been devoted to alleviating
this performance bottleneck either by algorithm optimization or
hardware acceleration. However, neither one provides the desired
scalability and costs that keep pace with the drastic increase in
network bandwidth and traffic today. To address these issues,
in this paper, we present BOLT, a scalable and cost-efficient
multi-string pattern matching system leveraging the capability of
emerging programmable switches. BOLT combines the following
techniques: (1) an efficient state encoding scheme to fit a large
number of strings into the limited memory on a programmable
switch; (2) a variable k-stride transition mechanism to increase
the throughput significantly with the same level of memory cost;
and (3) a compact pattern2rule mapping method to accommodate
multiple co-existing strings in one rule. We implement a prototype
of BOLT and make its source code publicly available. Extensive
evaluations demonstrate that BOLT can provide multi-hundred
Gbps throughput and scales well with various pattern sets and
workloads.

Index Terms— Programmable switch, pattern matching.

I. INTRODUCTION

MULTI-STRING pattern matching serves as a funda-
mental building block for many network security

Manuscript received 25 December 2021; revised 24 July 2022;
accepted 20 August 2022; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor P. Giaccone. Date of publication 2 September 2022;
date of current version 18 April 2023. This work was supported in part by
the National Key Research and Development Program of China under Grant
2018YFB1800405, in part by the National Science Foundation of China under
Grant 61772307, and in part by the Beijing Postdoctoral Research Foundation.
An earlier version of this paper was presented at the Conference of INFO-
COM 2021 [DOI: 10.1109/INFOCOM42981.2021.9488796]. (Corresponding
authors: Menghao Zhang; Ying Liu.)

Shicheng Wang, Guanyu Li, and Chang Liu are with the Institute
for Network Sciences and Cyberspace, Tsinghua University, Beijing
100084, China, and also with the Beijing National Research Center for
Information Science and Technology (BNRist), Beijing 100084, China
(e-mail: wsc22@mails.tsinghua.edu.cn; ligy18@mails.tsinghua.edu.cn;
chang-li22@mails.tsinghua.edu.cn).

Menghao Zhang is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China, and also with
Kuaishou Technology, Beijing 100085, China (e-mail: zhangmenghao0503@
gmail.com).

Zhiliang Wang, Ying Liu, and Mingwei Xu are with the Institute for
Network Sciences and Cyberspace, Tsinghua University, Beijing 100084,
China, also with the Beijing National Research Center for Informa-
tion Science and Technology (BNRist), Beijing 100084, China, and
also with the Zhongguancun Laboratory, Beijing 100084, China (e-mail:
wzl@cernet.edu.cn; liuying@cernet.edu.cn; xumw@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2022.3202523

applications, especially network intrusion/prevention systems
(NIDS/NIPS) [2], [3], web application firewalls (WAF) [4],
application identification systems [5] and some network cen-
sorship/surveillance systems [6], [7]. In these applications,
multiple strings are usually represented as the attack signatures
(rules), which are then used to inspect whether the payload of
a packet matches any of the predefined rules. Since every byte
of the packets has to be scanned by a large set of patterns,
this often becomes a bottleneck of these applications and
dominates the performance of an entire system [8], [9].

Prior studies often alleviate this bottleneck via algorithm
optimization [10], [11], [12], [13], [14] or GPU/FPGA/NPU
acceleration [9], [15], [16], [17], [18]. However, neither these
existing software-improved nor hardware-accelerated solutions
provide the desired scalability or costs that catch up with
the drastic increase in network bandwidth and traffic today.
Recently, the network bandwidth at traffic aggregation points
in regional ISPs has already reached multi-100s of Gbps [19],
[20]. Many network device providers [21], [22] and stan-
dard organizations [23] are embracing the era of 400Gbps
bandwidth [22], [24]. These high network bandwidths require
that the ability of security applications to maintain network
monitoring should also keep pace with such high traffic
volume. Even when we fully utilize the potential of CPUs on
servers, however, it is difficult for a pattern matching engine
to reach 20 Gbps packet processing throughput [12], [13].
While GPU/FPGA/NPU-enhanced servers can achieve higher
throughput (multi-10s Gbps) due to the inherent parallelism
of the hardware [11], [14], [25], there is still an impassable
throughput gap. Although we can scale up the pattern match-
ing capacity by adding more servers, doing so raises the capital
cost and the management complexity significantly [26], [27].

We observe that the emerging programmable switching
ASICs [28] in the network community provide a promising
opportunity to bridge this gap. Since a single programmable
switch can efficiently process multi-Tbps traffic at line rate
at the same level of power and capital costs as regular
switches [29], it has several orders of magnitude higher packet
processing throughput than highly-optimized servers. Even for
FPGA/GPU/NPU-enhanced servers, there is still a significant
gap to match this performance. In addition, programmable
switches allow users to specify the hardware logic using
domain-specific languages (e.g., P4 [30]) and support packet
processing with use-defined logic at terabit line rate. These
new characteristics of programmable switches are particularly
valuable for next-generation scalable and cost-efficient multi-
string pattern matching.

However, implementing multi-string pattern matching on
programmable switches (i.e., Protocol Independent Switch
Architecture (PISA)) is non-trivial. First, current security
applications usually maintain a large set of rules (e.g., the latest
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Fig. 1. One typical rule in a signature-based NIDS (Snort).

community ruleset of Snort has ∼4000 rules), while the mem-
ory resources in the switch are pretty limited (50-100MB [31]).
Simply translating string patterns in the ruleset into a deter-
ministic finite automaton (DFA) and then the corresponding
match-action entries, as PPS [32] does, will exhaust precious
resources in switches. Worse yet, a large number of entries will
inevitably increase the time to update the ruleset in switches,
making the system less responsive. Second, the computational
model in programmable switches is quite restricted compared
with x86 CPUs. In particular, current programmable switches
cannot support iterations and loops, which are key components
in pattern matching algorithms. This indicates that the depth
of payload inspection is limited in one pass of the pipeline.
An intuitive method is to increase the stride of the DFA
transition [32], but it incurs the explosion of entries. Third,
many security applications, such as Snort signature databases,
usually employ multiple strings to express one attack signature
(rule). For example, Fig. 1 shows one typical snort rule (sid
978), which requires %20, &CiRestriction=none and
&CiHiliteType=Full co-exist. This raises the require-
ment that programmable switches should support multiple
strings in one rule, which is challenging to be efficiently
implemented on the restricted computational model of pro-
grammable switches. Simply forwarding the packets once one
pattern is matched to the backend server running a complete
NIDS for “full matching”, as some methods on other hardware
do [18], still causes significant burdens on the backend server
since the packet processing throughput of the switch is several
orders of magnitude higher than that of the commodity server.

To address these problems, in this paper, we propose
BOLT, a system for inspecting multiple string patterns with
programmable switches. First, BOLT develops an efficient
state encoding scheme to fit a large number of rules into
the limited memory in programmable switches. Second, BOLT
proposes a variable k-stride transition mechanism to improve
the throughput significantly with an acceptable entry num-
ber increase. Third, BOLT designs a compact pattern2rule
mapping method to support multiple strings in one rule.
We implement a prototype of BOLT and make the source
code publicly available [33]. Extensive evaluations show the
compressing techniques of BOLT can significantly decrease
the number of entries and memory usage, and the pattern2rule
mapping method achieves an efficient pattern-to-rule mapping
with acceptable overheads. To conclude, BOLT can provide
multi-hundred Gbps throughput, about one order of magnitude
improvement in throughput, and scale well with various pattern
sets and workloads.

In summary, this paper makes the following contributions:
• We highlight the challenges that current multi-string pat-

tern matching faces in dealing with the soaring network
bandwidth today and identify the opportunities provided
by programmable switches (§II).

• We propose BOLT, a scalable and cost-efficient multi-
string pattern matching system with programmable
switching ASICs (§III). To this end, we design an effi-
cient state encoding scheme, a variable k-stride transi-
tion mechanism, and a compact pattern2rule mapping

method to overcome the restrictions of the computa-
tional model and memory resources of programmable
switches (§IV, §V, §VI).

• We implement an open-source prototype of BOLT, and
conduct extensive evaluations to show the advantages of
BOLT (§VIII).

Finally, we make some discussions in §IX, describe related
works in §X and conclude this paper in §XI.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background of multi-string
pattern matching, highlight the problems of the state of the
art in this field, and discuss the opportunities provided by
programmable switching ASICs.

A. Multi-String Pattern Matching

As one of the most classic problems in algorithms, string-
based pattern matching has been studied for decades. Formally,
the string-based pattern matching algorithm can be denoted as
follows. Given an alphabet Σ, the algorithm’s input contains
1) a text string T = t1 . . . tn, and 2) an pattern string set
P = {p1, p2, . . . , pk}, where each element pi = s1 . . . sm is a
predefined string pattern (every ti or si is a character belonging
to Σ). The algorithm should output all the positions where each
pi stands as a substring in T .

Many algorithms have been devoted to this field. The Knuth-
Morris-Pratt(KMP) algorithm [34], as one of the most effective
exact string matching solutions, runs in θ(n) time by construct-
ing a partial match table in pre-processing. However, it only
performs well for a singleton pattern set. A pattern set with m
elements will lead to an O(mn) running time complexity. The
Boyer-Moore (BM) algorithm [35] is another efficient string-
searching algorithm, which is usually viewed as a standard
benchmark [36] for string matching. It gathers information
during the pre-processing stage to skip multiple characters in
the text, reducing the best running time to Ω(n/m), while
the worst case is still Ω(mn). However, it does not work
efficiently for multi-string pattern matching either. Naively
applying the BM algorithm to multi-string patterns requires
iterating the text string |P| times in order to look for every
pi in P. Some algorithms improve the matching efficiency by
using approximation methods. The Rabin–Karp algorithm [37]
innovatively speeds up the string matching by using hash
functions. DFC [12] and Hyperscan [13] further promote the
performance by designing cache-friendly data structure or
SIMD (single-instruction-multiple-data)-accelerated algorithm
variants. However, hash-based algorithms require many hash
units, which is difficult to support on other hardware.

The Aho-Corasick (AC) algorithm [38] is an efficient solu-
tion to this multi-string pattern matching problem. It builds
a non-deterministic finite automaton (NFA) by constructing
goto transitions from a trie resembling the pattern set, and
failure transitions between nodes sharing a common prefix.
The AC algorithm runs in O(n + m + z) time, where z is the
count of matches. Because of its efficiency, the AC algorithm
has become the de facto standard for the pattern matching,
and is widely used in many state-of-the-art network security
applications, such as Snort [2] and Suricata [39].

B. Problems of Current Approaches

Since the pattern matching has to inspect every byte of
a packet across a set of patterns, it usually becomes a
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bottleneck of an entire network security application. Many
studies have been conducted to alleviate this performance
bottleneck, either through algorithm optimization or through
hardware acceleration. Software-based algorithm optimization
techniques attempt to either minimize the memory usage [40],
[41], [42] or increase the number of characters per transi-
tion [10], [11], [14], achieving several times larger through-
put. However, the packet processing performance of software
is intrinsically limited, because the CPU on servers is not
specialized for high-speed packet processing. For example,
even with highly-optimized algorithms and data structures, it is
still impossible for a server-based pattern matching engine to
reach 20 Gbps packet processing throughput [13]. Although
we can achieve higher throughput by deploying more servers,
doing so would increase the capital and operational costs
drastically [26], [27], which is not symmetric to the rapid
growth of network bandwidth and network traffic nowadays.

Besides the solutions to optimize the pattern matching algo-
rithms on software, utilizing dedicated hardware to accelerate
the pattern matching has also attracted great attention. GPUs
are becoming popular for the pattern matching tasks because
of their high parallelism compared with CPUs. The single
instruction multiple threads (SIMT) architecture can efficiently
execute an algorithm in parallel, thus providing higher multi-
10 Gbps traffic processing throughput [9], [43], [44], [45].
However, keeping the performance at the peak rate is difficult
since it requires that all computing elements have the same
instruction flow, which is quite challenging to achieve [46].
Besides, GPUs also induce higher power costs. FPGA-based
solutions leverage the underlying circuit-level parallelism to
accelerate multi-string pattern matching and even regular
expression matching [15], [17], [18], [47], achieving higher
throughput but lower flexibility and a longer development
cycle. Moreover, it is still difficult for these hardware alter-
natives to match their performance with the current network
traffic volume. Worse yet, these hardware alternatives are
usually attached to servers through PCIe, making it difficult
to explore their full potential because of the limited PCIe
bandwidth.

To summarize, neither prior algorithm-optimized nor
hardware-accelerated solutions provide the desired throughput
that can catch up with the drastic increase of network traffic
and network bandwidth today. There is a strong desire for
a next-generation high-throughput and cost-efficient pattern
matching engine.

C. Opportunities by Programmable Switches

Recent advances in the programmable network have enabled
programmability from the control plane to the data plane,
with emerging hardware such as switching ASICs [28], and
the corresponding domain-specific language such as P4 [30]
and NPL [48]. Programmable switching ASICs provide flex-
ible data plane forwarding capability with customized packet
processing logic at high throughput and low costs [49], [50],
and thus equip us with a promising opportunity to offload a
group of network functions [27], [31], [51], [52], [53] from
expensive servers or middleboxes.

In programmable switching ASICs, there are multiple
ingress and egress pipelines, and each of them has several
ingress and egress ports. Incoming packets will be sequentially
processed by multiple stages in the ingress/egress pipeline
respectively. Each stage is a packet processing unit with

dedicated resources, including match-action tables, registers,
and stateful ALUs. Match-action tables match certain header
fields or metadata fields, and perform customized actions con-
figured by the table entries, e.g., modifying headers/metadata,
reading/writing registers. Stateful ALUs support customized
calculations based on headers/metadata/registers. Registers
store states to support stateful packet processing. With pro-
grammable switching ASICs, operators can customize the data
plane logic by using domain-specific languages (e.g., P4 [30]).
Then the source P4 code is compiled into binaries to be loaded
into the switch, and interactive APIs to be invoked by the
control plane to update the match-action tables and registers
during runtime. Once the P4 program is installed successfully
into the switch pipeline, it runs at line rate with a fixed stage
number as well as bounded memory access.

Programmable switching ASICs and P4 language make it
straightforward to achieve customized line-rate terabit network
functions, as long as the user-defined logic satisfies the com-
putational model and resource constraints of programmable
switches. Furthermore, programmable switches have a sim-
ilar level of power consumption (0.1Wtts/Gbps [27], [54],
[55]) and capital costs as traditional fixed-function switches,
which enables orders of magnitude cost reduction compared to
commodity CPUs or other hardware alternatives (e.g., GPU,
FPGA, NPU).1

III. DESIGN OVERVIEW

In this section, we describe the expected scenario and the
workflow of BOLT in more detail.

A. Expected Scenario

BOLT focuses on accelerating the core function of many
network security applications, multi-string pattern matching.
It acts as a sub-system or a function instance of a network
security application, inspecting the payload in byte granularity,
and taking the corresponding action defined by the rule (e.g.,
alerting, passing, and dropping, etc.). The switch could be
deployed as a middlebox in the link, or as a dedicated
application analyzing the traffic like a bypass tap. Notably,
programmable switching ASICs will discard the inspected
portion of the payload and recirculate the packet for deeper
payload inspection, thus truncating the packets during the
inspection. Therefore, when deploying in-line, an additional
buffer mechanism is required to avoid information loss [32],
[55], [56]. The packets are temporarily buffered during the
inspection, and will be evicted and forwarded normally or for
further complete inspection (such as regular expression pattern
matching) according to the matching results.

We assume the incoming packet consists of an Ethernet
header, an IP header, a UDP/TCP header and a payload to
inspect.2 The packet payload can be encoded in any pattern
(ASCII, UTF-8 or binary data) and we adopt ASCII in our
paper, where each character in the alphabet is encoded in
1 byte. Note that our method is devoted to cases where the
payload only consists of plain text, such as traffic scrubbing
and inspection without encryption deployed. Encrypted traffic
processing is out of our scope, and a decryption mechanism

1The cost-efficiency of packet processing on programmable switches has
been verified by numerous other recent works [27], [54], [55], as a result,
we do not illustrate more in this paper.

2In fact, we can take any layer header as payload.
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Fig. 2. BOLT overview and workflow.

must be integrated in that case, such as the SSL acceleration
service in WAF (Web Application Firewall) [4], [12].

B. Workflow

The workflow of BOLT is illustrated in Fig. 2. Opera-
tors first need to define a list of matching rules from the
signature database (e.g., Snort community rules [57]). Then
the controller extracts string patterns and their correlations
from the matching rules. These string patterns are constructed
into a nondeterministic finite automaton (NFA) with the AC
algorithm [38], and then translated into underlying pattern
table entries. The correlations between different string patterns
in a rule is translated into the rule table in the switch pipeline.
Our first key enabler here is an efficient state encoding scheme,
which takes advantage of the “don’t care” feature of TCAMs
in the match-action table of programmable switches (§IV).
We also apply a variable k-stride transition mechanism to
increase the average transition stride and the average through-
put, while acceptably increasing the number of table entries
(§V). To determine which rule in the ruleset is triggered by the
incoming packet according to the matched patterns, we also
design a compact pattern2rule mapping method to express
multiple co-existing string patterns in one rule (§VI).

With these efficient match-action tables, the data plane con-
ducts matching for every packet byte by byte in the pipeline.
During the matching procedure, the data plane carries out the
corresponding actions, such as dropping, passing, alerting or
forwarding to the backend server.

IV. EFFICIENT STATE ENCODING

In this section, we analyze the shortcomings of existing
DFA-based entry generation methods, and give our observation
that the feature of match-action tables (i.e., ternary match and
entry priority) helps implement the AC NFA efficiently on
programmable switches. We then elaborate our approach to
translating the AC NFA into match-action table entries.

A. Problem Analysis

To achieve multi-string pattern matching on hardware, a typ-
ical method [25], [32] is to (1) construct an NFA consist-
ing of goto and failure transitions with the AC algorithm;
(2) convert the NFA into an equivalent DFA; (3) translate each

Fig. 3. AC NFA and AC DFA.

transition edge in the DFA into a single entry in match-action
tables. However, the NFA-equivalent DFA is built by powerset
construction [38], which has many more transitions than its
corresponding NFA. Fig. 3(a) shows the NFA for matching
{she, her, he} built by the AC algorithm, where the solid lines
denote goto transitions and the dashed lines denote failure
transitions (failure transitions to s0 are omitted for clarity
and the complete transitions are defined in table f(si)). Its
corresponding DFA is shown in Fig. 3(b), and we also omit
the trivial transitions returning to the root state s0. From Fig. 3,
we can see that the DFA has many more transition edges than
the NFA, which requires more table entries in the data plane.
Although we can represent all the trivial transitions to s0 by
setting a default action, the increased non-trivial transitions
(lines in red) still account for a large amount of data plane
memory. While many previous works [12], [13], [25], [58],
[59] have attempted to compress the DFA to save memory,
they either require multiple memory accesses for a single input
character [25], [58], [59], wasting precious pipeline stages,
or require complex computation [12], [13] which is difficult
to support on the switches. Besides, it is still hard for these
compression algorithms to achieve an optimal condition on
programmable switches, which would inevitably lead to table
entry increase or resource efficiency degradation.

We observe that the unique features of match-action tables
in programmable switches, including the ternary match and
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Fig. 4. BOLT state encoding and table entry generation procedure.

the priority entry, provide us a unique opportunity to directly
translate the AC NFA into match-action table entries effi-
ciently. However, an AC NFA’s matching logic is hard to
implement under the matching semantics of match-action
tables, because it requires iterations and loops, which are quite
challenging to support in the data plane. To illustrate this,
we highlight the key difference between the DFA matching
and the AC NFA matching here. In the DFA matching, the
current state under a current input will move to the next state in
a deterministic manner by following the transition edge in the
DFA. While in the AC NFA, under the current input, the next
state is not only determined by the goto transitions starting
from the current state, but also the failure transitions. The NFA
will examine the input multiple times along the path defined by
the failure transition. This feature of the NFA means that one
single goto transition could be potentially executed by multiple
states, as long as the source state for this goto transition exists
on the failure transition path. For example, for the DFA in
Fig. 3(a), when state s3 gets input r, it will deterministically
move to s6 according to the transition edges. But in the NFA,
as Fig. 3(b) shows, when state s3 gets input r, s3 itself has no
goto transition matching r, so the current state gets moved to
s5 along its failure transition (f(s3) = s5), which has a goto
transition matching r and going to s6. Therefore, this input is
consumed by the goto transition of s5.

Based on this observation, if we can smartly encode the state
with ternary bits so that the entry for a specific state si could
match not only itself, but also the states who can move to
it along the failure transition (i.e., these states are shadowed
by si), we will only need to convert every goto transition
into an entry, reducing the number of entries drastically.
As discussed above, the encoding scheme should satisfy the
following properties:

• The ternary code of a state si should cover the exact
code of si and every state deferring to si by the failure
function.

• The ternary code of a state si must not cover the exact
code of the states not deferring to si by the failure
function.

• Any two distinct states should have different ternary
codes and exact codes.

B. State Encoding and Table Entry Generation

In this subsection, we elaborate our approach to encoding
the states and generating the table entries, as depicted in Fig. 4:

(1) construct a failure transition tree denoting the deferment
relationship defined by failure transitions; (2) encode the state
with a shadow encoding scheme, assigning each state a ternary
code in the match field and an exact code in the action field;
(3) assign different priorities for each entry to achieve the
complete semantics of the AC NFA. Details are illustrated
below.

First, we build a failure transition tree from the failure
transition table. The failure transition tree holds the property
that every node may move to its ancestors looking for goto
transitions to match an input character. As Fig. 4 shows, s2 has
ancestors s4 and s0, because f(s2) = s4, and f(s4) = s0.
Obviously, the root state s0 is the root of the failure transition
tree because every state will eventually move to s0 according
to the failure transition table, determined by the construction
process of failure transitions [38].

Second, we encode each state with two codes, a ternary
code and an exact code, based on the failure transition tree.
For each node, the ternary code should cover the exact
code of itself and also the descendant nodes in the failure
transition tree. To achieve this, we build our encoding scheme
on a classic shadow encoding [60] algorithm, which can
assign codes for each state in a specific failure transition tree
effectively. The shadow encoding algorithm was originally
proposed in the D2FA (Delay-input DFA) [61], which was
introduced to reduce the entry number of DFA. It removes
redundant transitions from the state p whose input character
and destination state are the same as the transitions from
q, making this transition deferred to q to be executed. This
algorithm assigns each state a binary exact code and a ternary
code, to make the exact state code of p be matched by the
ternary code of q, achieving the “delay” matching. We find
it surprisingly satisfies the three properties we claimed in
§IV-A. By utilizing a Huffman coding style algorithm, the
shadow encoding algorithm provides a unique signature to
distinguish different states, while increasing the state code
width negligibly.

Finally, we convert each goto transition into a table entry.
We assign priority values for the entries in the post-order of
the failure transition tree so that the transition entry priority
of children is higher than that of their parents, achieving the
logic that children will look up for matching along the failure
transition path iteratively. Taking Fig. 4 as an example, entries
for s2 is arranged in front of entries for s4, because s2 is the
child of s4. And we place the entries of s0 in the last, because
s0 is the parent of all the other states in the failure transition
tree. As we can see from Fig. 4, the entry number is equal to
the number of goto transitions in the NFA.

V. VARIABLE k-STRIDE TRANSITIONS

In this section, we first identify why the current methods that
increase the stride size of transitions add significant memory
costs, and then we illustrate our variable k-stride AC NFA
method and why it works correctly.

A. Strawman Methods

Increasing the stride of transitions to k would improve the
throughput by a factor of k. However, naively increasing the
stride size comes at significant memory costs. One common
method is to construct a k-stride DFA from the 1-stride
AC DFA using ternary matching to omit trivial transitions,
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Fig. 5. 2-stride DFA table for s2.

to achieve deterministic k characters consumed per match-
ing [32], [62]. Although this method can lower the base
of exponential increase of transition number,3 unfortunately,
many redundant transitions are still introduced. Assuming
δk(si, str) = sj denotes a k-stride transition function from si

to sj by string str. For example, in Fig. 3(b), concatenating
δ1(s2, e) = s3 with the transition function of the successive
state, δ1(s3, r) = s6, can obtain a 2-stride transition function
for s2, δ2(s2, er) = s6. 1-stride trivial transitions for s2 (input
is ¬{e}) can be represented by a single one δ1(s2, ∗) = s0 to
concatenate with its successive state, as Fig. 5 shows. But
this method still has many redundancies to optimize. For
example, δ2(s3, sh) = s2 is redundant with δ2(s0, sh) = s2,
because s2 will move along the failure transition to s0 to look
for the next transition, in other word, s2 can be potentially
shadowed by s0 even in 2-stride transition. Such redundancy
in k-stride transition results in extra memory wastes. Worse
yet, besides the transition explosion, enlarging the stride will
also lead to a state explosion. A k-stride transition path
contains k − 1 intermediate states, and any combination of
accepting states on this transition path implies matching a
unique combination of patterns. For example, in Fig. 5, both
input “e∗” (e¬{s, h, r}) and “∗∗” (¬{e}¬{s, h}) lead a tran-
sition from s2 to s0, but state transition with input “e∗” will
output matching for pattern “she” and “he” while “∗∗” not.
We need to allocate a new state for every possible combination
of accepting states in the path [32], [60], causing the state
explosion. Alicherry et al. [25] propose a highly-optimized
DFA which has variable stride length, but it still has large
memory usage resulting from additional states, and the average
stride is small because there could be a negative stride in
some cases. Backwards packet inspection is also difficult to
implement in the switch pipeline.

In addition to multi-stride DFAs, some works increase the
stride size for AC NFAs by only concatenating the goto transi-
tions, reducing the redundant transitions. Yun et al. [63] pro-
pose a k-AC NFA constructing method, which consumes exact
k input characters on state transition in a memory-efficient
way. They solve the states explosion problem by decoupling
the state transition and output into two match-action tables to
achieve simultaneous matching. This requirement is infeasible
in current switching ASICs, because it needs two stages to
implement one complete state transition, leading to k/2 char-
acters consumption per stage. Since the number of stages is
very limited in programmable switches, reducing the bytes
consumed by each stage will increase the recirculation times
in the pipeline and the bandwidth usage per packet, finally
degrading the throughput.

3Assuming an alphabet Σ, in a naive k-stride DFA, each state may have
conceptually |Σ|k transitions outgoing from it.

To summarize, currently, neither DFA-based methods nor
NFA-based methods are suitable in the model of program-
mable switches. In DFA-based methods, redundant transitions
and new assistant states should be added [25], [32], [60],
while in NFA-based methods, it requires multiple tables (i.e.,
multiple stages in a programmable switch) to handle a single
transition [63]. Both methods lead to unnecessary resource
waste for programmable switches.

B. Variable k-Stride Transitions

In this subsection, we propose a variable k-stride AC
NFA under the programmable switch scenario, to increase
the average throughput, while ensuring space usage increases
slowly.

The root drawback in previous approaches is (1) the redun-
dant transitions and (2) accepting state(s) in the intermediate
node(s) on a transition path. Our method constructs the vari-
able k-stride AC NFA whose failure transition is exactly the
same as the 1-stride AC NFA, which means that we can use the
shadow code from the original AC NFA directly. Therefore,
we can avoid redundant transitions by allowing states to
match the variable k-stride goto transitions from the ones
shadowing them, as we do in §IV. Besides, our methodology
in constructing the variable k-stride goto transition will stop
increasing the transition stride once encountering an accepting
state, to capture as many as possible k-stride transitions using
relatively fewer entries. Furthermore, for root state, we deploy
a self-unlooping mechanism to unroll the self-loops, increasing
the average stride of transitions from root, while ensuring the
correctness of matching.

Constructing the variable k-stride goto transitions from
non-root states is intuitive but efficient. For example, to get
variable 2-stride goto transitions from s1, we concatenate the
1-stride transition δ1(s1, h) = s2 with the 1-stride transition
for the successive state s2, δ1(s2, e) = s3, to obtain a 2-stride
transition function δ2(s1, he) = s3. In this way, we can com-
pute the k-stride goto transitions iteratively from (k−1)-stride
goto transitions. The left side in Fig. 6 shows the variable
2-stride goto transition from the AC NFA in Fig. 3(a). The
entry stride for s2 is 1, because it encounters s3, an accepting
state within 1 stride. For any state si, we stop increasing
the stride size when encountering an accepting state on its
k-stride transition. This can avoid extra states or table entries
to represent the combination of multiple accepting states in
the path, as we discussed above.

The root state s0 is special because when k characters are
processed at a time, the pattern in the pattern set could start
at any position within the k block. If we directly expand the
transition stride size to 2 for s0 in the same way as other
non-root states, we can get the table entries for s0 as the
upper right part in Fig. 6 shows. However, this table cannot
carry out the pattern matching correctly. For example, the
input xher will not match, so the pattern her will miss.
Meiners et al. [60] propose a self-loop unrolling mechanism to
solve this problem in k-stride DFA by prepending wildcard ∗
to the initial transition table entries, increasing the stride of
the transitions with a linear increase in the number of entries.
However, this method does not increase the stride of transitions
evenly. As the lower right part in Fig. 6 shows, the self-
unlooping transitions for s0 provide the stride from 1 to k.
We address this by first constructing k-stride goto transitions
as other states, then deploying self-loop unrolling on them.
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Fig. 6. Variable 2-stride table.

Fig. 7. Variable 2-stride AC NFA.

In summary, our method goes as follows: We first increase
the stride of transitions to k for all the states (stopping
transitions at accepting states) by concatenating the goto
transitions in the AC NFA, as the upper right side shows in
Fig. 6. Then we unroll the self-loops in s0. We iteratively right-
shift the k-stride-transitions from the root state and prepend
them with wildcards (∗). This method increases the stride
to k with only additional O(k) growth of the entry number,
scaling linearly with the stride k. The lower left side in Fig. 6
illustrates a 2-stride self-loop unrolling table for s0. With these
two steps, we get all the variable k-stride goto transitions.
In particular, Fig. 7 shows the final variable 2-AC NFA derived
from Fig. 3(a).

C. Correctness Proof

In this subsection, we mainly explain why this variable
k-AC NFA has the same state set and failure transition table
as the original NFA, i.e., why the variable k-AC NFA executes
the pattern matching correctly.

Let string(s0, si) denote the sequence of input characters
that changes state from s0 to si in the AC NFA. Every
state si is uniquely labeled by the string string(s0, si) in
the AC NFA [64]. In variable k-AC NFA, since our variable
k-stride goto transition function is obtained by concatenating k
consecutive goto transition, so the sequence of input characters
transiting s0 to any state si is the same as in 1-stride AC NFA,
which is the label of the state si. Besides, we stop any state
transition stride increasing at accepting states, so the output
of every state remains unchanged. Therefore, this variable
k-goto transition will not introduce a new state, and we will
have exactly the same state set as the 1-stride AC NFA. In
1-stride NFA, the failure function f(si) = sj if and only if
string(s0, sj) is the longest suffix of string(s0, si) [38], [63].
In variable k-AC NFA, the state and its label string(s0, si)
are exactly the same as the AC NFA, so the failure function
of variable k-AC NFA is exactly the same as the failure
function in the corresponding 1-stride AC NFA, i.e., the failure
transition tree and the code for each state in 1-stride AC NFA
can be applied without modification.

VI. COMPACT Pattern2rule MAPPING

In this section, we first describe two strawman solutions that
either place a heavy burden on the backend server, or scale
poorly with the ruleset size, when accommodating multiple
strings in one rule. Then we propose a compact pattern2rule
mapping method that achieves a good balance between
processing effectiveness and hardware resource usage.

A. Strawman Methods

In BOLT, an intuitive approach when identifying a string
pattern in the packet payload is to forward the packet to
the backend server with complete NIDS functionality, which
can carry out a fine-grained payload inspection and determine
which patterns and thus which rule the packet triggers. How-
ever, naively forwarding any packet containing one pattern in
the ruleset can put a heavy burden on the backend server.
Due to the high throughput of the switch, forwarding a
relatively small part of the traffic may still overwhelm the
server processing capability, as Pigasus [18] identifies.

Another approach is to offload the rule-checking function
to data plane ASICs, as we did in our prior poster work [65].
As Fig. 8(a) shows, the switch maintains a bit-vector in the
metadata for every packet, where each bit stands for the
matching status of one pattern. The pattern tables will set the
corresponding bits when matching a pattern. At the end of
the switch pipeline, we set a rule table, with the bit-vector as
the key to determine which rule is hit. However, this method
requires a large number of bits in the metadata and the match
field, which requires significant hardware packet header vector
(PHV) resources in the switching ASICs and is not scalable
to the increasing pattern set size. For example, there are
∼20K string patterns in Snort and Suricata ruleset [66], which
require a 20K-bit-long vector in the metadata. Such a design is
unfeasible under the current programmable switching ASICs.

B. Pattern2rule Mapping Workflow

The strawman bit-vector-based pattern2rule mapping
method has an unacceptable memory overhead because it
maintains the matching state for every pattern in the ruleset.
However, we observe that, compared to the complete pattern
set containing thousands of patterns, only quite a few patterns
appear simultaneously in a rule and a packet. For example, the
Snort ruleset contains thousands of patterns, but no rule has
more than 20 patterns. Therefore, for a single input packet,
only a small amount of memory is required to maintain the
matched patterns. Based on this observation, we design a
compact pattern2rule mapping method to check which rule
is matched by the incoming packet. As shown in Fig. 8(b),
similar to the bit-vector-based strawman solution [65], we set
a rule table at the end of the switch pipeline, and store the
matching logic for a rule containing multiple patterns in one
entry.

Our transformation from rules with multiple patterns into
the rule table entries works as follows. Firstly, we assign
a binary code to each pattern p in the pattern set P and
denote it as code(p)) (the code bit-width is O(lg(|P|))).
We then set M buckets and allocate each pattern p a unique
bucket ID, id(bucket), i.e., we map each pattern p to a tuple
(id(bucket), code(p)). The distribution of patterns in different
buckets should satisfy that any two patterns contained in a
single rule must NOT be assigned to the same bucket. For
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Fig. 8. Comparison of bit-vector-based and bucket-based pattern2rule mapping workflow.

example, in Fig. 8(b), the patterns “she”, “he”, “his” in rule
r1 are distributed into different buckets to avoid collision. This
constraint leads to a k-SAT problem, which is NP-Complete.
We omit the proof process here, and interested readers may
refer to Appendix (§A) for details.

According to the pigeonhole principle, the number of buck-
ets M is at least the maximum pattern number in a single rule
(3 for the case in Fig. 8(b)), i.e., max{|ri| | ri ∈ R}, where R

is the ruleset, and should not exceed the size of the pattern set
|P|, because it is a trivial solution when each pattern has its
exclusive bucket. Such a value range gives a feasible solution
to this NP-C problem. We iterate M over the value range from
max{|ri| | ri ∈ R} to |P|, and for each M , we invoke Z3 [67],
a classical SMT solver, to find whether a pattern distribution
exists. Once one pattern distribution is found, the Z3 solver
stops. The solution exists in the worst case where M is equal
to |P|. Fortunately, in our evaluation on classical IDS rulesets
such as Snort and Suricata, the solution exists and M is really
close to the value of max{|ri| | ri ∈ R}.

Then we can generate the table entries according to the
bucket distribution and the codes of the patterns. We set M
buckets in the metadata as the key of the rule table, and trans-
late each rule into an entry in this table. For each pattern in the
rules, we fill the code of this pattern into the corresponding
bucket in the match field. After we map each pattern to a
unique bucket and code, the rule can be represented as an
entry with its patterns’ code in the corresponding buckets. As
Fig. 8(b) shows, rule r1 can be represented with an entry with
p1 in bucket0, p2 in bucket1 and p3 in bucket2. And rule r3,
containing 2 patterns, is transformed into an entry with p5 in
bucket0, p3 in bucket2 and bucket1 set as * (wildcards).

At runtime, the packet is first processed by the pattern
tables generated from the deferment encoding (§IV) and
variable striding (§V), and the buckets in packet’s metadata
will be filled by the matched patterns. Then the rule table
would determine which rule the packet hits and carry out the
corresponding actions defined by the rules. However, some
packets may contain several patterns in a bucket. For example,
as shown in Fig. 8(b), a packet containing “her”, “he”, and
“his” should be matched by rule 3. However, if “her” is
matched before “he”, “he” will be overwritten by “her” in
bucket0. As a result, rule 3 will not be matched and the
packet will be determined as a legitimate packet, resulting in

a false negative.4 To avoid the false negative problems, once
overwriting happens on a bucket, the switch will forward the
packet immediately to the backend server instead of continuing
inspecting the payload. In this way, BOLT can guarantee an
accurate and efficient multi-string rule matching.

VII. IMPLEMENTATION

We implement a prototype of BOLT, including all data plane
and control plane features described above. The data plane part
is implemented in ∼1K lines of P4 code, while the control
plane part is written in ∼3K lines of Python code. Our code
is publicly available here [33].

In the data plane, the switch parser extracts the payload into
a customized header, and the pattern table takes the current
NFA state in the metadata and the next k bytes of the packet
payload as match fields. Its actions include popping a specific
number of byte, changing the current NFA state, and flagging
the packet if some patterns get matched [68]. All these actions
can be implemented using the primitives defined by P416
specification [68].

In the control plane, the table entry generator module adopts
the existing library Pyahocoracisk [69] to construct the AC
NFA efficiently, and employ the state encoding (§IV) and the
variable k-stride transition (§V) to generate the final entries
for the pattern tables. For the rule table entries, we first utilize
Z3-solver [70] to distribute the patterns into different buckets,
and then generate corresponding entries for the rule table
according to those distribution and the pattern code (§VI). All
the generated table entries are installed into the underlying
switch with the interactive APIs provided by the Tofino
runtime. The only parameter in BOLT is the maximum stride
k, which should be predefined by operators in terms of the
TCAM constraint of their switches and the number of patterns.

VIII. EVALUATION

Our evaluation mainly focuses on the following questions:
• How efficient and effective is the pattern table entry

generating method of BOLT? (§ VIII-B)

4Note that pattern2rule table induces no false positive because it is sufficient
to prove that a packet truly hits a rule if its bucket contains all the patterns
corresponding to a rule, while the inverse proposition does not necessarily
hold.
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Fig. 9. Entry number on different pattern sets.

• How effective is the rule table entry generating approach
that BOLT uses? (§ VIII-C)

• How about the performance and the scalability of BOLT?
(§ VIII-D)

A. Experimental Setup

We compile the data plane of BOLT with the Barefoot Capi-
lano software suite [29] and deploy it on a 12-stage 6.4Tb/s
Barefoot Tofino switch. The controller of BOLT runs on a
Dell R730 server, equipped with Intel(R) Xeon(R) E5-2600
v4 CPUs (2.4 GHz, 2 NUMA, each with 6 physical cores
and 12 logical cores), 15360K L3 cache, 64G RAM and one
Intel XL710 10GbE NIC to connect to the switch. The pattern
sets used in our experiments are constructed from the rulesets
of Snort 2.9.7.0 and Suricata 5.0 provided by ET-OPEN�

[66]. We identify and extract string patterns from the ruleset
with the keyword content. The traffic traces in our experi-
ments includes CTU-Mixed-Capture-1∼5, CTU-Normal-7 and
CTU-Malware-3, which are collected from Stratosphere [71].

B. Pattern Table Efficiency & Effectiveness

To demonstrate the memory efficiency of our entry gener-
ating method, we implement three existing schemes discussed
in §IV and compare them with BOLT: AC DFA method
which has every transition converted into an entry, AC DFA
with default actions to omit trivial transitions back to s0,
and CompactDFA [59], a typical method for compressing AC
DFA. For fair comparison, we choose k=1 here. We first count
the number of entries generated by BOLT and other three
methods under different numbers of patterns. As Fig. 9 shows,
compactDFA and BOLT always generate the least number of
entries, which is an order of magnitude lower than the AC
DFA with default actions and two orders of magnitude lower
than the naive AC DFA. Note that Fig. 9 also indicates BOLT
will generate the same number of entries as compactDFA, but
it does not mean these two schemes occupy the same amount
of TCAM memory.

To demonstrate this, we also measure the size of TCAM
required by BOLT and other three methods for different
numbers of patterns, and the results are shown in Fig. 10. The
TCAM memory requirement (i.e., bit number), is the product
of the entry number and the width of a state code. BOLT only
needs half the TCAM of compactDFA, because the code width
required for the BOLT to encode DFA/NFA states is only half
of compactDFA. In addition, compared with the other two
schemes based on the AC DFA, BOLT just takes up a really
small amount of TCAM. Both experiments show that BOLT is
able to generate entries efficiently and save precious TCAM
memory resources.

To evaluate the effectiveness of the variable k-stride tran-
sition mechanism in BOLT, we not only count the number of

Fig. 10. TCAM requirement on different pattern set.

Fig. 11. Entry number and average stride.

Fig. 12. Switch-server emitting ratio for different matching methods.

generated entries, but also analyze and compute the average
number of characters (average stride) that each stage matches
with the Snort pattern set. As shown in Fig. 11(a) and
Fig. 11(b), although employing the strawman 5-stride method
discussed in §V-A directly increases the average stride to 5,
it will introduce several orders of magnitude extra table entries,
leading to an unacceptable memory explosion. In contrast,
only applying the self-unloop unrolling algorithm will bring
very few new table entries, but will increase the average
stride greatly. Compared with the only-self-unloop method,
our variable k-stride transitions do not introduce too many
extra entries, but can further increase the average stride to
nearly 5 at the same time, which is the theoretical maximum
value for 5-stride based methods. To summarize, the variable
k-stride optimization in BOLT achieves an excellent trade-off
between memory usage and throughput gain.

C. Rule Table Effectiveness

To demonstrate the effectiveness of the rule table matching,
we first evaluate the volume of the packets forwarded to the
backend server (for further fine-grained payload inspection)
on the strawman single-pattern method (i.e., forwarding the
packet when one pattern in the rule is matched) and BOLT.
We use the ratio between the backend server’s receiving packet
number and the data plane processing packet number as the
metric, i.e., the switch-server emitting ratio. Fig. 12(a) shows
the variation of the switch-server emitting ratio for these two
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Fig. 13. PHV and rule table memory usage on different rulesets.

matching methods over time when replaying a trace (CTU-
Norm-7). Fig. 12(b) shows the average and the maximum
switch-server emitting ratio over different traces. The single-
pattern method forwards about 20∼30% of the processed
packets to the backend server for further inspection, which
is still a heavy burden for the backend server, considering
the ∼Tbps processing capacity of programmable switches.
In comparison, by using the compact pattern2rule mapping
method, BOLT significantly reduces the switch-server emitting
ratio to less than 5%, up to 10 times better compared to
the single-pattern method in most cases. The lowest emitting
reduction exists in CTU-Mix1. We find that many packets
in this trace contain numerous patterns, and the switch will
emit them to the backend server to avoid pattern overwriting,
as described in § VI-B. But in this case, BOLT still reduces
the emitting by almost 2 times.

We also evaluate the memory efficiency of our bucket-
based pattern2rule mapping method and compare it with the
naive bit-vector-based pattern2rule mapping method. We use
the PHV usage and the memory footprint of the rule table
entries when deploying different rulesets as the metrics. The
rulesets are located in different categories in Snort 2.9.7 from
ET-OPEN [66], including Web Specific Apps, Current Events,
Trojan, Exploit, Malware, Activex, and Web Server [72]. As
Fig. 13 shows, the PHV usage (the metadata usage) and the
memory footprint in the rule table of the BOLT are about 1 to
2 orders of magnitude lower compared to the strawman bit-
vector method.

To conclude, BOLT achieves a good balance between the
effectiveness and hardware resource usage.

D. Performance and Scalability

To demonstrate the performance and scalability of BOLT,
ideally we should measure the highest pattern matching
throughput that one Tofino switch [29] could provide, and
how this throughput scales to different pattern sets and traffic
traces. However, restricted by the capability of the traffic
generator in our lab, we cannot fully cover the bandwidth of
the switch. Therefore, we simulate the theoretical upper limit
of the throughput of BOLT under different pattern sets and
workloads.

We assume BOLT can inspect B-byte payloads each time the
packet passes an ingress/egress pipeline, and B is the product
of the average stride for NFA matching tables and the number
of pipeline stages. To inspect more bytes in the payload, BOLT
recirculates the packet to pass the pipeline again, leading to
extra bandwidth occupation. To recirculate packets in a switch,
we set some ports in loopback mode, where all packets will
only be bounced into the ingress pipeline (i.e., recirulation
ports) [73]. Assuming that a programmable switch provides
Tm throughput at most, we set Tr throughput for recirculation

Fig. 14. Throughput over traffic with different payload.

by setting the corresponding number of ports as loopback
mode (e.g., the port B in Fig. 14(a)),5 and the remaining
ports offer Tx throughput for external traffic (the port A in
Fig. 14(a)). Obviously, Tx + Tr = Tm, and the effective
throughput of BOLT (Tx) is positively correlated with the
number of ports used for external traffic. Assuming the packet
header is H bytes, and the payload is P bytes, we can
obtain the recirculation number for the packet, denoted as n,
by the inequality 2nB < P ≤ 2(n + 1)B, and thus n =
�P/2B� − 1. Fig. 14(a) shows an illustration of recirculation
for n = 2 times. Packets recirculating for the first and the
second time will compete for bandwidth of reciuculating ports.
We observe that egress B is the bottleneck in switch whose
pipeline throughput is the first to be exhausted. When egress
B arrives at the maximum throughput, we get Tr = T �

x + T �
1.

At this time, the packets per second (pps) of traffic is constant,
but every pass of ingress/egress pipeline will pop B bytes of
payload, so we derive:

pps(Tx) =
Tx

H + P
=

T �
x

H + P − B
=

T1

H + P − 2B

=
T �

1

H + P − 3B
=

T2

H + P − 4B
=

T �
2

H + P − 5B
.

According to the equations above, we can calculate Tx, the
maximum throughput a switch can provide, with no packet
drop in internal pipelines, which is affected by the recirculation
times. Generally, when recirculating for n (n ≥ 1) time(s), the
following equations can be obtained:

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

pps(Tx) = Tx

H+P = T �
x

H+P−B = Ti

H+P−2iB

= T �
i

H+P−(2i+1)B (i = 1, 2, . . . , n − 1)
Tr = T �

x + Σn−1
i=1 (T �

i )
Tm = Tx + Tr

(1)

Solving the equations above, the upper bound of input
throughput with no packet loss is Tx = Tm

n+1−n2B/(H+P ) (n =
� P

2B �−1). Fig. 14(b) shows the maximum effective throughput
of BOLT based on the equations above. For the Tofino switch
we employed, Thm is 6.4Tb/s and the number of stages is 12.6

This simulation is reasonable because once the P4 program is
compiled successfully into the switch pipeline, the switch is
guaranteed to run at terabit line rate with bounded memory

5Although some programmable switches such as Tofino provides free
recirculation bandwidth through dedicated recirulcation ports instead of the
Ethernet ports, their bandwidth is limited (e.g. 100Gbps in Tofino). And we
set a set of Ethernet ports to loopback mode to obatin extra recirculation
bandwidth.

6Tofino has 12∼20 stages available per pipeline. In practical usage, some
stages may be reserved for pattern2rule or other functions like L2 forward-
ing. To demonstrate the maximum throughput it can achieve theoretically,
we assume 12 stages are utilized for pattern matching.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 01:04:58 UTC from IEEE Xplore.  Restrictions apply. 



856 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

Fig. 15. Throughput over short-packet traffic.

Fig. 16. Throughput over large-packet traffic.

access time [29], [30], [32]. According to this figure, for larger
payload and fewer bytes inspected per pass, BOLT requires
more recirculations, which would reduce performance super-
linearly. Even so, it can still provide ∼1000 Gbps throughput
in the case of medium-length payload and medium transition
stride.

We also apply different k, pattern sets and traffic traces
to demonstrate the performance and scalability of BOLT. The
first trace is composed of short UDP packets, with a header of
42 bytes and a randomly generated payload of 200 bytes. The
second one is a real trace collected from an enterprise sliced
evenly, consisting of HTTP packets with a header length of
54 bytes and an average payload length of 1000 bytes. The
effective throughput of BOLT over short packets is shown
in Fig. 15. BOLT can provide high throughput for short-
packet workloads, because they require only a few or even no
recirculations and waste negligible bandwidth. Fig. 16 displays
the effective throughput of BOLT over large packets. BOLT
provides poorer performance on large-packet workloads due
to more recirculations. In addition, increasing the stride k can
improve the effective throughput of BOLT significantly, and
BOLT scales well with pattern sets and the number of patterns.

We also conduct another experiment to explore how the
proportion of packets containing patterns influences the perfor-
mance. To do so, we modify the content of payload to contain
some patterns, with the payload remaining 200 bytes. Fig. 17
demonstrates BOLT can still keep a line-rate throughput when
injecting more pattern-contained packets.

In a word, BOLT can achieve high throughput performance
and scale well with different pattern sets and workloads.

IX. DISCUSSION

A. Further Optimizations

Our encoding-based method makes the entries number equal
to the edge number of the trie composed of pattern set, which
has much less edges than any AC DFA. For further opti-
mization on entries number, Liu et al. [74] provide another
entries compressing method based on the redundancy where
transitions share the same source state and destination state,
but only character differs. This method works well for regular
expression matching table compression, but not so effective in

Fig. 17. Throughput on traffic with different pattern-packet percentage.

mult-string pattern matching because this kind of redundancy
is sparse in string matching. Our experiments shows that this
method could reduces the entry number by a few percent.
Besides, we can also split a large ruleset into multiple smaller
ones, as PPS does [32], which is orthogonal to our work and
left as future work.

B. Multiple Correlated Strings in One Rule

Our method can determine whether a packet matches a rule
containing multiple string patterns. However, some security
applications may employ multiple correlated string to express
one attack signature (rule). For example, a rule may require 1
exists while 000 does not appear. This requires that program-
mable switches should support relational operations (e.g., ‘or’,
‘and’, ‘not’) for multiple strings, which is challenging to be
efficiently achieved on the restricted computational model of
programmable switches. The bit-vector-based method, as we
illustrated in § VI-A and Fig. 8(a), can support such a
requirement but scale poorly with the ruleset size, and we leave
the support of more flexible correlations between multiple
patterns in programmable switching ASICs as our future work.

C. Limitations of Our Bucket-Based pattern2rule Mapping
Method

There still remain a few limitations in our pattern2rule
mapping method. First, distributing patterns in K buckets is
actually a K-SAT problem. Theoretically, it does not always
have solutions in polynomial time and may have some approx-
imate solutions with some patterns within a rule allocated to
one bucket. A carefully crafted ruleset may make the problem
unsolvable, resulting in a large bucket number K and a high
memory cost. Fortunately, in our experiments, the Z3 solver
can always give a valid bucket distribution solution in minutes
for both Snort and Suricata rule set, each with thousands of
rules. We believe that the bucket distribution is feasible for
common rule sets in practice. Another problem is the bucket
overwriting which introduces false negatives, as we mentioned
in § VI-B. Although BOLT avoids this false negative problem
by forwarding the overwriting packets to the backend server,
this may still overwhelm the capability of the backend server
when the traffic volume of forwarding packets is large. Worse
yet, attackers may exploit this vulnerability by crafting packets
to degrade the performance of the entire system. We leave the
detailed exploration of these two problems as our future work.

D. Extensibility of BOLT

BOLT can be applied in many fields to accelerate the
overall performance of the system. In NIDS, rules may contain
different signatures, such as string patterns (“content” filed in
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Snort) or regular expressions (“pcre” field in Snort). BOLT can
not only support offloading the rules with only string pattern
signatures but also act as a prefilter for the rules with more
than string patterns, such as regular expressions [18]. Besides,
although BOLT is devoted to security applications in this paper,
it can also be used in many other fields. For information
retrieval and data analytics applications [75], pattern matching
is used to locate the occurrences of user-defined strings (e.g.,
words, phrases) in text, which also dominates the performance
of the entire system. BOLT can be leveraged to improve the
throughput of these applications as well.

X. RELATED WORK

Besides the most relevant works discussed in the main text,
our work is also inspired by the following topics.

A. NIDS/NIPS Acceleration

There have been numerous efforts to scale up pattern match-
ing performance with dedicated hardware. Barker et al. [76],
Mitra et al. [77], and Pigasus [18] leverage FPGA to achieve
high throughput string or regex pattern matching. MIDeA [43]
and Kargus [9] demonstrate that a single GPU-enhanced server
can achieve a much higher throughput (e.g., 40 Gbps for
Kargus [9]). Liu et al. [78] and DeepMatch [79] accelerate
string pattern matching as high as 40 Gbps utilizing NPU.
In contrast, we focus on offloading multi-string pattern match-
ing on an emerging type of network hardware, programmable
switching ASICs, which enables flexible and performant net-
work function offloading compared to traditional ASICs [80],
[81], [82]. PPS [32] first offloads the AC algorithm onto
programmable switches to carry out string pattern match-
ing. However, PPS utilizes a straightforward DFA compiling
scheme with high memory costs (subset construction and
k-stride closure [83]). It takes no consideration of co-existing
patterns either, making it difficult to identify which patterns
and thus which rule a packet matches.

B. DFA Compression

A large number of studies have been proposed in recent
years to optimize DFA-based pattern matching. The core goal
is to minimize the memory footprint while guaranteeing high
performance. Some existing efforts re-encode the state set
S [41] or alphabet Σ [84], [85], [86], [87] to merge similar
states or input symbols, and reduce the scale of the transition
table with a size of O(|S| ∗ |Σ|). In addition to the encoding
schemes, some studies have been conducted to compress
the transitions, leveraging the redundancy in transitions. For
example, many efforts utilize bitmap [40], [41], [58], [87],
[88] to remove the redundant transitions and reduce memory
footprint. However, the methods above still require multiple
times of memory access for a single input character, resulting
in a lower average stride per stage and finally degrading the
maximum throughput. Furthermore, some studies transform
consecutive symbols into a single transition [89], [90], or pro-
pose default transitions [61], [91], [92], [93] to compress the
transition redundancy. These methods do not work well on
programmable switches because the consecutive transitions are
sparse in string matching and the default transitions require
multiple memory accesses, resulting in lower efficiency on
programmable switches. There is also a considerable amount
of work on efficient pattern matching, such as partitioning

the rule set [94], [95], [96], [97], or designing new FA
variants [47], [98], [99], [100], [101], [102], [103], [104],
[105], [106]. We omit the details and suggest interested readers
refer to Xu et al. [107] for a more comprehensive survey.

C. Programmable Switch

BOLT builds on the recent trends that leverage
programmable switches to accelerate various network
applications. Programmable switches have been utilized to
accelerate load balancing [31], [108], key-value storage [51],
coordination service [109], distributed deep learning
training [110], [111], network monitoring or telemetry [53],
[112], [113], network scanning [114] and DDoS defense [27],
[52]. They deliver significant performance improvement
with lower costs. BOLT focuses on a different problem:
multi-string pattern matching. To this end, we design various
techniques to translate string patterns into the match-action
entries, increase the throughput with acceptable memory
costs, and accommodate rules with multiple co-existing
strings with data plane match-action tables.

XI. CONCLUSION

In this paper, we highlight the challenges that current
multi-string pattern matching faces in dealing with the
high-speed large-volume network traffic today, and identify
the opportunities that programmable switches provide to
resolve such issues. To this end, we present BOLT, a scalable
and cost-efficient multi-string pattern matching system that
overcomes several constraints of the computational model and
memory resources of programmable switches. In particular,
we design an efficient state encoding scheme to fit a large
number of rules into the limited memory on programmable
switches, a variable k-stride transition mechanism to increase
the throughput significantly with acceptable memory costs,
and a compact pattern2rule mapping method to support
multiple co-existing strings in one rule. We implement
an open-source prototype of BOLT and conduct extensive
evaluations. These evaluations show that BOLT offers orders
of magnitude improvements in throughput and scales well
with various rulesets and workloads.

APPENDIX A
PROOF OF THE BUCKET ALLOCATION

We give a formal proof that the bucket allocation problem
in § VI is a k-SAT problem.

First, we denote a rule containing a few patterns (pi) as
r = {p1, p2, . . . , pr}. A rule set, certainly, can be marked as
R = {r1, r2, . . . , rs}, ri = {pi1 , pi2 , . . . , pi|ri|}, where |ri| is
the size of ri, i.e., the number of patterns in ri. For a rule set R,
we can get a corresponding pattern set P = {p1, p2, . . . ., pn},
composed of the patterns in the rules of R. As we discussed
above, we want to allocate each p ∈ P into M buckets in
a way that any two patterns present in each rule can not
be assigned in the same bucket (according to the pigeonhole
principle, M should satisfy max{|ri| | ri ∈ R} ≤ M ≤
|P|). Namely, the allocation requirement can be formalized
as follows. An allocation partitions the pattern set P into M
buckets, where each bucket Bm is a set of patterns Bm =
{pm1 , pm2 , . . . , pm|Bm|}, and |Bm| is the pattern number in
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Cdefault = (x11 ⇒ ¬x12) ∧ (x11 ⇒ ¬x13) ∧ · · · ∧ (x11 ⇒ ¬x1K)
∧(x12 ⇒ ¬x11) ∧ (x12 ⇒ ¬x13) ∧ · · · ∧ (x12 ⇒ ¬x1K)
∧(x13 ⇒ ¬x11) ∧ (x13 ⇒ ¬x12) ∧ · · · ∧ (x13 ⇒ ¬x1K) ∧

...

(x1K ⇒ ¬x11) ∧ (x1K ⇒ ¬x12) ∧ · · · ∧ (x1K ⇒ ¬x1(K−1))
∧(x11 ∨ x12 ∨ · · · ∨ x1K) ∧

...

(xN1 ⇒ ¬xN2) ∧ (xN1 ⇒ ¬xN3) ∧ · · · ∧ (xN1 ⇒ ¬xNK) ∧
...

(xNK ⇒ ¬xN1) ∧ (xNK ⇒ ¬xN2) ∧ · · · ∧ (xNK ⇒ ¬xN(K−1)) ∧
∧(xN1 ∨ xN2 ∨ · · · ∨ xNK) (7)

Ci = (xi11 ⇒ ¬xi21) ∧ (xi11 ⇒ ¬xi31) ∧ · · · ∧ (xi11 ⇒ ¬xi|ri |1)
∧(xi12 ⇒ ¬xi22) ∧ (xi12 ⇒ ¬xi32) ∧ · · · ∧ (xi12 ⇒ ¬xi|ri|2) ∧

...

(xi1K ⇒ ¬xi2K) ∧ (xi1K ⇒ ¬xi3K) ∧ · · · ∧ (xi1K ⇒ ¬xi|ri |K) ∧
...

(xi|ri |1 ⇒ ¬xi11) ∧ (xi|ri|1 ⇒ ¬xi21) ∧ · · · ∧ (xi|ri |1 ⇒ ¬xi|ri |−11)
∧(xi|ri |2 ⇒ ¬xi12) ∧ (xi|ri |2 ⇒ ¬xi22) ∧ · · · ∧ (xi|ri|2 ⇒ ¬xi|ri|−12) ∧

...

(xi|ri |K ⇒ ¬xi1K) ∧ (xi|ri |K ⇒ ¬xi2K) ∧ · · · ∧ (xi|ri |K ⇒ ¬xi|ri |−1K) (8)

Bm. Every Bm satisfies:

∀m = 1, 2, . . . , M, Bm ⊆ P (2)�
1≤m≤M

Bm = P (3)

∀i, j, Bi ∩ Bj = φ (4)

∀Bm, ∀r ∈ R, ∀pi, pj ∈ r, (pi ∈ Bm)
∧(pj ∈ Bm) ≡ False (5)

Note that, the constraint above does not reflects that require-
ments of each rule, i.e., any two patterns can not appear in
one bucket. To formalize this, we define a map B : P →
{1, 2, . . . , M}, to denote which bucket a pattern p is allocated
into. Obviously, we obtain:

∀r ∈ R, ∀pi, pj ∈ r,B(pi) �= B(pj) (6)

We want to prove that, determining whether such an allocation
exists is a K-SAT problem, i.e., an NP-C problem when K ≥
3. Assuming P has N patterns, and a rule has at most K
pattern in R, i.e., the bucket number is at least K , we denote
a boolean variable xij = 1 if and only if pattern pi is allocated
in bucket Bj . Then we can get a |P| ∗K matrix describing the
pattern distribution (for clarity, we denote |P| as N ):

AN×K =

⎡
⎢⎢⎣

x11 x12 · · · x1K

x21 x22 · · · x2K

...
...

. . .
...

xN1 xN2 · · · xNK

⎤
⎥⎥⎦

According to (2)(3)(4)(5), each row of the matrix has one and
only one element of 1 (a pattern can be placed in only one
bucket) and the rest are 0. Therefore, A default constraint can
be obtained as (7), shown at the top of the page. According to
(6), each rule ri can raise a corresponding constraint Ci. (8),
as shown at the top of the page.

Therefore, whether a valid bucket allocation exists is
abstracted in to a boolean satisfiability problem whether there
exists an assignment for the boolean variables in matrix AN×K

satisfying the following constraint.

C = (


1≤i≤|R|
Ci) ∧ Cdefault (9)

As shown in (7) and (8), each constraint formula has
been expressed as a conjunctive normal form because each
implication formula p ⇒ q is equivalent to p∨¬q. And we can
identify that the largest clause7 (which has the most variables)
lies in Cdefault (7), denoted by (xi1 ∨ xi2 ∨ · · · ∨ xiK), i =
1, 2, . . . , N , and it obviously has K variables. Therefore, such
a problem can be reduced to a K-SAT problem, and when
K ≥ 3, becomes an NP-C problem.
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