
NetEC: Accelerating Erasure Coding
Reconstruction With In-Network Aggregation

Yi Qiao , Menghao Zhang , Graduate Student Member, IEEE, Yu Zhou ,Member, IEEE, Xiao Kong,

Han Zhang ,Member, IEEE, Mingwei Xu , Senior Member, IEEE, Jun Bi , and Jilong Wang

Abstract—In distributed storage systems, Erasure Coding (EC) is a crucial technology to enable high data availability. By downloading

parity data from survived machines, EC can reconstruct lost data with much lower storage overheads than data replication. However,

this reduction in storage cost comes at the expense of extra performance problems: low reconstruction rate, high degraded read

latency, and high host CPU utilization. Our analysis shows that these performance problems are deeply rooted in the host-based EC

processing. To resolve these problems, we present NetEC, an in-network accelerating framework that fully offloads EC to the new

generation programmable switching ASICs. We propose Explicit Buffer Size Notification (EBSN) to constrain decoding buffer usage,

and design an on-switch one-to-many TCP proxy to integrate EBSN with TCP. We also design two parallel Galois Field (GF) offloading

methods—table lookup and bitmatrix methods—to maximize parsable bytes. We implement NetEC on programmable switches and

integrate it with HDFS. Extensive evaluations show that NetEC improves the reconstruction rate by 2.7x-6.8x, reduces the degraded

read latency significantly, and removes the host CPU overhead completely. We also emulate multi-rack scenarios and show that

NetEC is able to support �GB/s reconstruction rate and tens of concurrent tasks.

Index Terms—Erasure coding, distributed storage sytems, programmable switch, software-defined networks

Ç

1 INTRODUCTION

DISTRIBUTED storage systems are an important building
block of modern data centers. As the businesses expand

and services develop, the storage systems are scaling rap-
idly where unexpected failures happen frequently [1], [2],
[3]. Traditionally, these systems maintain multiple replica-
tions across machines and racks to ensure data availability.
Although disk storage seems inexpensive, replicating the
entire data footprint is infeasible as the data centers scale to
petabytes [4]. As a result, many large-scale distributed

storage systems are transitioning to the use of erasure cod-
ing [1], [3], [5], which offers high availability with much
lower storage overheads compared to data replication.

The most popular erasure coding scheme is the family of
Reed-Solomon codes [6]. An RS code is associated with two
parameters, k and r. A RSðk; rÞ code encodes k units of data
into r units of parities. The original k units can be recon-
structed using any k out of ðkþ rÞ units of data. It thus
allows for tolerating any r failures of kþ r units. A common
choice of RS code is RS (10,4), in which any 4 failures can be
tolerated, with 1.4x storage overheads. In contrast, the stor-
age overheads becomes 3x to achieve similar degree of
availability in replication-based systems.

As revealed by many previous literature [3], [4], [7], era-
sure coding trades storage cost with extra performance over-
heads. Among these overheads, the most discussed problems
are long reconstruction time, high degraded-read latency1

and heavy resource usage. These problems affect not only the
systemMeanDown Time (MDT), but also the performance of
high-level services like database and key-value store. These
problems have received great attention from academia and
industry [3], [4], [7], [8]. However, according to a recent
work [7], there is no more than 50 MB/s reconstruction rate
(several hours to reconstruct a 1TBHDD), which can be disas-
trous even for latency-insensitive or off-line services.

Through extensive analysis and case studies (Section 2.2),
we identify that host-based EC processing is the fundamental
issue behind these three problems. In particular, as shown in

� Yi Qiao, Menghao Zhang, Xiao Kong, Han Zhang, and Jun Bi are with
the Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing 100084, China, and also with the Beijing National Research Center
for Information Science and Technology (BNRist), Beijing 100084, China.
E-mail: {qiaoy21, zhangmh16, kx19}@mails.tsinghua.edu.cn, {zhhan, junbi}
@tsinghua.edu.cn.

� Yu Zhou is with Alibaba Inc., Hangzhou 311121, China.
E-mail: yuzhou.zy@alibaba-inc.com.

� Mingwei Xu is with the Institute for Network Sciences and Cyberspace,
and the Department of Computer Science and Technology, Tsinghua Uni-
versity, Beijing 100084, China, and with the Beijing National Research
Center for Information Science and Technology (BNRist), Beijing 100084,
China, and also with Quan Cheng Laboratory, Jinan 250103, China.
E-mail: xumw@tsinghua.edu.cn.

� Jilong Wang is with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, and with the Beijing National
Research Center for Information Science and Technology (BNRist), Beijing
100084, China, and also with Peng Cheng Laboratory, Shenzhen, Guang-
dong 518066, P. R. China. E-mail: wjl@cernet.edu.cn.

Manuscript received 1 Nov. 2020; revised 1 June 2021; accepted 17 Jan. 2022.
Date of publication 25 Jan. 2022; date of current version 4 Apr. 2022.
This work was supported in part by Joint Research on IPv6 Network Governance:
Research, Development and Demonstration under Grant 2020YFE0200500, and
in part by the Natural Science Foundation of China under Grant 62002009.
(Corresponding author: Han Zhang.)
Recommended for acceptance by S. K Prasad.
Digital Object Identifier no. 10.1109/TPDS.2022.3145836

1. Read operations to missing data in EC are “degraded” due to
higher latency and lower throughput compared with replication-based
systems. This is because in EC these operations are served with on-the-
fly reconstruction, while in replication they are served directly from
one of the backups.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022 2571

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9264-7757
https://orcid.org/0000-0001-9264-7757
https://orcid.org/0000-0001-9264-7757
https://orcid.org/0000-0001-9264-7757
https://orcid.org/0000-0001-9264-7757
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0002-3469-0906
https://orcid.org/0000-0002-3469-0906
https://orcid.org/0000-0002-3469-0906
https://orcid.org/0000-0002-3469-0906
https://orcid.org/0000-0002-3469-0906
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
mailto:qiaoy21@mails.tsinghua.edu.cn
mailto:zhangmh16@mails.tsinghua.edu.cn
mailto:kx19@mails.tsinghua.edu.cn
mailto:zhhan@tsinghua.edu.cn
mailto:junbi@tsinghua.edu.cn
mailto:yuzhou.zy@alibaba-inc.com
mailto:xumw@tsinghua.edu.cn
mailto:wjl@cernet.edu.cn

Fig. 1a, end host network I/O (typically NIC capacity) ismul-
tiplexed by k downloading data streams, so that the effective
reconstruction goodput is bounded by 1=k of the available
network I/O, which leads to low reconstruction rate.
Besides, the downloading streams induce severe incast [9] in
the outbound switch interface connected to the receiver
(serverA in Fig. 1a), resulting in high degraded read latency.
Moreover, every single byte from all downloading streams
has to be inspected by CPUs to conduct encoding or decod-
ing operations, leading to high CPU utilization on end hosts.
Although numerousworks [3], [4], [7], [8] have been devoted
to these performance problems, as long as processing is con-
ducted on end hosts, these problems cannot be resolved
completely. One might think of using a dedicated server or
other hardwares like FPGA and making it stand as as mid-
dlebox to perform erasure coding. However, they inevitably
need NICs to connect to the networks, and still face low
goodput when the bounded NIC bandwidth is shared by
multiple data streams.

The recent in-network computation paradigm [10], [11],
[12], [13], [14], [15] provides an unprecedented opportunity to
address these problems. The emergent programmable switch-
ing ASICs have ultra-high backplane capacity and line-rate
processing capabilities. By exploiting the on-switch memory
and stateful processing, researchers extend the usage of pro-
grammable switches to carrier or accelerator of various appli-
cations such as key-value caches [12], load balancing [16],
coordination services [14] and networkmonitoring [17].

We argue that offloading EC to programmble switching
ASICs can solve the above-mentioned three problems. First,
on a programmable switch [18], data streams arrive at differ-
ent interfaces, get aggregated and forwarded to yet another
interface. As a result, there is no sharing of bandwidth. As
illustrated in Fig. 1b, where computation (gray box) is
moved from end hosts to the switch, the reconstructed data
(black) is able to make full use of the entire bandwidth avail-
able on the host NIC, so that we can achieve higher diskwrite
speed. The wider black line compared to Fig. 1a indicates
the improvement of reconstruction rate. Second, incast is

avoided because only one data stream of reconstructed data
is sent via the outbound interface, resembling the case in data
replication. Finally, in-network computation completely
removes extra CPU usage for RS decoding. Storage nodes
receive already reconstructed data, which can be directly writ-
ten to disks.

Therefore, we present NetEC, an in-network accelera-
tion framework that fully offloads EC to programmable
switching ASICs. RS decoding is modelled with Galois
Field (GF) vector dot-products, which can be further
decomposed to GF multiplication and partial XOR sum
updates. The programmable switch performs GF multipli-
cation on parity data contained in arriving packets and
updates the buffered partial XOR sums. When reconstruc-
tion completes, the last arrived packet is sent with the
decoding result encapsulated in its payload. Storage nodes
receive reconstructed data ready to be written to disks.
Although the idea of NetEC seems simple conceptually,
we address two key challenges:

Performance. Can NetEC achieve �GB/s reconstruction
rate to support next-generation storage medium? Program-
mable switches can only parse and process limited number of
bytes(<500) due to parser and stateful ALU capabilities [17].
Compare to traditional 1500B MTU (Maximum trasmission
unit), small packet size puts large burdens on network and
end hosts, and downgrades end-to-end throughput. To sup-
port larger packet size,NetECuses twomethods for GFmulti-
plication offloading in parallel: table lookup method and
bitmatrix method. They consume different parts of switch
resources (SRAM and ALU respectively), so that more bytes
can be processed given limited switch resources. NetEC fur-
ther increases packet size with packet recirculation, i.e., let
packets go through the processing pipelinemultiple times.

Scalability. Can NetEC support tens of concurrent recon-
struction tasks to tolerate multiple failures or rack-level
failures? This is necessary when several machines simulta-
neously fail in large storage clusters. NetEC needs to tempo-
rarily buffer partial decoding results, and if downloading
streams have non-synchronized transmission rates, the on-
switch SRAM consumption would increase drastically.
Therefore, we need to constrain the decoding buffer size for
each task to run multiple concurrent reconstruction tasks
with limited SRAM resources (�100MB). To this end, we
design the Explicit Buffer Size Notification (EBSN) mecha-
nism to synchronize the downloading rates and constrain
buffer usage. The programmable switch explicitly informs
senders of the remaining allocated buffer size piggybacked in
ACK packets, so that the senders automatically keep in pace
with each other and do not send more data than the buffer
can hold.We take extra efforts to augment TransmissionCon-
trol Protocol (TCP) with EBSN by designing a one-to-many
TCPproxy to enable easier integrationwith existing systems.

NetEC is designed to be incrementally deployable.
Adopting NetEC in HDFS only requires configuring a cus-
tomized EC policy and replacing programmable switches in
the cluster. NetEC does not require every switch to be pro-
grammable, and the programmable switches can also run
other network applications because NetEC takes up only a
portion of switch resources. Besides, NetEC is orthogonal to
other EC solutions. They can evolve separately and cooper-
ate to build a better system. NetEC can potentially support

Fig. 1. NetEC overview and comparisons with Native EC. Colored lines
represent downloading stream, and black lines represent reconstructed
stream. The line width represents throughput.

2572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

other RS-based codes, like LRC codes [3], and can be inte-
grated to other EC systems as a basic coding scheme.

In summary, we make the following contributions:

� We propose NetEC that offloads EC to switching
ASICs to solve the threemajor ECproblems (Section 3).

� We design Explicit Buffer Size Notification (EBSN) to
constrain buffer usage for concurrent tasks (Section 4).

� We design two parallel GF offloading methods to
support larger packet size and better throughput
(Section 5).

� We implement NetEC on hardware programmable
switches and integrate it with HDFS (Section 6).

� We conduct extensive evaluations and show that
NetEC improves the reconstruction rate by 2.7x-6.8x,
reduces the degraded read latency significantly, and
removes the host CPU overhead completely. We
emulate multi-rack scenarios showing �GB/s recon-
struction rate and tens of concurrent tasks (Section 7).

In addition, we show related works in Section 9, and con-
clude the paper in Section 10.

2 BACKGROUND AND MOTIVATION

2.1 Reed-Solomon Code

We introduce Reed-Solomon (RS) code in this part and
show that encoding and decoding can both be modelled
with vector dot-products on Galois Fields (GF). GF(2w)
refers to the set containing all w-bit binary numbers. For
simplicity, the readers may comprehend GF arithmetics as
usual integer arithmetics. We refer to the smallest granular-
ity of data as symbol, which we choose to be a 16-bit word.

Encoding. We describe the RSðk; rÞ coding system using
matrix-vector products[19]. As shown in Equation (1), the
RSðk; rÞ code encodes k symbols into r parity symbols with
a ðkþ rÞ � k generating matrix R, composed of an identity
matrix and a redundancy matrix. We use column vector D to
denote a set of original data symbols d1; d2; . . . ; dk, and C to
denote data and parity symbols d1; . . . ; dk; p1; . . . ; pr. Multi-
plication of the generating matrix R and D yields C. More
specifically, each parity symbol can be computed with pi ¼Pk

j¼1 ai;jdi, where ai;j are elements of the redundancy matrix

RD ¼

1
. .
.

1
a1;1 � � � a1;k

..

. . .
. ..

.

ar;1 � � � ar;k

2
66666664

3
77777775
�

d1
..
.

dk

2
64

3
75 ¼

d1
..
.

dk
p1

..

.

pr

2
666666664

3
777777775
¼ C: (1)

Decoding. RSðk; rÞ tolerates at most r lost data words through
reconstruction using (any) k of the survived symbols. To
reconstruct, we build a k� k reconstruction matrixR0 by delet-
ing r rows corresponding to lost data symbols from generat-
ing matrix R. Applying the same row deletions on C, we
obtainC0, which contains k survived symbols.R0D ¼ C0, and
with matrix inversion, we getD ¼ ðR0Þ�1C0. This means that
we can retrieve the originalD by multiplying ðR0Þ�1 with the
survived symbols C0. More specifically, each data symbol
can be computed with di ¼

Pk
j¼1 ri;jc

0
i, where ri;j are ele-

ments of the inverted reconstructionmatrix.
To conclude, the encoding and decoding process can

both be modelled with GF vector dot-products. In later sec-
tions, we will discuss how it can be transformed to opera-
tions that are offloadable to switching ASICs.

2.2 Case Study in HDFS-EC

To verify arguments made in Section 1 about EC perfor-
mance, we measure the reconstruction rate, degraded read
latency, and host CPU utilization in HDFS-EC. HDFS [5]
starts to natively support EC since version Hadoop-3. We
use the built-in RS-3-2-1024k, RS-6-3-1024k and REP-

LICATION
2 HDFS-EC policies [20]. The cluster setup is

shown in Section 7.
First of all, reconstruction rate in RS(k; r) is no more than

1=k of replication, resulting in at least k times the recon-
struction time. As shown in Fig. 2a, during reconstruction,
we increase the allowed NIC bandwidth using Linux tc.
We observe that the reconstruction rate is always approxi-
mately one-third (or one-sixth) of that of replication before
it is bounded by HDD write I/O.

Second, degraded reads are already slow because of low
construction rate. Fig. 2b shows degraded read latency
reflected by single block reconstruction time. Degraded
read latency of RSðk; rÞ is roughly k times of replication.
Besides, persistent downloading streams induce severe
incast on the switch egress buffers, causing large queues,
and thus extra queuing delay for read requests. The long-
lived downloading streams greedily grasp all available
bandwidth, resulting in unfairly low throughput of on-the-
fly reconstruction. This unfairness between large and short
flows has been extensively studied [9], [21], and is also
observed in our case study. In Fig. 2b, if read requests are
made to the under-reconstruction node, the degraded read
latency is drastically increased. The reconstruction traffic of

Fig. 2. Case studying of current EC in HDFS indicates considerable performance overheads.

2. REPLICATION is a special EC policy that users can choose in the
EC policy XML file, forcing certain directories to use 3-way replication.
REPLICATION should be differentiated with the HDFS replication pol-
icy, used in hdfs-site.xml

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2573

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

the requested block fails to compete with heavy incast back-
ground traffic, leading to unfairly low throughput and lon-
ger reconstruction time.

Last but not least, CPU utilization on end hosts is high
since CPUs have to inspect every single byte from all k
downloading streams, taking away valuable computational
resources for other applications. Fig. 2c shows the host CPU
utilization with respect to reconstruction rate in an SSD set-
ting. With Intel ISA-L[22] support, the CPU processing
throughput manages to keep up with I/O at the cost of high
utilization. We observe that the CPU utilization is almost
linear to both reconstruction rate and the number of parity
nodes (k as in RS(k; r)).

2.3 Towards an In-Network Solution

The above mentioned problems are hard to eliminate as
long as EC processing is conducted on end hosts. Scaling up
by upgrading NICs or dedicating more CPU cores seems
feasible, but can potentially lead to low utilization of these
hardware because reconstruction does not happen fre-
quently. Therefore, we seek to move erasure coding from
end hosts to the network.

Programmable Switching ASICs. Programmable switch-
ing ASICs [18], [23] are designed to implement match-
action forwarding applications at line rates that are orders
of magnitude higher than CPU, NPU and FPGAs. Pro-
grammable ASICs have very specialized architecture that
exploits pipelining and instruction-level parallelism[18] to
support terabit-rate data plane functionalities. Current
commodity products include Barefoot Tofino [24] and
Cavium XPliant [25].

Switch ASICs differ from other programmable devices,
typically FPGAs in the following two perspectives. On one
hand, Switch ASICs has orders of magnitude higher packet
processing capability than FPGAs and NPUs, and more
importantly, performance is non-degradable, i.e., computation
complexity and resource usage of the installed program does
not affect the processing delay (<1ms), jitter and throughput
(�Tb/s) of the switch pipeline [17], even under extreme
throughput load. Packets go through a fixed number of
stages on switch, with a constant traversal time. A program-
mable switch can install multiple programs which use sepa-
rate resources (SRAM and ALUs) in an exclusive manner.
These programs will not affect each other’s performance. On
the other hand, the switch ASIC programming model is less
expressive than other hardwares in trade of performance. It
is initially designed to ease network protocol customization,

so it can only support applications that can be mapped to
match-action table pipelines.

3 NETEC OVERVIEW

3.1 Terms

We first define terms used in following sections. We refer to
the node on which a data symbol m is reconstructed as the
reconstructing node (termed A, �8 in Fig. 3a). m is recon-
structed from the symbol-stripe x1; x2; . . . ; xk (or y1; y2; . . . ; yk)
downloaded from survived nodes B1; B2; . . . ; Bk (�1). To sim-
plify, we term all survived nodes as Bs. The switch running
NetEC is termed S. The set of packets that contains the
same set of symbol-stripes are termed the packet-stripe. A
packet-stripe contains multiple symbol-stripes (�2). For
example, in Fig. 3a, P1, P2, P3 form a packet stripe, and
contain symbol-stripes xi, yi, etc. A reconstruction task refers
to the reconstruction process of one block of data.

3.2 RS Decoding on the Data Plane

We illustrate how RS decoding is performed on switch data
plane in Fig. 3a. For every incoming packet from Bs (�2),
NetEC extracts symbols xi, yi, etc., and performs GF multi-
plication on them (�3). We design two parallel GF multipli-
cation method: the table lookup method and the bitmatrix
method (Section 5). By “parallel”, we mean these two meth-
ods apply to different symbols in a packet simultaneously.
For example, we can calculate aixi with the table lookup
method and aiyi with the bitmatrix method. In this way, the
total number of symbols in a packet is the sum of the num-
ber of symbols supported by both methods. The results are
written back in the extracted header fields (�4).

The switch then picks a slot (detailed in Section 3.3) in the
partial XOR sum buffers implemented with registers, and
XORs the symbols with buffer contents. It also updates the
progress tracker, whose ith bit is flipped if the packet comes
from the ith survived node. As other packets of the packet-
stripe arrive, the buffer content changes as shown in Fig. 3a
(�9), where “+” means bit-wise XOR. The switch drops all
packets except the last arrived packet in a packet-stripe (�6).
When the progress tracker becomes all ones, the switch
knows the whole packet stripe is received. It overwrites the
payload of the last arrived packet with the finished XOR
sums (�7), and forwarded it to A (�8). We can see that decod-
ing buffer is needed since the arrival of first packet until the
departure of the last packet. A receives packets containing
reconstructed data, which can be directly written to disk.

Fig. 3. NetEC overview.

2574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

Buffer Slot Indexing. In every packet, Bs explicitly include
a slot index, indicating which slot to hold partial decoding
result for the packet-stripe. Packets of a packet-stripe share
the slot index, so that the extracted symbols are XOR-ed
altogether in the same buffer. The allocated SRAM is used
as a ring buffer. Suppose the total slot size is M (total allo-
cated SRAM size divided by packet size), then the ith packet
sent by Bs has the slot index i (modM). We adopt measures
discussed later to guarantee that the buffer will never be
full, so that there will not be collisions of slot usage.

3.3 NetEC Components

NetEC consists of the following three system components
and NetEC Packet Format (Fig. 3b).

NetEC Data Plane. NetEC Data Plane is the switching
ASIC program responsible for RS decoding. It performs GF
multiplication on symbols and aggregates symbols from the
same packet-stripe. The detailed workflow has been shown
earlier (Section 3.2). It also implements Explicit Buffer Size
Notification (EBSN, Section 4.1), preventing buffer overflow
by explicitly informing NetEC Clients of the remaining
buffer size. The one-to-many TCP proxy is deployed in our
HDFS implementation.

NetEC Manager.NetEC Manager manages the life cycle of
NetEC reconstruction process. In our HDFS implementa-
tion, NetEC Manager co-locates with the HDFS namenode
with access to all RS decoding matrices (Section 2.1). When
a block reconstruction is scheduled, NetEC Manager takes
over and manages the reconstruction with its own logics.
Whether data is reconstructed with NetEC or native EC is
transparent to other modules of the file system. NetECMan-
ager also keeps track of ongoing tasks and the switch slot
arrays they use.

NetEC Client. NetEC Client is responsible for data trans-
mission. NetEC Clients use sliding windows for rate con-
trol. The window size is updated with the remaining buffer
size advertised by the NetEC Data Plane. In our HDFS
implementation, NetEC Clients co-locate with datanodes
and use traditional TCP, enabled by the one-to-many TCP
proxy (Section 4.3).

NetEC Packet Format. NetEC packets are formatted as
shown in Fig. 3b. A NetEC packet includes a 4-bit task ID

field, an 8-bit slot array index field, a 16-bit slot

index field and a 16-bit remaining buffer size field. A
reconstruction task uses one slot array, which is a continu-
ous piece of switch SRAM. Slot index is used as shown in
Section 3.2. The remaining buffer size field is used by EBSN
mechanism.

3.4 NetEC Reconstruction Life Cycle

When a block reconstruction request is made, NetEC Man-
ager selects an unoccupied slot array and a reconstruction
task ID. NetEC Manager sends the task ID, the slot array
index and the decoding matrices to involved NetEC Clients
on A and Bs, and the NetEC Data Plane on S.

Bs transmit parity data with the NetEC Packet Format.
The packets from Bs are aggregated as previously shown in
Section 3.2. When A receives the reconstructed packet, it
will reply with an acknowledgement (ACK) packet. S pig-
gybacks the remaining buffer size field and multicast ACK

packets to Bs. On receipt of these ACK packet, Bs adjust
their sending rates accordingly. After the whole block is
reconstructed, NetEC Clients inform the NetEC Manager to
finish the task and release the allocated slot array.

Fallback Mechanisms. When some downloading streams
are broken or the receiver detects corrupted blocks (e.g.,
wrong checksums), the NetEC manager will terminate the
reconstruction task and attempt a retry. Also, if the recon-
struction task still fails (e.g., when there are insufficient
resources), the system will gracefully degenerate into native
EC described in Fig. 1a, where switches only deliver traffic
without getting involved in computation. Other ongoing
reconstruction tasks are not affected. Basic network for-
warding functionality still works normally, even when there
are faults.

4 CONSTRAINING DECODING BUFFER USAGE

In this section, we propose Explicit Buffer Size Notification
(EBSN) to constrain decoding buffer usage per task so that
NetEC can support multiple concurrent reconstruction
tasks. Then we introduce one-to-many TCP proxy designed
for our HDFS integration, and how to combine EBSN to it.

4.1 Explicit Buffer Size Notification (EBSN)

To avoid buffer overflow, our basic idea is to explicitly
inform senders of the remaining buffer size on switch. We
call this method Explicit Buffer Size Notification (EBSN). We
assume that the transmission protocol has anACK (acknowl-
edgement) mechanism, which is generally needed for reli-
ability and rate control, and that the ACK packets pass our
NetEC switch.We piggyback the remaining buffer size value
in ACK packets. If the ACK packets already have similar
fields, like TCP window size, we overwrite this field if the
remaining buffer size is smaller than the field value. Senders
maintain a sliding window to keep track of sent and unac-
knowledged packets, and update the window size with the
remaining buffer size on receipt of ACK packets.

To show the effectiveness of EBSN, we analogue it with
the TCP rate control mechanism. TCP receivers maintain a
receive buffer to hold received data not yet consumed by
upper layer applications. It constantly informs its peer of the
remaining receive buffer size in the window size field of
TCP header, so that the peer will not sendmore data than the
receiver can receive. Similarly, the NetEC explicitly inform
senders of the remaining decoding buffer size, so that the
senders will not send data more than the decoding buffer
can hold. In some way, EBSN can be viewed as “offloading”
the entire receive buffer to the switch data plane.

4.2 Choice of Buffer Size

The choice of buffer size allocated for each task is important
because it affects maximum reconstruction rate. The decod-
ing buffer should be able to hold all in-flight packets,
bounded by BDP (bandwidth-delay product) of the link.
Suppose we use NetEC to reconstruct an SSD at its full speed
1GB/s. In data centers, RTT is typically around 250 ms [21].
In this case, the in-flight data size I is estimated to be 250KB.

However, we cannot simply allocate buffer equal to the in-
flight data size because the remaining buffer information can-
not be advertised to senders timely. First, most NICs adopt

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2575

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

TCP segmentation offloading, which reduces the number of
ACK packets. Multiple packets are aggregated to a larger
packet byNICs before being passed to higher network stacks,
and the network stack may respond only one ACK for the
aggregated packet. This means the change of the remaining
buffer size will likely be out-of-date because of the “diluted”
ACK packets. Second, there also exist a delay before the
sender is aware of the remaining buffer size piggybacked in
ACK packets. Before senders are notified the remaining
buffer size, the buffer may still be accumulating data. These
two problems potentially lead to buffer overflow.

To resolve these problems, we allocate buffer size to be
2I, twice as the estimated maximum in-flight packet size I,
but only “expose” I to senders. The other half of I serves as
a headroom for potential overflow packets due to reasons
discussed above. Specifically, suppose the current buffer
consumption is C and the remaining buffer size we will
advertise to senders is R. If C < I, we let R ¼ I � C; other-
wise, we consider that buffer overflow already happens and
let R ¼ 0, even if C has not reached 2I. Before this informa-
tion (R ¼ 0) reaches the senders, they might still be trans-
mitting packets, but the size of these in-flight packets will
be no more than the value of last notified R. Therefore, these
data can be held safely in the other half of the allocated
buffer, because R is always no more than I. Allocating
2I ¼ 500KB with the above method, we still allow at most
I ¼ 250KB in-flight data for senders, so that the transmis-
sion rate can still saturate SSD writes (1GB/s) in our setting.

Doubling buffer size usage seems wasteful, but because
of the limited throughput bounded by SSD write speed and
small RTTs in data centers, we only use 500KB per task,
which is manageable for on-chip memory (0.5% in a switch
with 100MB total SRAMs).

4.3 One-to-Many TCP Proxy With EBSN

While it is easy to implement a simple NetEC version with
EBSN (as shown in Section 6), we take extra efforts to aug-
ment TCP with EBSN by designing the one-to-many TCP
proxy. The reasons are two-fold. First, TCP already has the
window size header field thatwe can easily parse andmod-
ify on switch to support EBSN. Second, it will be easier to
integrate NetEC to existing systems (like HDFS in our imple-
mentation) by augmenting TCP than designing a clean-slate
protocol, because TCP is still a predominant transport layer
protocol for distributed file systems.

4.3.1 Overwriting the TCP Window Size

TCP headers include a field called window sizewhich rep-
resents the number of bytes the receive buffer can hold. The
sending side updates its sliding window size upon receiv-
ing every ACK to avoid overflowing the receive buffer of its
peer. In NetEC, we simply overwrite the TCP window size
W with the remaining buffer size B if B < W . In this way,
the senders will never transmit more data than the receive
buffer can hold.

4.3.2 One-to-Many TCP Proxy

We build a one-to-many TCP proxy to manage downloading
streams of parity data sent by survived nodes Bs and recon-
structed data produced by the switch S. From Bs’ point of

view, they all connect to S, sending parity data. From A’s
point of view, it connects only to S, receiving already recon-
structed data.

Handshake. We first assign a VIP (virtual IP) address to
the switch S, and let A connects to this VIP. S modifies the
source IP of the SYN packet from A to the VIP assigned to
S, and multicasts the SYN packet to Bs (with corresponding
destination IPs). Therefore, from Bs’ point of view, they
receive SYN packets from S and will reply S with SYN-
ACK packets. After receiving all SYN-ACK packets from
Bs, S sends one SYN-ACK packet to A. From A’s point of
view, it successfully connects to S, and will reply with an
ACK packet. S multicasts this ACK packet to Bs after simi-
lar modifications it does to the SYN packet. Then, S success-
fully connects to all Bs.

4.3.3 Rate Control and Packet Loss Recovery

NetEC prevents senders from overwhelming the allocated
decoding buffer and maintains synchronicity of sending
rates. All Bswill automatically have synchronized rates that
are almost always equal to the rate of the slowest sender. If
any sender becomes faster than others, the remaining buffer
size will reduce. The reduced value will be quickly adver-
tised to all senders through EBSN, and the faster sender will
reduce its window size, thus its transmission rate. The com-
pletion time of EC reconstruction is dominated by the
“straggler” of the senders, so reducing the rate of other send-
ers to the straggler will not impact the completion time.

Next we discuss how NetEC deals with two types of
packet loss. We mainly focus on lost packets from Bs to S
because those from S to A follows similar analysis, and
those from A to S and S to Bs (pure ACKs) have negligible
effects as long as any following ACK packet is successfully
transmitted. The first type of packet loss is RTO, or re-trans-
mission timeout, where no packets are received on S for a
period of time from one of Bs, saying B1. During this time
period, no aggregation can be performed on switch, and
therefore A receives no packets, and sends no ACK packets
to Bs. When Bs receive no ACK packet for a period of time,
they detect RTO and start re-transmission. The second type
of packet loss is duplicate ACKs. Suppose one packet is lost
on the path from B1 to S, but following packets are success-
fully transmitted. Also, no packet loss happen from other
Bs. Then from A’s point of view, it receives the following
packets and detects the missing packet. A then sends ACK
packet requesting the missing packet anytime it receives a
following packet, and these ACK packets will be multicast
to all Bs. After Bs receives three duplicate ACKs requesting
the same packet, it confirms that this packet is truly lost,
and re-transmits this packet.

To properly handle re-transmitted packets and ensure
correct decoding, we design the progress tracker (Fig. 3a,
�9). In the above example for duplicate ACKs, only one
packet in the packet stripe (from B1) is lost, while packets
from other Bs reach S and contribute to the partial sum.
However, all Bs detects duplicate ACKs and re-transmits
the required packet. The switch has to identify the real lost
packet (from B1), and disregard already received packets
(from other Bs). The NetEC progress tracker serves this pur-
pose by maintaining tracker bits. In this example, the tracker

2576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

bits is 0 for B1, and 1 for others before re-transmission.
Then, upon receiving the re-transmitted packets from all
Bs, the switch checks the tracker bits and only processes the
packet from B1. S uses the data contained in this packet to
finish partial sum calculation, and sends the reconstructed
packet to A.

5 OFFLOADING GF MULTIPLICATION

In this section, we aim to find the maximum number of
bytes Bmax on which to perform GF multiplication, given
limited switch resources. We introduce and analyze two
methods running in parallel. We also let packet recirculate
once to double packet size: pkt size ¼ 2Bmax.

5.1 Table LookupMethod

Table lookup method is widely used for accelerating GF
operations [26], [27]. Suppose a data symbolm is to be recon-
structed as follows: m ¼ Pk

i¼1 mi ¼
Pk

i¼1 aixi, where xi are
data symbols from survived nodes Bs and ai are pre-com-
puted coefficients. To multiply xi with ai, we look up logxi in
a pre-installed logarithm table and add it with the pre-calcu-
lated logai: logxi þ logai ¼ logxiai ¼ logmi. Note that the
addition here is integer addition, which is supported by the
current programmable switching ASICs. Then we get mi by
looking up logmi in an exponent table.

The logarithm table and exponent table store mappings
between an element and its logarithm or exponent in Galois
field. The total size of the logarithm table is w� 2w bit,
because there are 2w entries and each entry value has w-bit
width. In NetEC, we choose w ¼ 16 to be the symbol size, so
the logarithm table takes up 131072 bytes. The exponent
table takes up twice (262144 bytes) as much as logarithm
table because the integer sum of two 16-bit integers ranges
from 0 to 131070. However, exponent tables can be opti-
mized to 131072 bytes, because the exponent table has
repeated contents [19].

5.2 Bitmatrix Method

Another widely-used method is bitmatrix method [27], [28],
[29]. Galois field operations can be conducted with only
binary XOR with the underlying bit vectors and matri-
ces [29]. Each element e in GF(2w) (We let w ¼ 16) can be
alternatively represented as a column vector V ðeÞ or a
matrix MðeÞ. V ðeÞ is equal to the binary representation of e,
and the jth row of MðeÞ is equal to V ðe2j�1Þ. MðaÞ can be
computed from a once in advance, and installed to the
switch. This representation ensures the following important
equation: V ðaxÞ ¼ MðaÞV ðxÞ, where a and x are elements in
GF(2w). Therefore, to calculate the multiplication of a and x
(V ðaxÞ), we convert a to its bitmatrix form (MðaÞ) and multi-
ply it to the bit representation of x (V ðxÞ). Specifically, to get
the jth bit of V ðaxÞ, we calculate the bit-wise dot-product of
the jth row of MðaÞ and V ðxÞ [29]. To do this, we first bit-
wise AND the jth row of MðaÞ and x (Algorithm 1, Line 3).
Then we need to XOR all 16 bits of AND-ed result alto-
gether. However, if we do this one bit by one bit, we need
up to 16 operations, which consume too much switch ALU
resource. We adopt a method shown in Line 4-8 (Algorithm
1) to calculate the XOR sum of all 16 bits of res in log2ð16Þ ¼
4 times instead of 16 times.

Algorithm 1. Calculate the jth Bit of GF Multplication ax
With Bitmatrix Representations

1: procedure GETBIT(a, x, j)
2: row = the jth row of bitmatrixMðaÞ
3: res = x AND row
4: res = res XOR ðres > > 8Þ
5: res = res XOR ðres > > 4Þ
6: res = res XOR ðres > > 2Þ
7: res = res XOR ðres > > 1Þ
8: return res½0�

5.3 Resource Usage Analysis

5.3.1 Switch Resources

In current switch architectures, a pipeline contains a fixed
number of stages [18], [23]. Each stage has dedicated resour-
ces that can only be used within itself to achieve ultra-high
line rate. In this part, we view the stage as the minimum allo-
cation unit. We denote the number of allocated stages for
NetEC asN . In Table 1, we summary the resource types and
their typical values in our Barefoot Tofino hardware switch.

5.3.2 Resource Usage Analysis of GF Multiplication

Methods

We analyze the resource usage of above two offloading
methods, and find that the table lookup method mainly
uses SRAMs, and the bitmatrix method only uses actions
(ALU).

Table Lookup Method. In C1 (Table 1), we denote the num-
ber of bytes processed with this method Btl. In current
switching ASICs, tables can only be accessed in the same
stage once per packet. NetEC requires table reads for every
symbol in a packet, so we have to install multiple copies of
lookup tables to the data plane.3 According to Section 5.1,
both tables need roughly 130KB SRAM. For each 16-bit sym-
bol, we need one logarithm table and one exponent table,
therefore, a total of Stl ¼ 2� 130 ¼ 260 KB SRAM. Then, M

Stl

TABLE 1
Switch Resources and Constraints

N refers to number of allocated stages.

3. Some recent works discuss how to relieve the memory access con-
straint. Without this constraint, we may only need one copy of lookup
tables. dRMT [30] builds a memory pool accessible through a crossbar,
and GEM [31] proposes RDMA-based external memory.

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2577

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

refers to the number of lookup tables that can be installed per
stage, equal to themaximumprocessed symbols per stage.

Bitmatrix Method. We denote the number of bytes proc-
essed with this method Bbm. Five steps (Algorithm 1, Line
3-7) are needed to calculate one bit, so a total of 80 actions
are needed to calculate the 16-bit symbol. A

80 in C2 (Table 1)
refers to the number of symbols processed per stage. The
bitmatrix method leverages the VLIW support of program-
mable ASICs. Within each action, AND and XOR operations
are simultaneously performed onW fields.

Hardware Metrics. Using the resource values shown in
Table 1, we get Btl 	 w �N � MStl ¼ 15:38N bytes, and Bbm 	
w �N �W � A

80 ¼ 51:2N bytes. If we allocate one pipeline
(N ¼ 12), we choose Btl ¼ 160B and Bbm ¼ 140B (Both meet
constraints in Table 1), and Bmax ¼ Btl þBbm ¼ 300B. Using
packet recirculation discussed later, we get pkt size ¼ 600B.
As shown in Section 7.3, this choice of packet size already
achieves 80% throughput compared to the standard 1460B
Maximum Transmission Unit (MTU). Future hardware may
contain more stages, so that we can allocate more stages to
NetEC. Also, each stage contains more resources, so that we
can achieve larger Bmax with the same N .

5.4 Packet Recirculation

In the previous part, we have analyzed the maximum num-
ber of bytes Bmax processed by NetEC in one pass of the
switch pipeline. We further leverage packet recirculation to
let packets traverse the switch pipeline again to double the
number of processed bytes. We configure end host MTU to
be 2mþH, where H stands for network header size, so that
each packet has 2m size payloads.

For each incoming packet, we process the first m bytes of
packets and truncate these bytes by not emitting them. Then
the packet is loop-backed to the ingress pipeline again to pro-
cess the next m bytes. After two passes, we can inspect the
whole payload of the packet. Most incoming packets will be
dropped except the last packet in a packet-stripe. The last
packet, however, has to go through the pipeline again to
retrieve and emit finished XOR sums from corresponding
slots. The packet is assembled and leaves the switch.

Recirculating too many times could reduce switch overall
throughput. Our choice of packet size parameter (i.e.,
pkt size) and recirculating packets once can achieve a good
balance between overall and end-to-end throughput: On the
one hand, NetEC achieves near-optimal end-to-end through-
put with well-chosen packet size (Section 5.3.2). On the other
hand, recirculating once does not greatly impact switch
throughput [11], [32]. Suppose the end-to-end throughput is
1GB/s, which is typical for SSD sequential write, the
throughput consumption is 16Gb/s, taking up only a small
portion of the switch overall throughput (0.48% for 3.3Tb/s
capacity).

6 IMPLEMENTATION

We implement a prototype of NetEC on commodity hard-
ware (codes available on [33]). Data plane components are
implemented with P4 [23] (457 LoC) and compiled with
Barefoot Capilano software suite. The controller of the data
plane program is written with python (269 LoC). On server
side, we implemented a set of HDFS-EC policies with Java

(2587 LoC). We also use DPDK (Data Plane Development
Kit) [34] to implement NetEC simple version in C (652 LOC).

NetEC Data Plane. Our data plane implementation con-
sists of RS decoding module and the control module. The
RS decoding module is a direct mapping of Fig. 3a. The con-
trol module is responsible for overwriting the TCP window
size and the translation of TCP SEQ/ACK and IP ID,
described in Section 4.3. It also recalculates checksums, con-
verts MAC addresses and performs simple L2 forwarding.

NetEC Manager. In our HDFS implementation, we over-
write ErasureCodingPolicyManager on HDFS namen-
odes and implement our own the request handling logics
described in Section 3.4. We also add our NetEC policies to
SystemErasureCodingPolicies so that we can config-
ure them with hdfs-core.xml configuration file.

NetEC Client. In our HDFS implementation, we modify
the socket creation logic in BlockReaderRemote on
datanodes. Instead of establishing connections with all k
survived nodes, the reconstructing node now connects to
only the VIP address (Section 4.3) we assigned for this par-
ticular block reconstruction task. Also, we modify the data
serialization and transmission logic. We simplify the origi-
nal logic and use class NetECPacketHeader to restructure
format before writing data to Java sockets.

NetEC Simple Version. NetEC simple version is used for
evaluation of performance and scalability. It is not inte-
grated with existing systems to eliminate framework over-
heads, and is implemented with DPDK to eliminate kernel
network stack overheads. The data plane now only includes
the RS decoding module. We implement a NetEC Client
with sliding window and acknowledgement mechanism
with DPDK.

7 EVALUATION

7.1 Experimental Setup

Topology. We build a cluster using 9 servers, each with two
12-core Xeon E5-2650v3 CPUs, 64GB of memory, 1TB HDD
and 400GB Intel P3500 SSD. The servers are directly con-
nected to a 3.3 Tb/s Barefoot Tofino programmable
switch [24] via 1GbE and 40GbE NICs.

HDFS Testbed. To show effectiveness of NetEC, we build
a Hadoop cluster as shown in Fig. 4a, deployed with one-to-
many TCP proxy with EBSN (Section 4.3). Servers are
directly connected to switch, each running Hadoop with
our customized EC policies. To demonstrate the benefits of
NetEC, we compare the following mechanisms: Replication,
Native EC and NetEC. Replication and Native EC are HDFS
default implementations. We use the default 128 MB block
size and 3-way replication. The reason to compare NetEC
with replication and Native EC is to show that NetEC signif-
icantly outperforms Native EC (up to k times in terms of

Fig. 4. Testbeds.

2578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

throughput) and even matches replication in various perfor-
mance metrics.

DPDK Testbed. We use DPDK to emulate multi-rack
NVMe (Non-Volatile Memory Express) scenarios. DPDK
achieves ultra-high packet I/O with various technolo-
gies [34], and supports core affinity so that we can explicitly
assign each core its own task. As shown in Fig. 4b, we assign
one of the cores to run a virtual switch, which emulates the
ToR switch, and assign other cores to perform read/write
directly on DRAM, emulating an NVMe storage node. The
emulated storage nodes run NetEC simple version (Sec-
tion 6). The Tofino switch serves as an aggregate-level
switch, which runsNetEC and forwards all cross-rack traffic.
We aim to show that NetEC can scale to �GB/s reconstruc-
tion rate and tens of concurrent tasks.

7.2 Effectiveness

7.2.1 Reconstruction Rate and Total Network Usage

NetEC significantly increases reconstruction rate and
decreases network usage. In Fig. 5, each bar indicates the
total network throughput or reconstruction rate (disk write
speed). We manually kill one node to trigger replication or
EC reconstruction. We use b/s (bits per second) as the unit
for both reconstruction rate and network throughput.

Baseline. We first run NetEC in the replication scenario.
All traffic transverses the entire NetEC processing pipe-
line. The left bars in Figs. 5a and 5b show that the process-
ing of NetEC incurs negligible throughput overheads.
Note that the reconstruction rate is slightly lower than net-
work throughput because of network and NetEC header
overheads.

HDD (1GbE). Fig. 5a shows results in an HDD and 1GbE
setting. In RS(3,2) (middle bars), Native EC consumes 1.0
Gb/s network throughput but only achieves 0.31 Gb/s
reconstruction rate, because the NIC capacity is multiplexed
by three downloading streams. NetEC consumes 0.9 Gb/s
network throughput and achieves 0.8 Gb/s reconstruction
rate, which improves over Native EC by 2.7x. In RS(6,3), the
improvement becomes even more (6.8x) because the NIC is
divided by 6 downloading streams.

SSD (40GbE). Fig. 5b shows results in an SSD and 40GbE
setting, where Java socket I/O becomes an extra bottleneck.
A single Java socket can not exceed 4 Gb/s throughput, while
multiple sockets can achieve larger aggregate throughput.
Native EC downloads from 3 or 6 servers and achieves 4 Gb/
s reconstruction throughput, bounded by the Java socket
limit from the sending side. On the other hand, to show that
NetEC is capable of reaching 8Gb/s reconstruction rate (mid-
dle and right bars in Fig. 5b), saturating thewrite speed of our
SSD (1 GB/s), we let NetEC uses two concurrent tasks (two
Java Sockets), with a network usage of 9.3 Gb/s. Meanwhile,
Native EC consumes 11.3 Gb/s and 18.6 Gb/s network
throughput, significantly higher than NetEC. Although
Native EC implementation uses one socket by default andwe
let NetEC use two sockets, we still demonstrate the advan-
tages of NetEC because NetEC achieves better reconstruction
speedwith less network usage thanNative EC.

7.2.2 CPU Utilization

We enable Intel ISA-L [22] in HDFS to achieve higher recon-
struction rate and do not constrain CPU core usage of
HDFS, so it grasps as many cores as possible, leading to uti-
lization higher than 100%. Fig. 5c shows CPU utilization
during reconstruction on an HDD at its top writing speed
(170 MB/s). CPU utilization can be as high as 350%. Note
that replication also incurs moderate CPU overheads for
transactional operations [35], but the additional computa-
tional overheads of EC are eliminated by NetEC.

7.2.3 Degraded Read Latency

In Fig. 6, we measure the reconstruction time of a single
block to reflect degraded read latency, as in [36]. In Figs. 6a
and 6b, we show that NetEC achieves significantly shorter
single block reconstruction time compared to Native EC,
with or without incast. In Fig. 6c, we show that NetEC single
block reconstruction time is always roughly the same with
replication, no matter in RS(3,2) or RS(6,3).

Incast. We measure the RTT with ping between the
reconstructing node and other nodes to reflect incast level
in Fig. 7. We vary the stripe width and observe that the RTT

Fig. 5. Reconstruction speed and CPU utilization.

Fig. 6. Degrade read latency.

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2579

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

increases with the stripe width in Native EC. For NetEC,
however, the RTT remains the same.

7.2.4 TCP EBSN Effects

We measure the reconstruction rate in face of link capacity
changes and packet losses to show that EBSN introduced in
Section 4.3 is effective.

Rate Control. To measure rate control effects, we use
Linux tc to adjust available output bandwidth of one of the
survived nodes. The evaluation is conducted under HDD
setting with 10GbE NICs. Fig. 8a shows that when one node
undergoes rate-limiting, the other nodes respond almost
instantly. The sending rates of all nodes remain equal after
rate limiting that happens at around 19 second.

Packet Loss. For packet loss, we use replication as baseline
and compareNetEC to it with the same end host TCP setting.
Wemanually introduce random packet losses with Linux tc
for three seconds twice with different loss percentage. As
shown in Fig. 8b, we see that NetEC behaves similarly with
replication in face of packet losses. The throughput is low-
ered because of the constant packet loss rate, but the flow is
not disrupted.

7.3 Performance and Scalability

Recon. Rate versus Packet Size. We demonstrate that NetEC
can achieve high reconstruction rate by supporting large
packet size. As shown in Fig. 9, the packet size does not
affect throughput in DPDK Testbed because of high packet
I/O performance. In HDFS Testbed, we use ifconfig to
adjust the MTU of the interface to control the packet size.
The measured reconstruction rate increases with the packet

size, because small packets bring large overheads to kernel
stacks and Java socket I/O. Nevertheless, we note that even
in HDFS Testbed, when we use packet size larger than
600B, the throughput already reaches 80% of the maximum
throughput of Java socket. The dashed line is the end-to-
end TCP throughput measured with a single iperf TCP
stream. It shows that transmission rate with kernel TCP
stack is also affected by the packet size, but the throughput
drop is less severe than Java Socket. This is probably
because Java I/O libraries have another layer of bottleneck
on top of kernel stacks.

Recon. Rate versus Allocated Buffer Size. We demonstrate
that NetEC constrains buffer usage while achieving high
reconstruction rate with NetEC simple version in DPDK
testbed. Fig. 10 shows that before reaching maximum rate
(40 Gb/s), the reconstruction rate R and the allocated buffer
size B are roughly proportional, i.e., RB
 RTT . The raw RTT
measured with ping in our cluster is 100 ms. We let NetEC
clients intentionally delay all ACK packets by 50ms and
100ms to emulate 150 ms and 200 ms RTTs.

Impact of Number of Concurrent Tasks.We demonstrate that
NetEC supports multiple concurrent tasks. We emulate a
rack-level failure recovery process by starting N concurrent
reconstruction tasks to one machine from other machines.
We rate-limit each flow to be 1 GB/s, emulating SSD sequen-
tial write. As shown in Fig. 11, if N 	 5, the total reconstruc-
tion rate grows linearly with N . If N > 5, the output NIC
bandwidth (40 Gb/s) becomes the bottleneck. Therefore, the
reconstruction rate per task is roughly 40

N Gb/s. The total
reconstruction rate remains 40 Gb/s as N increases. The
dashed lines show the total reconstruction rate of RSð6; 3Þ
andRSð3; 2Þ, which is roughly 1

6 and
1
3 of NetEC.

7.4 Switch SRAM Consumption

NetEC SRAM usage consists of two parts as shown in
Fig. 12. The GF multiplication part occupies only part of the
available stages to support an acceptable Bmax, and the
decoding buffer part requires less than 10MB to support
tens of reconstruction tasks. NetEC can thus co-locate with
other essential network functionalities on the same switch.

GF Multiplication Offloading. We show in Fig. 12a that the
number of bytes on which to perform GF multplication is

Fig. 7. Incast level reflected by RTT.

Fig. 8. TCP EBSN effects.

Fig. 9. Packet size impact.

Fig. 10. Buffer size impact.

Fig. 11. Concurrent recon. tasks.

2580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

linear to the number of allocated stages, according to the
constraints described in Section 5.3.2.

Decoding Buffers. In Fig. 12b, the total decoding buffer size
is linear to the number of supported tasks. As shown in Sec-
tion 4.1, we allocated 500KB for each SSD reconstruction
task (1GB/s). Similarly, HDD (170MB/s) requires 86KB per
task.

8 DISCUSSION

Comparison With Other Hardware Platforms. Other hardware
platforms (e.g., FPGA, programmable NIC) can also be used
for acceleration of intensive applications. NetEC prefers pro-
grammable switching ASICs for the following two reasons.
First, programmable switching ASIC performs processing
on switches rather than hosts. Most platforms perform proc-
essing on hosts and the three performance problems (long
reconstruction time, high degraded read latency and heavy
resource usage) remain. Some works augment switches with
FPGA modules to avoid the performance problems, but
goodput is limited by the inbound I/O of the FPGA chips.
Second, other hardware might encounter performance deg-
radation when throughput is large. For switch ASICs, all
computation tasks are conducted at line-rate and throughput
is not affected. The processing delay is bounded by the con-
stant total pipeline traversal time around hundreds of
nanoseconds [16].

Multi-Switch Schemes. In this paper, we only focus on sin-
gle-switch design, where all downloading streams are
aggregated on a single switch. However, NetEC can poten-
tially be extended to leverage multiple switches. We design
a tree-pattern in-network reconstruction scheme similar to
PPR[37], where low-level switches aggregate a subset of
streams and high-level switches combine the results gener-
ated by the low-level switches. In this way, NetEC can
make full use of the processing power of rack-level pro-
grammable switches, and reduce the bandwidth usage
between different levels of switches. Also, multiple switch
schemes can handle scenarios where some nodes are co-
located under a same rack. We are currently working in
progress on the multiple switch schemes.

9 RELATED WORK

Accelerating Erasure Coding Reconstruction. Some approaches
propose new coding mechanisms, e.g., PM-RBT [38] and
PM-MSR [2], while others aim at building more responsive
and flexible systems, such as HACFS [7] and RAFI [39].
OpenEC [40] and SelectiveEC [41] propose frameworks
with better management and scheduling. Some works, such
as D3 [42] and PDL [43] propose more efficient data place-
ment to reduce network usage. Repair Pipelining [36]
achieves reconstruction rates close to NetEC through pipe-
lining the repair of failed data in small-size units across

storage nodes. PPR [37] decompose EC calculations into
sub-calculations that can be executed in parallel on multiple
nodes. TriEC [44] and INEC [45] leverage smartNIC offload-
ing to accelerate EC calculations. TriEC [44] proposes a new
EC offload paradigm and INEC proposes a set of coherent
in-network EC primitives on smartNICs.

In-Network Computation and Aggregation. Among numer-
ous works that offloads application to programmable
switches [12], [15], [16], [17], [46], some works have focused
on in-network aggregation. XORInc [47] has similar motiva-
tion with this paper, performing XOR on software switches
and has simulation-based experiments, while NetEC also
considers GF multiplication and targets at real hardwares.
SwitchML [15] and ATP [48] aim to accelerate deep learning
applications with in-network aggregation.

10 CONCLUSION

We present NetEC, an in-network accelerating framework
that fully offloads EC to programmable switching ASICs.
We propose Explicit Buffer Size Notification (EBSN) to con-
strain decoding buffer usage, and design an on-switch one-
to-many TCP proxy to integrate EBSN with TCP. We also
design two parallel Galois Field (GF) offloading methods to
maximize parsable bytes. Extensive evaluations show that
NetEC is effective and is able to support �GB/s reconstruc-
tion rate and tens of concurrent tasks.

REFERENCES

[1] S. Ghemawat,H. Gobioff, and S.-T. Leung, “TheGoogle file system,”
ACMSIGOPSOper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[2] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regener-
ating codes for the MSR and MBR points via a product-matrix con-
struction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239, Aug.
2011.

[3] C. Huang et al., “Erasure coding in windows azure storage,” in
Proc. USENIX Annu. Tech. Conf., 2012, pp. 15–26.

[4] M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes for
big data,” Proc. VLDBEndowment, vol. 6, no. 5, pp. 325–336, 2013.

[5] Apache hadoop, 2018. [Online]. Available: https://hadoop.
apache.org/

[6] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[7] M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of two erasure
codes in HDFS,” in Proc. USENIX Conf. File Storage Technol., 2015,
pp. 213–226.

[8] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K.
Ramchandran, “A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, pp. 331–342, 2015.

[9] M. Alizadeh et al., “CONGA: Distributed congestion-aware load
balancing for datacenters,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, pp. 503–514, 2014.

[10] Keynote in NetCompute18, 2018. [Online]. Available: http://
conferences.sigcomm.org/sigcomm/2018/files/slides/netcomp-
ute/2018–08-20-sigcomm.pdf

[11] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang, “Accelerated
service chaining on a single switch ASIC,” in Proc. 18th ACM
Workshop Hot Top. Netw., 2019, pp. 141–149.

[12] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Oper. Syst. Princ., 2017,
pp. 121–136.

[13] N. Gebara et al., “PANAMA: Network architecture for machine
learning workloads in the cloud,” Tech. Rep., 2020. [Online].
Available: https://people.csail.mit.edu/ghobadi/papers/panama.pdf

[14] X. Jin et al., “Netchain: Scale-free sub-RTT coordination,” in Proc.
15thUSENIXSymp. Netw. Syst. Des. Implementation, 2018, pp. 35–49.

Fig. 12. Switch SRAM usage.

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2581

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/
https://hadoop.apache.org/
http://conferences.sigcomm.org/sigcomm/2018/files/slides/netcompute/2018--08-20-sigcomm.pdf
http://conferences.sigcomm.org/sigcomm/2018/files/slides/netcompute/2018--08-20-sigcomm.pdf
http://conferences.sigcomm.org/sigcomm/2018/files/slides/netcompute/2018--08-20-sigcomm.pdf
https://people.csail.mit.edu/ghobadi/papers/panama.pdf

[15] A. Sapio et al., “Scaling distributed machine learning with in-net-
work aggregation,” 2019, arXiv:1903.06701.

[16] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching
ASICs,” in Proc. Conf. ACM Special Int. Group Data Commun., 2017,
pp. 15–28.

[17] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith,
“Scaling hardware accelerated network monitoring to concurrent
and dynamic queries with* flow,” in Proc. USENIX Conf. USENIX
Annu. Tech. Conf., 2018, pp. 823–835.

[18] P. Bosshart et al., “Forwarding metamorphosis: Fast programma-
ble match-action processing in hardware for SDN,” ACM SIG-
COMM Comput. Commun. Rev., vol. 43, pp. 99–110, 2013.

[19] J. S. Plank, “A tutorial on reed–solomon coding for fault-tolerance
in raid-like systems,” Softw.: Pract. Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[20] HDFS erasure coding, 2018. [Online]. Available: https://hadoop.
apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html

[21] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMMConf., 2010, pp. 63–74.

[22] Intel Intelligent Storage Acceleration Library (Intel ISA-L), 2018.
[Online]. Available: https://software.intel.com/en-us/storage/
ISA-L

[23] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
pp. 87–95, 2014.

[24] Barefoot tofino, 2018. [Online]. Available: https://www.
barefootnetworks.com/technology/#tofino

[25] Cavium xpliant, 2018. [Online]. Available: https://www.marvell.
com/documents/netpxrx94dcdhk8sksbp/?x¼2,2015

[26] H. Giesen et al., “In-network computing to the rescue of faulty
links,” in Proc. Morning Workshop In-Netw. Comput., 2018, pp. 1–6.

[27] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in C/C++ facilitating erasure coding for storage
applications,” Univ. Tennessee, Knoxville, TN, USA, Version 1.2.
Tech. Rep. CS-08–627, 2008.

[28] T. Zhou and C. Tian, “Fast erasure coding for data storage: A com-
prehensive study of the acceleration techniques,” in Proc. USENIX
Conf. File Storage Technol., 2019, pp. 317–329.

[29] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman, “An XOR-based erasure-resilient coding scheme,”
1995.

[30] S. Chole et al., “dRMT: Disaggregated programmable switching,”
in Proc. Conf. ACM Special Int. Group Data Commun., 2017, pp. 1–14.

[31] A. Sivaraman et al., “Packet transactions: High-level programming
for line-rate switches,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 15–28.

[32] T. Jepsen et al., “Fast string searching on PISA,” in Proc. ACM
Symp. SDN Res., 2019, pp. 21–28.

[33] Source Code, 2020. [Online]. Available: https://github.com/
netec-2020/netec

[34] Data Plane Development Kit, 2018. [Online]. Available: https://
www.dpdk.org/

[35] D. Kim et al., “Hyperloop: Group-based NIC-offloading to acceler-
ate replicated transactions in multi-tenant storage systems,” in
Proc. Conf. ACM Special Int. Group Data Commun., 2018, pp. 297–
312.

[36] R. Li, X. Li, P. P. Lee, and Q. Huang, “Repair pipelining for era-
sure-coded storage,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 567–579.

[37] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-
repair (PPR) a distributed technique for repairing erasure
coded storage,” in Proc. 11th Eur. Conf. Comput. Syst., 2016, pp.
1–16.

[38] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchan-
dran, “Having your cake and eating it too: Jointly optimal erasure
codes for I/O, storage, and network-bandwidth,” in Proc. USENIX
Conf. File Storage Technol., 2015, pp. 81–94.

[39] J. Fang, S. Wan, and X. He, “RAFI: Risk-aware failure identifica-
tion to improve the RAS in erasure-coded data centers,” in Proc.
USENIX Annu. Tech. Conf., 2018, pp. 495–506.

[40] X. Li, R. Li, P. P. Lee, and Y. Hu, “OpenEC: Toward unified and
configurable erasure coding management in distributed storage
systems,” in Proc. 17th USENIX Conf. File Storage Technol., 2019,
pp. 331–344.

[41] L. Xu, M. Lyu, Q. Li, L. Xie, and Y. Xu, “SelectiveEC: Selective
reconstruction in erasure-coded storage systems,” in Proc. 12th
USENIXWorkshop Hot Top. Storage File Syst., 2020, Art. no. 8.

[42] Z. Li, M. Lv, Y. Xu, Y. Li, and L. Xu, “D3: Deterministic data distri-
bution for efficient data reconstruction in erasure-coded distrib-
uted storage systems,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2019, pp. 545–556.

[43] L. Xu, M. Lv, Z. Li, C. Li, and Y. Xu, “PDL: A data layout towards
fast failure recovery for erasure-coded distributed storage sys-
tems,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 736–745.

[44] H. Shi and X. Lu, “TriEC: Tripartite graph based erasure coding
NIC offload,” in Proc. Int. Conf. High Perform. Comput. Netw. Stor-
age Anal., 2019, pp. 1–34.

[45] H. Shi and X. Lu, “INEC: Fast and coherent in-network erasure
coding,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2020, pp. 1–17.

[46] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring
withUnivMon,” inProc. ACMSIGCOMMConf., 2016, pp. 101–114.

[47] F. Wang, Y. Tang, Y. Xie, and X. Tang, “XORInc: Optimizing data
repair and update for erasure-coded systems with XOR-based in-
network computation,” in Proc. 35th Symp. Mass Storage Syst. Tech-
nol., 2019, pp. 244–256.

[48] C. Lao et al., “ATP: In-network aggregation for multitenant
learning,” in Proc. 18th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2021, pp. 741–761.

Yi Qiao received the BS degree in computer sci-
ence and technology from Tsinghua University,
Beijing, China. He is currently working toward the
PhD degree in the Institute of Network Science
and Cyberspace, Tsinghua University, Beijing,
China. His research focuses on software-defined
networking, network function virtualization, and
cyber security.

Menghao Zhang (Graduate Student Member,
IEEE) received the BS and PhD degrees in com-
puter science from Tsinghua University, Beijing,
China, in 2016 and 2021, respectively. He is now a
joint postdoctoral with Tsinghua University and
Kuaishou Technology. His research interests in-
clude programmable network, high-performance
network, and network security.

Yu Zhou (Member, IEEE) received the BS degree
from the School of Information and Communica-
tion Engineering, Beijing University of Posts and
Telecommunications, Beijing, China, in 2016. He
is currently working toward the PhD degree in the
Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing, China. His research
interests include software-defined networking and
programmable data planes.

Xiao Kong received the BS degree in computer
science and technology from Nankai University,
Tianjin, China. He is currently working toward the
MS degree in the Institute for Network Science
and Cyberspace, Tsinghua University, Beijing,
China. His research focuses on software-defined
networking, network function virtualization, and
cyber security.

2582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.marvell.com/documents/netpxrx94dcdhk8sksbp/?x=2,2015
https://www.marvell.com/documents/netpxrx94dcdhk8sksbp/?x=2,2015
https://www.marvell.com/documents/netpxrx94dcdhk8sksbp/?x=2,2015
https://github.com/netec-2020/netec
https://github.com/netec-2020/netec
https://www.dpdk.org/
https://www.dpdk.org/

Han Zhang (Member, IEEE) received the BS
degree in computer science and technology from
Jilin University, Changchun, China, and the PhD
degree from Tsinghua University, Beijing, China.
He is now working with the Institute for Network
Sciences and Cyberspace, Tsinghua University.
His research concerns computer network sys-
tems and network security.

Mingwei Xu (Senior Member, IEEE) received the
BS and PhD degrees from Tsinghua University,
Beijing, China. He is currently a full professor with
the Department of Computer Science and Tech-
nology, Tsinghua University. His research inter-
ests include computer network architecture, high-
speed router architecture, and network security.

Jun Bi received the BS, CS, and PhD degrees
from the Department of Computer Science, Tsing-
hua University, Beijing, China. He is currently a
Changjiang Scholar distinguished professor with
Tsinghua University and the director with the Net-
work Architecture Research Division, Institute for
Network Sciences and Cyberspace, Tsinghua Uni-
versity. His current research interests include Inter-
net architecture, SDN/NFV, and network security.

Jilong Wang received the PhD degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 2000. He is
currently a professor with Tsinghua University. His
research focuses on network measurement, loca-
tion-oriented network, SDN systems, and network
security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

QIAO ET AL.: NETEC: ACCELERATING ERASURE CODING RECONSTRUCTION WITH IN-NETWORK AGGREGATION 2583

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 15:20:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

