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Abstract—Software-Defined Networking (SDN) has attracted
great attention from both academia and industry. However, the
deployment of SDN has faced some critical security issues, such
as Denial-of-Service (DoS) attacks on the SDN infrastructure.
One such DoS attack is the data-to-control plane saturation
attack, where an attacker floods a large number of packets
to trigger massive table-misses and packet-in messages in
the data plane. This attack can exhaust resources of different
components of the SDN infrastructure, including TCAM and
buffer memory in the data plane, bandwidth of the control
channel, and CPU cycles of the controller. In this paper, we
analyze the vulnerability of SDN against the data-to-control plane
saturation attack extensively and design FloodShield, a compre-
hensive, deployable and lightweight SDN defense framework to
mitigate this dedicated DoS attack. FloodShield combines the
following two techniques: 1) source address validation which filters
forged packets directly in the data plane, and 2) stateful packet
supervision which monitors traffic states of real addresses and
performs dynamic countermeasures based on evaluation scores
and network resource usages. Implementations and experiments
demonstrate that, in comparison with state-of-the-art defense
frameworks, FloodShield provides effective protection for all
three components of the SDN infrastructure – data plane, control
channel and control plane – with less resource consumption.

Index Terms—Software-Defined Networking, Denial-of-Service
Attack, Source Address Validation, Stateful Packet Supervision

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging net-

work architecture which simplifies network management and

optimization with fine-grained and centralized control. By

decoupling the control plane and the data plane, it has enabled

unprecedented programmability, automation, and innovations

in computer networks. Thus, the typical SDN infrastructure

consists of three major components: the control plane, the

data plane and a control channel where the two planes can

communicate through standard protocols.

As the de facto standard SDN protocol1, OpenFlow [1]

introduces a reactive packet processing mechanism with the

match-action paradigm: an OpenFlow switch processes pack-

ets based on flow tables and when no flow entries in the local

flow table match a certain packet (known as a table-miss), the

switch encapsulates this packet in a packet-in message and

forwards it to the controller for further processing. After the

1Since OpenFlow is one of the most representative forms of SDN, in this
paper, we use SDN and OpenFlow interchangeably for brevity.

controller receives the request message, it computes new flow

rules and installs them on switches with flow-mod messages.

This reactive packet processing mechanism enables SDN to

quickly adapt to network dynamics, however, it may also be a

new vulnerability of the SDN infrastructure. When numerous

packets arrive at a switch where no matching flow entries can

be found, a large number of packet-in messages would

be sent to the controller through the control channel. These

massive packet-in messages can overwhelm the controller,

overflow buffer memory and flow tables on switches, and con-

gest the control channel, resulting in performance degradation

and even collapse of the entire network.

This vulnerability can be exploited to conduct the data-
to-control-plane saturation attack [2], [3], [4], a dedicated

Denial-of-Service (DoS) Attack against the SDN infrastructure.

By controlling several zombie hosts, an attacker generates a

large number of malicious packets whose packet headers are

filled with deliberately forged values. These malicious packets

will trigger a great number of table-misses and packet-in
messages, which can paralyze the SDN infrastructure by

exhausting available resources in the data plane, the control

plane or the control channel.

Several previous studies have been devoted to defending

against this attack. AVANT-GUARD [2] modifies the switch

design to mitigate TCP-based flooding attack. FloodGuard [3]

introduces a Data Plane Cache to protect the controller. Flood-

Defender [4] adopts three techniques and designs four com-

plicated modules in the controller to mitigate the SDN-aimed

DoS attacks. Unfortunately, to the best of our knowledge,

there has not been a solution which satisfies the following

three requirements/principles simultaneously, which we feel

are important to a practical DoS defense framework.

1) Provide overall protection for the SDN infrastruc-
ture: Existing works such as AVANT-GUARD and

FloodGuard mainly focus on protecting SDN controllers

while ignoring the data plane and the control channel.

However, even if the controller is well protected, the

attack can still take effect when there are no proper

protections for the data plane and the controller channel

[5]. Besides, since Ternary Content Addressable Mem-

ory (TCAM) in a switch is expensive and power-hungry

[6], [7], preventing switches from the saturation attack
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and overflow attack [5] is crucial to guarantee service

quality and to save energy.

2) Easy for real-world deployment: As SDN has been

widely deployed in many enterprises/campuses/ISPs [8],

[9], addressing this attack without re-designing the exist-

ing SDN infrastructure or introducing additional devices

is both essential and cost-effective. AVANT-GUARD

and FloodGuard fail to satisfy this requirement, and both

approaches need to use additional devices to mitigate

this attack.

3) Lightweight and incur reasonable overheads to the
controller: As the core component of the SDN infras-

tructure, the controller plays a crucial role in the SDN

architecture and has undertaken the greatest pressure.

Existing countermeasures, such as FloodDefender, put

all the burden on the controller and deal with table-

misses and packet-in messages with modules on the

controller platform, which would inevitably compromise

the effects of protection. A lightweight solution with

reasonable overheads to the controller is in urgent need.

To fulfill these requirements, this paper proposes Flood-
Shield, a novel and effective SDN defense framework against

the data-to-control plane saturation attacks. By combining two

novel techniques, source address validation and stateful packet
supervision, FloodShield provides a comprehensive protection

for all three components of the SDN infrastructure. Since our

framework does not modify OpenFlow switches or introduce

additional devices, it can be easily deployed in the existing

OpenFlow networks. Besides, with an effective coordination

mechanism between the control plane and the data plane, it is

lightweight and incurs reasonable burden to the controller.

To summarize, the contributions of this paper are as follows:

• We extensively analyze the vulnerability of the SDN

infrastructure against the data-to-control plane satura-

tion attack and the drawbacks of the state-of-the-art

approaches. (§II)

• We propose and design FloodShield, a comprehensive,

deployable and lightweight defense framework for the

SDN infrastructure with source address validation and

stateful packet supervision. (§IV)

• We implement a prototype of FloodShield and eval-

uate it in different scenarios. Evaluations demonstrate

that, in comparison with the state-of-the-art frameworks,

FloodShield provides effective protection for the SDN

infrastructure with less resource consumption. (§V)

The rest of this paper is structured as follows. We state

the problem in Section II, the observation and motivation

in Section III. Section IV describes the detailed design of

FloodShield and Section V illustrates the implementation and

evaluation. We make some discussions in Section VI and

introduce the related work in Section VII. Finally, in Section

VIII, we conclude our work and make some prospects.

II. PROBLEM STATEMENT

In this section, we first describe the adversary model of the

data-to-control plane saturation attack, and then present the
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Fig. 1. Attack Process and Threatened Resources

drawbacks of the existing state-of-the-art defense approaches.

A. Adversary Model

An attacker commits the data-to-control plane saturation

attack by producing a large number of short-flows by control-

ling a number of zombie hosts in an SDN-enabled network.

The attack traffic is mixed with normal traffic, making it

difficult to be identified. With the reactive packet processing

and fine-grained flow control mechanism taken by the existing

mainstream SDN controllers, as we evidenced in Table I, the

unmatched packets in the data plane would be delivered to the

controller directly and processed by the corresponding logics.

As a result, the data plane, the control channel and the control

plane would quickly suffer from the attack and soon the SDN

system could not provide any service for benign traffic.

We start from a simplified motivating scenario to illustrate

how an adversary attacks the SDN infrastructure. As shown

in Figure 1, when a new packet arrives at a switch where

there is no matching flow entry in the local flow tables, the

switch will store the packet in its buffer memory and send a

packet-in message to the controller. If the buffer memory

is not full, the message only contains the packet header but if

the buffer memory is full, the message will contain the whole

packet. After the controller receives the message, it computes

the route and takes the corresponding actions on the switches

through control messages like flow-mod and packet-out.

Then the switches parse the packets and install the flow rules

in the capacity-limited flow tables. The attacker can exploit the

vulnerability of this reactive packet processing mechanism by

flooding malicious packets to the switches. The header fields

of these packets are filled with deliberately forged values that

it is almost impossible for them to be matched by any existing

flow entries in the switches. After that, numerous table-misses

are triggered and a large number of packet-in messages

are flooded to the controller, making the entire SDN system

suffer from resource exhaustion. In this adversary model, three

levels of SDN resources are compromised:

• OpenFlow switches: On the one hand, these malicious

packets would use up the buffer memory of the switches,

amplifying traffic to the control plane and degrading the
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TABLE I
PACKET-IN HANDLER FUNCTION AND FORWARDING GRANULARITY IN THE MAINSTREAM SDN CONTROLLERS

Controller Platform Packet-in Handler Function Forwarding Granularity

OpenDaylight
public void processPacketInMessage

(final PacketInMessage packetInMessage)
flowWriterService.addMacToMacFlow

(sourceMac, destMac, nodeConnectorRef)
ONOS public void process(PacketContext context) setUpConnectivity(context, srcId, dstId)

Floodlight

public Command processPacketInMessage
(IOFSwitch sw, OFPacketIn pi,

IRoutingDecision decision,
FloodlightContext cntx)

routingEngineService.getPath(
srcSw, srcPort, dstAp.getNodeId(),

dstAp.getPortId())

Ryu def packet in handler(self, ev) None

Nox
Disposition trackhost pktin

handle pkt in(const Event& e)
routing→setup route(flow, route,

inport, outport, flow timeout, bufs, check nat)
Pox def handle PacketIn (self, event) get path(self, dst sw, event.port, last port)

performance of packet forwarding. On the other hand,

even if the controller has the capability to handle these

packet-in messages, so many flow rules would exceed

the limited flow table capacity in the switches that new

flow entries have to be dropped. Although OpenFlow 1.4

and above [10] allow switch to automatically eliminate

some entries to make space for newer entries, this may

make things worse since it provides an opportunity for

the attacker to commit the flow table overflow attack [5].

By exploiting the vulnerability of the existing eviction

mechanism, flow entries used by benign users can be

replaced easily by aggressive useless fake flows from

the attacker, which would lead to more table-misses for

benign users and seriously degrade the performance of

the entire network system.

• Control channel: According to the packet-in mech-

anism, each message would contain the entire packet

when the buffer memory is full, which is then

an amplification attack. Meanwhile, in response to

these packet-in messages, control messages like

flow-mod and packet-out messages are issued by

the controller, making the control channel even more

crowded.

• Controller: The controller has to apply some expensive

operations to all packet-in messages, including calcu-

lating the routing path, encapsulating the flow rules into

the control messages, and issuing the control messages to

the data plane. Thus, it can consume a lot of computation

and memory resources.

B. State-of-the-art Defense Approaches

As discussed above, the data-to-control plane saturation

attack targets at the SDN infrastructure, which makes it one

of the most crucial problems that must be solved for real

SDN deployment. To mitigate this saturation attack, several

approaches emerge in the latest academia researches. However,

each of them has some prominent problems, which make it

challenging to be applied and deployed in real world scenarios.

AVANT-GUARD [2] is the first defense system against

this saturation attack. It extends the architecture of OpenFlow

switch with a TCP proxy to mitigate TCP-based saturation

attacks. However, it does not apply to other protocols (e.g.

UDP, ICMP). Besides, it needs to modify the design of the

data plane, thus it is difficult to be deployed.
FloodGuard [3] also proposes a defense framework to

defend against this saturation attack. It introduces two tech-

niques, proactive flow rule analyzer to preserve network policy

enforcement and packet migration to protect the controller

from being overloaded. However, it is impossible to install all

possible flow rules into the switches with proactive flow rule

analyzer because of complicated applications and controller

states. In addition, extra devices (Data Plane Cache) have to

be deployed for packet migration. Moreover, it focuses on the

protection of the controller while neglecting the data plane.
FloodDefender [4] applies three techniques to protect the

victim switch, table-miss engineering to offload the table-

miss traffic to neighbor switches, packet filtering to filter

the one-packet flows from triggering packet-in, and flow
table management to eliminate useless flow rules periodically.

Four corresponding modules standing between the controller

platform and other apps are designed to protect both the

control plane and data plane resources. However, on one hand,

all the table-miss traffic is sent to control plane, regardless

of whether it is forgery or not. On the other hand, all the

modules introduced incur a large number of control channel

traffic themselves. As a result, the effects of protection are

compromised inevitably.

III. OBSERVATION AND MOTIVATION

From the analysis above, all state-of-the-art defense ap-

proaches expose some prominent issues, which motivates us

to revisit the problem of saturation attack. We attribute the

root cause of this saturation attack to the reactive packet

processing mechanism introduced by SDN. Although we could

mitigate this saturation attack by limiting reactive flows and

pre-installing rules for all expected traffic, this comes at the

expense of fine-grained control, visibility, and flexibility in

traffic management. Tackling this attack without compromis-

ing the advantages of SDN is really crucial and challenging.
We re-examine this problem from the origin of the satu-

ration attack: table-misses and packet-in messages. These

numerous packet-in requests not only overflow the buffer

memory and flow tables in the switches, but also occupy the

bandwidth of the control channel and exhaust the computa-

tion and memory resources in the controller. Therefore, the
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fundamental way to prevent this saturation attack is to reduce
the table-misses, that is, to reduce the probability that new

incoming flows fail to match existing flow entries. The new

coming flows could be categorized into the following two

types: normal traffic, with reliable source addresses and normal

behaviors; and malicious traffic, whose packet headers are

deliberately forged in order to increase the number of table-

misses and the difficulty for statistical accountability.

Based on the observations above and inspired by the set

of RFCs on source address validation (SAVI) [11], [12], [13],

[14], [15] in traditional networks, we introduce source address
validation to discard the forged packets at the entrance of

SDN-enabled network. However, where and how to enforce

source address validation in the complicated SDN environment

gracefully remain an unresolved challenge. Although the idea

(source address validation) exists long in legacy networks, to

apply it harmoniously with unique SDN characteristics is non-

trivial. We solve several challenges when we apply our SAVI-

based techniques. Furthermore, even if the source addresses

of the incoming traffic are trustworthy, packets with origin

source address could also be harnessed by the attacker to

commit malicious attacks. To tackle this issue, we introduce

stateful packet supervision. However, how to conduct dynamic

countermeasures with traffic features and network resource

usages remains a new obstacle. We design various effective

approaches to track the historic behaviors of packets passing

the data plane, to achieve network service differentiation and

to measure the network resource usage. With source address

validation and stateful packet supervision, all the traffic is

validated and monitored, which prevents malicious traffic from

compromising the network system.

IV. SYSTEM DESIGN

This section first gives the overall architecture of Flood-

Shield system and then details the design of two core modules.

A. System Architecture

FloodShield could be implemented on the existing SDN

network operation systems (e.g. OpenDaylight [16], ONOS

[17], Floodlight [18], RYU [19] and etc.). It introduces Source
Address Validation Module and Stateful Packet Supervision
Module to the controller platform. Source Address Validation

Module constitutes the first barrier to the data-to-control plane

saturation attack. It validates the source addresses of the

incoming traffic and filters the forged packets2 directly in the

data plane. Based on it, Stateful Packet Supervision Module

monitors the packet states of each real address and performs

network service differentiation according to the evaluation

scores and network resource usage. Moreover, to make the

two modules work better with different network environments,

all the parameters could be configured and adjusted through a

REST API.

2In the following part of this paper, forged packets refers to packet with
forged source address.

As shown in Figure 23, Source Address Validation Module

works when a host connects to the SDN-based network.

Based on the network configurations, it enables static/dynamic

mode and issues Filter Flow Rules to the switch through

which traffic enters the network. With this Module, forged

packets are filtered at the ingress port of edge switch, which

makes statistical accountability further easier. Stateful Packet

Supervision Module collects traffic statistics from the data

plane switches and updates evaluation scores of each user/host

periodically. With the scores, different countermeasures are

adopted to different users to achieve network service differen-

tiation dynamically.

B. Source Address Validation Module

As indicated in Section III, the attacker tends to commit

the saturation attack with forged source address to hide his

intents and protect himself. However, the addresses zombie

hosts use are allocated by the network and thus could be prior

determined, especially in SDN-based data centers, enterprise

networks and campus networks. Based on this insight, we

introduce the source address validation mechanism into the

defense of this saturation attack. However, the position and

the method to enforce the source address validation remain

unsolved challenges. To solve this, we exploit the character-

istics of the flow table and propose an effective coordination

mechanism with the smartness of the controller and the wire-

speed performance of the data plane, filtering the forged

packets directly in the data plane. All designs conform to the

OpenFlow policy and need no additional devices, nor without

any requirement for the specialized SAVI-enabled devices.

1) Source Address Validation Enforcement Position: In

theory, we have to enforce the source address validation at

different levels of the SDN-enabled network, i.e., on every

OpenFlow switch in SDN. However, this leads to intricate

switch management and coordination mechanism as well as

considerable resource consumption across the network. To

tackle this, we resort the unique global network management

of SDN and prove that it is sufficient to ensure the validation

of packets if the mechanism is enforced at the switch ports

connected with end hosts or servers separately. First, we

introduce the following two hypotheses:

Assumption 4.1: (Packet Generation) In the SDN data

plane, all packets come from the hosts or servers connected

with the edge switches except for the control messages.

Assumption 4.2: (Packet Delivery) In the SDN data plane,

the function of the switch is either transferring packets from

one port to another (modification to the packets is allowed) or

simply dropping it.

Furthermore, different switches connect to different devices

in the data plane. We classify the ports of the switches into

the following three categories:

• Switch Port refers to the port connected with other

switches.

• Host Port is the port connected with end hosts or servers.

3In this figure, Reliable Traffic refers to traffic with reliable source address.
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• Trusted Port refers to the port connected with DHCP

Servers or other trustworthy servers.

Based on the two assumptions and the three port categories

above, we are able to deduce that all the network traffic in

the data plane is generated either from Host Ports or Trusted
Ports, and is delivered between Switch Ports. Packets from

Host Ports are not trustworthy while those from Trusted Ports
are trustworthy. Therefore, as long as source address validation

is performed on the Host Ports, the traffic in the data plane is

validated and trustworthy.

2) Source Address Validation Enforcement Method: As

discussed in Section IV-B1, validation at the Host Ports is

sufficient to ensure the true origin of the traffic entering the

SDN-based network. We maintain a global Binding Table at

the controller, and each binding entry binds a source address

to a switch port, in the format of 〈Address, Switch, Port〉, that

is, the entry point of the packets with source Address should

be Port of Switch; otherwise, it is a forged packet.

A host needs to obtain an address to access the SDN-based

network first. However, real SDN scenarios may face nu-

merous different host configuration protocols (static/dynamic),

and network administrators may have different security and

configuration requirements. Here comes our first challenge,

how to obtain network address configurations and establish the

Binding Table in the complicated network environment. To this

end, we design an interface which could receive the parameters

from network configurations firstly. These parameters repre-

sent whether the address configuration is static or dynamic, as

well as the information to establish the corresponding Binding

Table.

• For dynamic address allocation protocol, as illustrated in

Figure 3, in order to snoop address assignment mech-

anism (AAM) procedure, the controller is supposed to

install the snooping flow rules on Host Ports and Trusted
Ports as soon as the switches connect to the controller.

Then all the AAM packets go up to the controller as

packet-in messages and the controller can monitor the

whole procedure of AAM. We maintain a state machine

for each AAM. Each IP address has a state, whose

transition is triggered by AAM packets. When the state

changes to BIND, a binding entry is set for this address in

the Binding Table; when the state changes to NO BIND,

the address is removed from the table. This may become

a new vulnerability when the attacker sends forged AAM

packets to commit the data-to-control plane saturation

attack. To solve this, we use meter element in OpenFlow

switches to rate-limit AAM packets and we also rate-

limit AAM packets in DHCP servers, since AAM traffic

is low-rate under normal circumstances.

• For static address allocation protocol, the Binding Table

could be directly obtained from the network configura-

tions.

Based on the Binding Table, here comes the second chal-
lenge, how to enforce source address validation in SDN archi-

tecture. The simplest way to enforce source address validation

is to do it on the controller. The controller verifies the first

packet of each new flow. There are two ways to deal with

a forged packet. First, ignore it. The main drawback is that
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TABLE II
THE STRUCTURE OF TABLE 0 (FILTER FLOW TABLE) IN THE DATA PLANE

Group Name Match Field Priority Instruction
Host Ports in port=hport, mac src=given mac src, ipv4, ip src=given ip src 2 jump to table 1
Host Ports in port=hport, mac src=given mac src, arp 2 jump to table 1

Host Ports’s filter in port=hport, ipv4 1 drop
Host Ports’s filter in port=hport, arp 1 drop

Switch Ports in port=sport 1 jump to table 1
Trusted Ports in port=tport 1 jump to table 1

the attacker could repeatedly send the forged packets to over-

whelm the controller’s computation resources. Second, pas-

sively install a drop rule matching the new flow into the switch.

However, both the computation resources on the controller and

the flow table resources on the switch are exhausted when

the attacker floods packets with random source addresses.

To address the problem above, Source Address Validation

Module explicitly installs Filter Flow Rules in switches to filter

the unbound source addresses. In this way, forged packets

are verified and dropped in the data plane directly, without

consuming flow table resources or computation resources on

the controller.

Existing OpenFlow switches only support match-action
paradigm, that is, if a packet matches an existing flow en-

try in the local flow tables, the switch would conduct the

corresponding actions to process the packet. However, source

address validation follows an unmatch-action paradigm, that

is, filter actions are conducted only if the source address does
not match the specific port claimed in the Binding Table.

How to design the Filter Flow Rules to express our unmatch-
action logic gracefully becomes the third challenge. One way

is to block unbound source addresses, leaving the unmatched

(legitimate) packets to be processed by the rules of other

applications. However, there are too many unbound addresses,

which would undoubtedly exceed the limited flow table size.

Another way is to combine the rules of Source Address

Validation Module with other applications. For example, for

each bound source address, generate N two-dimension rules,

where N is the number of flow rules of other applications (e.g.

Forwarding). However, this method brings about the explosion

of flow rules. In order to prevent the flow table explosion

problem and make the flow table separate and independent,

we resort to the multi-table pipeline of OpenFlow. The Filter
Flow Rules are installed in table 0, while the flow rules from

other applications in the controller are installed in latter flow

tables. As for the detailed implementation of the Filter Flow
Rules, inspired by the algorithm policy enforcement in Maple

[20], we gracefully encode negation logic using wildcard rules

with lower priorities. Filtering is only done on Host Ports,

so the packets coming from Switch Ports and Trusted Ports
are forwarded directly to latter flow tables. The structure of

Filter Flow Rules consists of 6 flow rule groups, as shown in

Table II. The first and second flow rule groups let pass all the

packets with given IPv4 source address and given Ethernet

source address, while the third and fourth flow rule groups

drop all spoofed packets with forged IPv4 source address or

forged Ethernet source address. Finally, in the fifth and sixth

rule groups, packets from Switch Ports and Trusted Ports are

directly forwarded to the non-filter flow tables.

C. Stateful Packet Supervision Module

Although forged packets have been filtered by the source

address validation, packets with real source addresses could

also be harnessed to conduct malicious attacks. Therefore,

we introduce stateful packet supervision to perform address-

based statistical accountability. Our basic idea is simple, flows

with different source addresses should be distinguished by

their traffic features, further to achieve differentiated services

for different users dynamically4. However, we encounter two

major challenges in turning this high-level idea into a con-

crete defense mechanism. 1) how to develop behavior-based

evaluation criterion to distinguish flows precisely and lightly.

2) how to achieve differentiated services to different flows

dynamically and effectively. The following two submodules

are designed to deal with these two challenges.

1) Precise Behavior Evaluation: In order to perform the

behavior-based evaluation, we first have to determine what

traffic features to collect. In this unique saturation attack,

packet-in rate is the dominant factor to influence the attack

effect. To trigger more packet-in messages with a lower

cost, the attacker tends to commit the attack with short-flows,

since in this way he/she could gain the aim of almost per

packet per packet-in triggering. Further, with the increase

of new flow rate, the packet-in rate increases and the

attack effects become more obvious. Therefore, we make the

observation that the fundamental differences between normal

traffic and attack traffic under this unique saturation attack are

the frequency of new flows and the packet number per flow,

which is a little different from traditional DoS attacks.

To collect these two metrics, a light and precise method is in

urgent need. As each new flow would trigger a packet-in
message to the controller under normal circumstances, passive

monitoring, classifying, and counting on the controller are

sufficient to obtain the frequency of new flows. However,

the number of packets per flow is not directly visible to the

controller. We resort to the pull mechanism of OpenFlow

to tackle this issue. Statistic messages are issued to the

switch periodically (every T seconds) to query the snapshot
information (the counter field of the existing flow entries) the

controller needs. Fortunately, the statistic service is integrated

4Benefit from source address validation, in this paper, we use source address
and user interchangeably.
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TABLE III
BEHAVIOR-BASED NETWORK SERVICE DIFFERENTIATION

Evaluation Level Countermeasure Importance
Obviously Malicious drop/rate-limit in the ingress switch for a period none/low

Ambiguous probability acceptance low
Obviously Good deal all high

into the network operation system as a basic service in most

of the popular controllers (e.g. ODL, ONOS, Floodlight) so

that we could invoke the service and classify the flow entries

according to their source addresses directly.

With these traffic features, an evaluation criterion is de-

veloped to distinguish the behavior of different users. As

discussed above, the frequency of new flows and the statistical

properties of packet number per flow are two basic differences

between the benign traffic and the attack traffic. For brevity,

considering only the past period (T seconds), we denote the

number of packet-in messages as pii, the ratio of good

flow entries pulled from the switch as cri, where

cri =
flow entries(counter > t ∧ source address == given)

flow entries(source address == given)
(1)

t is a constant parameter used to distinguish good flow entries

from bad ones, which could be set as different values for differ-

ent hosts/servers (it is normally set as an integer smaller than

10, which depends on the traffic features as we demonstrated

in Section V-D). We denote the score associated with pii and

cri as win. Obviously, win has a negative correlation with

pii and a positive correlation with cri, since the attacker is

inclined to attack with short frequent new flows. We simply

use two linear correlations and add them up to express the

logic above. In this way, a behavior evaluation criterion and

a corresponding evaluation score are developed for each user

on the controller.

2) Dynamic Service Differentiation: With the behavior-

based evaluation scores, how to achieve differentiated services

for different users dynamically becomes our second challenge.

In some cases, an attacker may behave correctly firstly, gets

classified as benign user, and then changes his/her behavior.

Converse case may also emerge. To resolve this problem, we

adopt the exponential weighted moving average (EWMA) and

take the historic information into the evaluation of a user’s

behavior. The evaluation score wi at this point obeys the

EWMA paradigm: wi = (1−α)wi+αwin, where α is a value

between 0 and 1, win denotes the score in this period. With the

attacker’s behavior getting malicious, his/her evaluation score

will inevitably goes down. The convergence speed depends

on the α in EWMA. The bigger α is, the faster the evaluation

score converges. The benefits of dynamic evaluation scores

also extent to the network service differentiation. Diverse

strategies are adopted to different users to achieve network

service differentiation dynamically. We divide the region of

scores into three levels(Obviously Malicious, Ambiguous and

Obviously Good) with two thresholds (thh, thl), which are

set by the network administrators based on the deployment

Fig. 4. Experiment Topology

scenario and training data set5. Obviously Malicious denotes

users whose score (wi) is lower than thl while Obviously Good
denotes those with a score higher than thh, and the remaining

users, with a score between two thresholds are regarded as

Ambiguous, which means we could not determine whether it

is a good flow or a bad one directly.

Once the controller receives new flows from Obviously
Malicious users, a drop or rate-limit flow rule will be directly

issued to the ingress switch, dropping or rate-limiting packets

from this source address for a period of time. We take this

seemingly brute measure because the low threshold thl is hard

to be reached for normal traffic with our methodology.

Obviously Good level follows the similar law, since its

threshold is hard to be reached for malicious traffic normally.

We let the new flows of this level be processed by controller as

usual. Considering the occasion that the attacker may commit

flow table overflow attacks [5], we assign different importance
to different flow-mod messages to protect the flow table in

the data plane. Flows come from Ambiguous users are assigned

with lower importance while those from Obviously Good users

are assigned with higher importance.

As for Ambiguous flows, we take a probability acceptance
algorithm based on the controller resource usage. When the

controller is busy, the probability value is low, and thus only

a smaller number of packet-in messages are accepted

and processed. By contrast, nearly all packet-in messages

are dealt when the system is relatively idle. Supposing the

SDN controller is able to handle N packet-in messages

per seconds, and the controller receives NR packet-in
messages at this point, we use NR

N to denote the network

resource usage. Obviously, the probability value has a negative

correlation with the network resource usage, and we take a

simple linear correlation to implement it. All above-mentioned

5The rationality and methodology for the Two thresholds/Three levels
design are illustrated in Section V-D, which can effectively reduce the loss
caused by false-positive and false-negative rate.
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(a) Round-trip Time (b) Available Bandwidth
Fig. 5. End-to-End Effect

strategies are summarized as Table III.

V. IMPLEMENTATION AND EVALUATION

In this section, we introduce the implementations of Flood-

Shield and related works, and evaluate the performance and

overheads of our framework.

A. Implementation and Experiment Setup

To verify the effects of FloodShield, we have implemented a

prototype on top of Floodlight controller by integrating Source
Address Validation Module and Stateful Packet Supervision
Module to the controller platform. All the implementation

conforms to the OpenFlow policy and needs no additional

devices nor hardware re-design of the SDN infrastructure,

which can be generalized to the other SDN controllers easily.

The OpenFlow-enabled network is emulated with Mininet [21]

and OpenvSwitch [22].

We emulate a simple fat tree topology (Figure 4) based on

Floodlight and Mininet, running on two separate and identical

servers connected by a conventional layer-2 hardware switch.

The hardware settings of the servers are two Intel Xeon-

2620 CPUs, 64GB RAM and a 1 GbE NIC. In order to

better simulate the real scenario, all the link bandwidths in

the topology are set to 1 Gbps, and the flow table size of each

switch is set as 2000, making it analogous to the hardware

Pica8 P-3290 switches [23].

To compare FloodShield with previous works, we conduct

our experiments in the following four scenarios, to show the

advantages of our FloodShield: (1) an OpenFlow network

without protecting system (of ), (2) an OpenFlow network

with FloodGuard [3] (fg), (3) an OpenFlow network with

FloodDefender [4] (fd), (4) an OpenFlow network with our

FloodShield (fs). Unfortunately, due to copyright reasons, we

are not able to obtain the origin source codes of FloodGuard

and FloodDefender, so we reproduce all the logic of Flood-

Guard and FloodDefender by ourselves. In the following part

of this section, we use the abbreviation, of, fg, fd, fs, to

represent the four system above.

B. End-to-End Effect

To evaluate the end-to-end protective effect of FloodShield

for the SDN infrastructure, we measure Round-Trip Time
(RTT) and available bandwidth between hosts as representative

metrics.

We let h2, h4, and h6 be the attack hosts, generating

different rates of flooding traffic with Tcpreplay6. The traffic is

extracted from an online trace dataset, DARPA 2009 malware-
DDoS attack-200911047 [24]. And simultaneously we make

h7 access h8, h1 access h3, and h1 access h7 with ping
to evaluate the RTTs and iperf to evaluate the available

bandwidths. h7-h8 represents communication between two

hosts via edge layer switches, h1-h3 represents communication

via edge layer and aggregation layer switches, and h1-h7

represents communication via all three layer switches. Each

experiment is ran for 10 times and the average value is

presented in Figures and Tables. Because FloodGuard, Flood-

Defender and our FloodShield show similar results on RTTs

and available bandwidths, for brevity, we only show the results

of FloodShield to demonstrate the end-to-end protective effect.

As Figure 5(a) shows, with native OpenFlow, the RTTs

become extremely large when the attack rate is above 1000

packets per second (pps) from the three attackers, while with

FloodShield, the RTTs are almost unchanged. Figure 5(b)

demonstrates the similar results on the available bandwidths.

Bandwidths under native OpenFlow go down quickly at 1000

pps while FloodShield’s keep nearly unchanged. That is be-

cause OVS could afford about 1200 pps flooding rate under

normal circumstances. Besides, FloodShield has neglectable

impact on the RTTs or available bandwidths in the data plane

when there is no saturation attack. This has been verified in

Figure 5 when attack rate is 0 pps. The experimental results on

RTTs and bandwidths illustrate that the FloodShield provides

effective end-to-end protection for the SDN infrastructure.

6http://tcpreplay.appneta.com
7Since there are a large number of elephant flows in this trace and they

are not friendly to the attacker, so we only extract the mice flows from the
dataset.
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(a) CPU Utilization of Controller (b) Control Channel Utilization
Fig. 6. Resource Utilization

TABLE IV
AVERAGE FLOW ENTRY NUMBER

Normal Users Attackers Overheads All
OpenFlow 535.30(27%) 1423.14(71%) 0(0%) 1959.21(98%)

FloodGuard 389.77(19%) 508.38(25%) 2.75(0.3%) 900.77(45%)
FloodDefender 492.09(25%) 250.37(13%) 571.21(28%) 1313.11(66%)

FloodShield 679.17(34%) 97.70(5%) 5.32(0.6%) 799.87(39%)

C. Resource Utilization

The saturation attacks would exhaust the resources of the

SDN infrastructure, most notably the CPU of the controller,

controller-switch channel and flow table space. To demonstrate

the advantages of FloodShield, we conduct the experiments

compared with the three system above.

We let h2, h4, and h6 be the attack hosts replaying the real

trace from DARPA 2009 malware-DDoS attack-20091104 with

500 pps (the same rate as FloodDefender), and simultaneously

all the hosts access each other under normal circumstances

with different connections (by replaying traffic collected from

campus network of Tsinghua University). We record the num-

ber of control messages and the CPU utilization of controller

for statistics and analyses. We also record the the number of

flow entries allocated to normal users and attackers in victim

switch during the past 30 seconds as the metric of flow table

utilization.

Controller CPU Utilization: The CPU utilization of the

controller is shown in Figure 6(a). We find that FloodShield

occupies much less CPU than native OpenFlow as well as

FloodDefender. As FloodGuard highlights, its main goal is to

protect the controller, and it achieves a similar protective effect

for controller as our FloodShield. Meanwhile, as we argue,

FloodDefender puts too much burden on the controller, and the

evaluation results also demonstrate our argument. FloodShield

filters the forged packets and supervises the packets with

real source addresses, effectively preventing malicious packets

from compromising the SDN controller.

Control Channel Utilization: We limit the scope

of control messages to packet-in, packet-out,
flow-mod and flow-removed, since the number of oth-

ers like LLDP messages is similar in the four systems.

Figure 6(b) shows that the number of control messages of

four systems. With proactive flow rule installation and rate

control, FloodGuard reduces the control channel utilization

greatly. FloodDefender reduces the flow-mod messages for

the malicious packet-in requests, meanwhile, it needs

new flow-mod messages to conduct the monitoring rules

flushing, as a result, its control channel utilization is similar

to the native OpenFlow. Compared with the two protective

systems above, FloodShield manifests a much better protective

effect. The forged packets are directly dropped in the data

plane, without any control messages any more. The rest of the

packets are supervised, which provides a more comprehensive

protective effect for the control channel.

Flow Table Utilization: The results of flow table utilization

are listed in Table IV. FloodShield occupies much less flow

entries (39%) compared with OpenFlow (98%), FloodGuard

(45%) and FloodDefender (66%), and provides better services

for normal users while suppressing the attackers effectively.

FloodGuard uses rate control to protect the controller and

switches, thus flow entries of both normal users and attackers

decrease greatly (45%/98%). FloodDefender resorts to a two-

phase filter and flushes monitoring rules and cache regions

periodically, as a result, it reduces the flow table used by

attackers (13%) and maintains a reasonable number of flow

table for normal users (25%). However, this benefit comes at

the expense of monitoring flow rules in the switches (28%).

FloodShield protects the flow table more thoroughly. On the

one hand, it filters the forged packets directly in the data plane.

On the other hand, it supervises the network states of data

plane traffic, making it hard for the attackers to occupy the
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Fig. 7. CDF of Flow Length

(a) Relationship of Recall Rate/False-negative
Rate and thl

(b) Relationship of Recall Rate/False-negative
Rate and thh

Fig. 8. Recall Rate and False-positive/False-negative Rate

flow entries.

D. Attack Identification and Parameter Analysis
In this part, we revisit Stateful Packet Supervision Module

and dig into more details. We give some suggestions on how

parameters should be set with the analysis of difference traces,

and elaborate the recall rate and false-positive/false-negative

rate of FloodShield.
Figure 7 shows the distribution of flow length (packet

number per flow) for attack traffic and benign traffic (the same

traces as Section V-C). As we can see, attack traffic inclines

to have more short flows than benign traffic. When t is set

between 2 and 5, we are able to obtain the most significant

discrimination between the attack traffic and benign one. Thus,

t is recommended to bet set in this range for this traffic

patterns. Although different scenarios may have unique traffic

features, we believe that there must be significant distinction

for their flow length distribution, otherwise the attacker has to

spend several order of expense to get the same attack impact,

which is further not cost-effective and lead to easier detectable.
With t set as the recommended constant, we calculate and

record the evaluation score for normal users and attackers.

With different thl and thh, we are able to get different recall

rate and false-positive/false-negative rate. Generally speaking,

the smaller thl is, the lower false-negative rate and recall rate

would be; the larger thh is, the lower false-positive rate and

recall rate would be. Figure 8 demonstrates our evaluation

results. As we can see, when thl is set as 2, we could

identify 67% attack traffic (Obviously Malicious) with almost

0 false-negative rate. Accordingly, we are able to distinguish

72% benign traffic (Obviously Good) with nearly 0 false-

positive rate when thh is set as 2.8. We suggest that thl

and thh follow this principle, and both the undistinguished

attack traffic and benign traffic fall into the Ambiguous level,

which would contend for the limited network resources with

the probability acceptance algorithm. In addition, we can also

see how sensitive FloodShield is to thl and thh from Figure

8. With a small oscillation near the thresholds, the recall rate

and false-positive/false-negative rate manifest fairly robust.

E. Overhead
In this section we show our evaluation about the overheads

of FloodShield. First, to filter the forged packets in the data

plane, FloodShield requires Filter Flow Rules in the edge

switch. In particular, the number of Filter Flow Rules is

proportional to the the number of Host Ports in the edge

switch, with a coefficient falling between 2 and 4. Standard

switch has no more than 52 ports [25], even if no port is

used as Switch Port or Trust Port, the total number of Filter
Flow Rule is less than 200, which only occupies at most

10% of flow table (2000 flow table capacity) for a commodity

hardware switch in the worst case. Therefore, we argue that

the overheads for Filter Flow Rules is negligible.

Second, Stateful Packet Supervision Module seems to be

time-consuming components, since each packet may trigger

the state transition. We remove Source Address Validation

Module and only reserve the Stateful Packet Supervision

Module on the controller platform. As shown in Figure 9,

the CPU utilization of FloodShield is similar to the native

Floodlight, and it incurs less than 3% overheads in the

worst case. In particular, when the packet-in rate reach

400 pps, the CPU utilization of FloodShield increases much

slower. This is because the Stateful Packet Supervision has self
protection functions to some degree. When the new incoming

Packet-in packets reach a high rate (to an intolerable

degree to network resources), the module would issue some

rate-limit (or drop) flow rules to the data plane, reducing the

rates of new packet-in messages.

Third, we also evaluate the delay resulted from the ad-

ditional two modules under normal circumstance. For each

flow, the delay of first packet includes two aspects: the two-

stage switch delivery (for Source Address Validation) and the

stateful controller processing (for Stateful Packet Supervision).

For other packets, they only go through delay of the two-stage

switch delivery. As shown in Figure 10, compared with native

Floodlight, delays for these two kinds of packets are negligible.

VI. DISCUSSION

Distributed controllers: One argument is that the saturation

attack may not take effect when distributed controllers are

adopted, since this means bigger throughput and stronger

processing capability in the control plane. However, we believe

that even the distributed approach is taken, the attack could

still paralyze the SDN infrastructure without proper treatment.

As the barrel principle indicates, with a powerful controller,
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Fig. 9. CPU Overhead

(a) Delay of First Packets in Each Flow (b) Delay of Following Packets in Each Flow

Fig. 10. Delay of the First Packet and Following Packet in Each Flow

control channel or data plane switch would be the bottleneck

under this circumstance. Thus, the bottleneck transfers from

one point (controller) to another (control channel or data

plane), instead of being mitigated.

Volatile address problem: In some scenarios, an IP address

may be reassigned to another host frequently. Fortunately, the

source address validation process has overcome this problem.

After a host releases an IP address, based on the AAM

procedure, the controller will delete the corresponding table

entry in the Binding Table and add the new bound pair in the

table immediately. Thus the system is able to work properly

even under this circumstance.

Traffic feature imitation problem: The evaluation criterion

and the selected features are unknowable to the attacker

under normal circumstances. Even if he could obtain these

information, the cost for this overflow attack is multiplied, for

he has to send multiple packets for each flow and reduce the

new flow frequency to get a higher evaluation score.

Source address forgery problem: Source Address Valida-

tion puts the root of trust at the port of the edge switches,

since one port corresponds to one host by default. Therefore,

if the default cannot be satisfied and multiple hosts connect to

one port of a edge switch, the attacker is able to forge source

address and pollute the evaluation of the hosts under the same

port. However, the scope of the pollutions is confined to the

hosts under the same port, not the entire network.

Implications of identity hijacking attacks: FloodShield

establishes the root of trust on AAM procedures or static

configurations. It enforces a strong binding between a host,

the network location it connects, the address in the packets

it generates, which makes it resilient to identity hijacking

attacks, just as discussed in Ethane [26]. Furthermore, Flood-

Shield is much deeper than Ethane at this point. It carries out

the identity binding task as Filter Flow Rules effectively and

dexterously in the data plane while Ethane commits the task

with judging logics in the control plane, leaving the control

channel and control plane still suffering, just as the second

challenge in Section IV-B discussed.

VII. RELATED WORK

SDN-supported security: SDN has offered a new chance

to solve some security problems that have long existed in

networking. CloudWatcher [27] proposes a Security-Monitor-

as-a-Service framework for cloud network. Braga et al. [28]

propose a lightweight DDoS attack detection method with

traffic flow features extracted from the controller. Further, Xu

et al. [29] propose an adaptive detection approach leveraging

limited TCAM available on all switch to balance the coverage

and granularity of detection. FRESCO [30] offers a Click-

inspired programming framework to facilitate the rapid design

and modular composition of detection and mitigation modules.

Bohatei [31] proposes a flexible and elastic DDoS defense

system for ISPs. SPIFFY [32] introduces SDN to the defense

of link-flooding attacks. To protect against packet spoofing,

our preliminary poster, SD-SAVI [33], uses SDN to enforce

source address validation, and Afek et al. [34] propose to

implement several anti-spoofing methods with match-action

model of SDN data plane. Some of them may have used

certain techniques that are also used in our work such as source

address validation, but aim at other specific problems. Our

work is the first to apply these techniques to protect the SDN

infrastructure.

The security of SDN itself: SDN has also introduced new

security concerns. To facilitate detection and mitigation func-

tion deployment in OpenFlow-enabled networks, FRESCO

[30] proposes a security application development framework

which allows rapid designing and modular composition of

these functionalities. FortNOX [35] provides role-based au-
thorization and security constraint enforcement for the NOX

OpenFlow controller, enabling NOX to check flow rule contra-

dictions. Rosemary [36] introduces a micro-NOS sandboxing

strategy to the OpenFlow controller to safeguard the control

layer from errant operation performed by network applications.

TopoGuard [37] introduces two Network Topology Poisoning

Attacks (Host Location Hijacking Attack and Link Fabrication
Attack) against the SDN/OpenFlow Topology Management

Service and proposes automatic mitigation approaches to

prevent the attacks. DELTA [38] presents a fuzzing-based

penetration testing framework to find unknown attacks in SDN

controllers. CONGUARD [39] introduces the state manip-
ulation attack by exploiting harmful race conditions in the

SDN controller. SECUREBINDER [40] proposes the Persona

Hijacking attack to break the bindings of all layers of the SDN

networking stack, and designs a mitigation solution building
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upon IEEE 802.1x as a root of trust. These approaches target

at specific problems which are different from ours.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we propose FloodShield, a comprehensive,

deployable and lightweight SDN defense framework, to mit-

igate the data-to-control plane saturation attack against the

SDN infrastructure. Based on analysis on the vulnerability

of SDN under this saturation attack, we design FloodShield

which consists of two components: source address validation

and stateful packet supervision. Evaluations demonstrate that,

compared with state-of-the-art defense frameworks, Flood-

Shield provides effective protection for the data plane, control

channel, and controller with less resource consumption and

negligible overheads.

Securing the network infrastructure is crucial to the pro-

motion and adoption of SDN. In our future works, we will

try to solve the challenge that how to enforce source address

validation in the gateway where SDN-based network connects

to the traditional network, for this scenario is much more

complicated than the pure SDN-based network and has more

practical significance. Furthermore, we will deploy our pro-

posal in the real world, which would provide greater insights.
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