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Abstract—Ternary Content Addressable Memory (TCAM)
enables fast lookup and is widely used by routers and switches
to support policy-based forwarding. Due to high cost and
small capacity, only a small subset of important rules can be
cached in TCAM, so determining it is critical to increasing
the hit ratio. This is more challenging than traditional caching
problems because of complicated rule dependency relationships.
Existing works are based on heuristics and they don’t work
well under all practical scenarios. Worse still, the lack of
fundamental understanding of the design space, complexity, and
optimality makes all explorations in mystery. In this paper, we
use a modeling-based method to formulate the problem, prove
its complexity, and propose DROPS, a dynamic rule caching
framework with a much higher hit ratio. In particular, we deduce
the rule selection problem into a multi-dimensional rule space
transformation problem. Thus, we are no longer limited by using
the intrinsic rules; rather, we can transform original rules into
“new rules” equivalently without rule dependency. We design
non-trivial rule placement and update algorithms and implement
them in programmable switches. In the experimental evaluation,
we show that our method outperforms all existing methods.

Index Terms—TCAM, rule caching, programmable switches,
software defined networks.

I. INTRODUCTION

THE EMERGING programmable switch allows network
programmers to directly customize data plane algorithms

to implement flexible policy-based packet forwarding at line
rate [1]. Under such a paradigm, the control plane and
the data plane are separated, and a centralized controller is
responsible to control one or multiple switches. The flexibility
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TABLE I
AN EXAMPLE OF RULE TABLE

of programmable switches can be widely applied in many
areas, e.g., congestion control [2], network monitoring [3],
load balancing [4], [5] and encrypted traffic analysis [6].

Efficient storage of rules in programmable switches sig-
nificantly impacts the packet forwarding performance [7]. In
Table I, we show an example of the rule table. Each rule speci-
fies a pattern on multiple fields in the packet header. Typically,
these fields include source and destination IP address, source,
and destination port number, and protocol type. The rule’s
pattern specifies which packets match the rule. A special case
here is that pattern fields of different rules might overlap. Let
us take rules r1 and r2 for example. Their pattern fields are
011* and 01**, respectively, and they do have an overlap.
Imagine that a packet whose header is 0110. It matches both
r1 and r2. In such a case, the switch will select the rule
with the highest priority (in this case, r1) to perform the
corresponding action.

To support more fine-grained and flexible forwarding poli-
cies in real-world scenarios (e.g., traffic classification [8], [9],
anomaly detection [10], [11], and attack mitigation [12]),
we would like to store as many rules as possible in the
Ternary Content Addressable Memory (TCAM) [13] of the
programmable switch. As modern network services increase
in size and complexity, the switches need to support 100K
rules or more [14], which exceeds the capacity of existing
switches significantly. Facing this challenge, the collaboration
between a switch and the slow path (e.g., a server) has become
a promising research direction [7], [15], [16], [17]. Today,
TCAM is used as a cache to store only part of the rules, while
the whole set of rules is stored in the slow path [15]. For an
incoming packet, the switch will try to match it in TCAM first;
if it fails, the switch will send the packet to the slow path. This
guarantees that every packet will match the correct rule. The
slow path processes packets by software with a large capacity,
incurring low power consumption but slow matching speed.
Existing studies [18], [19] show that patterns of flows often
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satisfy Zipf distribution. Therefore, if we can properly store a
few “hot” rules which can cover a large portion of the flows
in TCAM, the “hit ratio” of TCAM for rule lookup should be
high enough and then the overall forwarding performance is
still satisfactory.

Naturally, a key question is how to determine the “hot rules”
to store in TCAM. At first glance, this might seem a trivial
optimization problem, however, a number of specific features
make it very challenging. To name a few:
• Rule dependency problem. Directly selecting hot rules

may result in incorrect forwarding. Let us recall the
packet with header 0110 that we mentioned before. If
we only place r2 in TCAM, the packet will be matched
to r2 without a further lookup in the slow path; however,
it should be matched to r1. This indicates that if we store
a low-priority rule r in TCAM, then we will have to
store many higher-priority rules (which might be “cold”)
whose match field has an overlap with r. We call this
issue the “rule dependency problem”.

• Traffic dynamics. Intuitively, we want to store the popular
rules in TCAM. Note that traffic can be highly dynamic
and the popularity of rules varies over time. Thus,
dynamic update to TCAM entries is essential. However,
the rule update in TCAM is slow [20], [21], so we need
to design a dedicated online update algorithm.

The community has realized the importance of better uti-
lization of TCAM, and improvement algorithms [7], [15], [22]
have been recently proposed. However, they are heuristic
approaches with vague physical meanings, and they do not
work well under all practical scenarios. A critical missing
piece of understanding is that we do not fundamentally
understand the design space of our problem. For example, we
are unaware of what the fine-grained rules really mean, how
we can capture their dependency, and how we can use a subset
of rules to represent a critical region of the space.

As we mentioned before, the set of fine-grained rules is
generated by different applications and they can be arbitrary. In
fact, this set is not necessarily the only option to represent our
rule space. It does not make sense to totally rely on raw input
to decide the rules placed in TCAM. Let us still consider the
example in Table I. Let’s assume under our flow distribution,
rule r3 has a very high hit ratio while r1 and r2 are rarely
hit. If we decide to store r3 in TCAM, we will have to store
r1 and r2 in TCAM due to the rule dependency. However,
we can remove the rule dependency based on the equivalent
transformation of rules. We show the transformed patterns of
rules r1, r2, and r3 below. There won’t be any dependency
on r3, so we can safely save r3 in TCAM. This way, a large
portion of incoming packets will still correctly find a match
in TCAM, yet we save a large amount of TCAM capacity.

In the above example, we somehow “magically” removed
the rule dependency based on the transformed rules from the

raw inputs r1, r2, and r3. However, in reality, transforming
the original rules into rules without rule dependency is non-
trivial. In order to systematically achieve such efficiency
by transforming original rules, the fundamental is really to
understand our rule space and choose the best representation
of rules; only via this way can we not rely on any specific
input format, but choose the best entries for TCAM. Realizing
the lack of these fundamental understandings, In this work, we
utilize a rigorous modeling approach to tackle the problem. We
formally formulate the problem as a mathematical framework,
which helps us fully understand the design space by deducing
it to the space transformation problem. Then we prove that
the problem is NP-hard. Furthermore, we design a series of
algorithms that adaptively generate independent rules based on
traffic distribution.

The contributions of our work are three-fold:
• Formulation: We represent the rule space as a non-

standard multi-dimensional space, and TCAM rule
selection is a rule space transformation problem over this
space. We then prove its NP-hardness.

• Algorithm designs: We propose DROPS (dynamic rule
caching for programmable switches), which generates
independent rules for dynamic rule caching based on
clear physical meanings of rule caching. DROPS is
based on flow-aware decision trees that make full use of
global information (i.e., traffic distribution) of packages
to further improve the hit ratio.

• Implementation & evaluation: We prototype DROPS
with Barefoot Tofino switches EdgeCore Wedge 100BF-
32X. Evaluations based on both simulations and
real-world experiments demonstrate that our method sig-
nificantly outperforms all existing approaches.

We would like to emphasize that this research not only
shows a near-optimal solution to programmable switches but
more importantly, it provides an important framework and
insights to understand caching problems with dependency
constraints.

The rest of this paper is organized as follows. Section II
states our problem, constraints, and challenges. Section III
formulates the problem in the mathematical framework and
conducts an in-depth theoretical analysis. Section IV proposes
the designs of DROPS. Section V presents evaluation results
by simulations and experiments. Section VI states related work
and Section VII concludes.

II. PROBLEM STATEMENT

In this section, we formally define the cache rule placement
and update problem. We also state the rule dependency
constraint and the TCAM insertion/update challenges.

A. Rule Placement and Update

For each rule, the number of matching packets in a specific
time window can be counted. Let N denote the number
of rules, and C denote the number of rules that can be
placed in TCAM. The problem we will address is to select
C rules out of the N rules to be placed in TCAM, such
that the total number of matching packets of the TCAM
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Fig. 1. Rule dependency graph of Table I.

is maximized during a particular time window. There are a
couple of constraints/challenges when we solve the above
problem which we will state below.

B. Rule Dependency

One of the most important constraints is rule dependency.
We have shown a simple case in Table I, where rules r1 and r2
have an overlap and a packet is possible to match both rules.
In case that happens, the packet needs to be matched with
r1 since it has a higher priority. Formally, we say that a rule
r1 “depends on” r2 if they have an overlap in the rule space
and r1 has a higher priority than r2. We can construct the
rule dependency graph [15] to represent such a relationship.
In Figure 1, we show the rule dependency graph of Table I
where a node represents a rule, and a directed edge captures
a direct dependency between a pair of rules. The value of an
edge is a set of flows that both nodes can match.

The set of the rules that depend on a given rule r is called the
dependent-set of r [15]. As shown in Figure 1, the dependent
set of r3 contains r1 and r2. Formally, the constraint we have
in TCAM rule placement is: if a rule r is placed in TCAM,
then all rules in the dependent set of r need to be placed in
TCAM as well. A simple method of “inserting all rules in the
dependent set when placing a rule in TCAM” will induce a
huge space overhead. For example, according to our empirical
study of the Equinix datacenter routing table and the CAIDA
traffic trace collected from the Equinix datacenter on March
15, 2018 [23], we find that, for the top 10K popular rules, the
average number of dependent rules associated with each rule
is about 143.

C. TCAM Insertion and Update

The rule placement in TCAM oftentimes is not a one-time
setting. Rather, the flow distribution changes dynamically over
time, therefore, the “popular” rules also change. A measure-
ment in [7] shows that the rules generated by ClassBench [24]
are cached in TCAM with a hit ratio of 87%, however, it
drops to 48% after one hour. This requires us to dynamically
update the rules in TCAM according to the change in flow
distribution.

However, inserting/updating a rule in TCAM is often very
expensive, as it might change the relative priorities of the
rules in TCAM.1 Therefore, there is a difficult trade-off in

1This is determined by the TCAM memory management feature. A TCAM
query does a parallel search and returns the first position of the rules that match
a given entry. As rules may have dependency relationships, it is therefore
mandatory to store higher-priority rules in the rule set before lower-priority
ones. In order to maintain the order of rule priority in TCAM, it takes a lot
of time to move the entries. A measurement in [25] shows that inserting a
single ACL rule for a 1K rule set generated by ClassBench [24] requires up
to 466 rule moves, resulting in a huge time overhead.

TABLE II
MAJOR NOTATIONS USED IN THE PAPER

keeping real-time popular rules in TCAM vs. keeping the
TCAM stable, and our problem becomes designing a dynamic
TCAM cache management scheme that achieves a high hit
ratio and low update cost simultaneously.

In summary, the challenging problem we are facing is
to design an efficient dynamic cache mechanism, which
selects a subset of rules to put into TCAM from all
rules, and adjusts the selection in real-time according to
flow popularity dynamics, subject to rule dependency con-
straints, so as to maximize the hit ratio of TCAM and
minimize the overhead of rule insertion/update. In the next
section, we will formulate this problem using a mathematical
framework.

III. PROBLEM FORMULATION

In this section, we formulate mathematical frameworks
to characterize the TCAM rule placement and update the
problem. We first formulate the problem as an optimization.
Then we demonstrate that the rule space can be represented
as a non-standard multi-dimensional space and TCAM rule
selection as a rule space transformation problem over this
space. We further reduce the rectilinear picture compression
problem [26], a known NP-Complete problem, into this
problem, to prove its NP-hardness. In Table II, we summarize
the major notations in this paper.

A. Rule Caching: An Initial Model

Let us start by considering the simplest case. We want to
choose C rules out of the N rules in a rule set, such that for any
incoming packet, we have the highest probability of finding
its matched rule in the TCAM entries rather than the backend
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storage, or in other words, to achieve the maximal “hit-
ratio.”2 Note that the flow distribution is dynamic, let us first
consider achieving the maximum hit ratio for a particular time
window.

We consider a list of rules r1, r2, . . . , rN . Let f1, f2, . . . , fM
denote the M flows in the current time window. Let S denote
the rule set placed in TCAM at the end of the last time window,
and R and A denote the rule set deleted from TCAM, and
selected to be inserted in the current time window, respectively.
In the stage of cache initialization, set S and set R are both
empty. Obviously, the number of deleted rules cannot exceed
the number of existing rules in TCAM. After the rule update,
the number of rules in TCAM cannot exceed the TCAM
capacity C. Therefore, we have:

|R| ≤ |S|, (1)

|(S −R) ∪ A| ≤ C . (2)

Now we consider rule dependency. If a rule r is placed in
TCAM, all rules in the dependent set of rule r should also
be placed in TCAM. Let Di denotes the dependent-set of
rule i. The following formula represents the rule dependency
constraint:

x ∈ (S −R) ∪ A, ∀x ∈ Dy and y ∈ (S −R) ∪ A. (3)

Let FS , Pi denote the flow set that rule set S can match, and
the number of packets associated with flow i, respectively. The
objective is to maximize the number of packets in the current
time window that can be covered by the flow set represented
by the selected rule set in TCAM. Then the rule placement
and update problem can be formulated as follows:

max
∑

i

Pi · I
(
fi ∈ F(S−R)∪A

)
, (4)

s.t. |R| ≤ |S|, (5)

|(S −R) ∪ A| ≤ C , (6)

x ∈ (S −R) ∪ A, ∀x ∈ Dy and y ∈ (S −R) ∪ A,

(7)

where I(·) is an indicator function.
Up till now, we have formally formulated our caching

problem in mathematical forms. One challenge that we face
under this formulation, is the huge overhead caused by rule
dependency and TCAM insertion and update. To overcome this
difficulty, imagine that now we are sure each rule is indepen-
dent of the other. In such a scenario our problem can be greatly
simplified since we can remove all dependency constraints.
So the next question is, can we do some transformation on
the original set of rule inputs, such that we can work on an
“equivalent” set of other rules which are independent of each
other?

B. Independent Rule Set Generation

Now we generate independent rules to remove all depen-
dency constraints and realize rule placement according to

2“Hit-ratio” denotes the ratio of the number of packets matched in TCAM
to the total packets.

Algorithm 1: Independent Rule Set Generation
Input:
O: the original rule set

Output:
N : the new rule set with independent rules

1 Procedures:
2 N ← ∅
3 for r1 ∈ O do
4 Φ← Calculate all sub-rules of r1
5 for r2 ∈ Φ do
6 if r2 overlaps with rules in Dr1 then
7 Φ← Φ− r2

8 N ← N +Φ

9 return N

independent rules. Let O denote the original rule set, and
N denote a new rule set with independent rules that are
independent of each other. We utilize an independent rule
generation algorithm to transform rule set O into the rule
set N . The pseudo-code of the independent rule set generation
is shown in Algorithm 1. We generate sub-rules based on the
rule r in the original rule set. For example, based on rule
with pattern 10**, we can generate all sub-rules with pattern
10**, 100*, 101*, 1000, 1001, 1010 and 1011. The
sub-rules of rule r have the same forwarding actions as the
rule r. Then we delete sub-rules that overlap with the rules
in the dependent set of r. Finally, the remaining sub-rules are
added to the rule set N .

The sub-rules in the rule set N are defined as independent
rules because they do not overlap with higher priority rules.
By replacing the original rule set O with the independent rule
set N , we can remove constraint (7). Now we can have the
following formulation:

max
∑

i

Pi · I
(
fi ∈ F(S−R)∪A

)
, (8)

s.t. |R| ≤ |S|, (9)

|(S −R) ∪ A| ≤ C . (10)

Note that, a rule set will generate a large number of inde-
pendent rules. We can only select and place a small part of the
independent rules in TCAM. However, it is still not clear how
we can choose independent rules according to the problem
above. Therefore, we will continue transforming the problem
to another equivalent form and deepen our understanding of
multi-dimensional space.

C. Problem Transformation

Now we can transform rule caching into independent rule
caching. Different from the original rule set O, the size
of the independent rule set N increases exponentially. We
can achieve correct forwarding based on a small number
of independent rules. However, it is difficult to determine
which independent rules are selected due to the complicated
representation of rules. We analyze the design space in a
graphical way.

Figure 2 shows the example of transforming the problem.
The fields in the packet header (e.g., source and destination IP
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Fig. 2. Example of problem transformation.

addresses, source, and destination port numbers, and protocol
numbers) represent the dimensions in the geometric space.
A packet is represented as a point in this space, and a rule
is a hyper-cube. Therefore, we can transform the original
problem into the rule space transformation problem in the
multi-dimensional space. For simplicity but without loss of
generality, we consider 4-bit patterns and 2-tuple rules in this
paper.

As shown in Figure 2(b), each rule with two 4-bit patterns
can be converted into a 2-tuple line in the two-dimensional
space. Therefore, rules can be transformed into rectangles in
space. For example, rule r1 with patterns 10** and 1***
can be transformed into a rectangle of size 4 × 8, because
r1 is from 1000 to 1011 in F1 dimension, and from 1000
to 1111 in F2 dimension. The priority of the rule determines
the coverage of the intersection of the rectangle. When two
rectangles intersect, the rectangle with higher priority will
cover the intersection. In this case, a flow can be imagined as
a point in the two-dimensional space occupied by its highest
priority matching rule. In the flow table in Figure 2(a), the
weight of a point represents the number of packets associated
with a flow. For example, flow f2 contains 50 packets in the
current window.

Figure 2(b) shows an example of multi-dimensional rule
space transformation. The original rule space can be trans-
formed into an independent rule space. Thus, rule selection
for TCAM is simplified into selecting top C independent rules
with the largest sum of weights of points covered, where C is
the number of rules that can be placed in TCAM. For example,
instead of directly selecting four rules in the original rule space
to cover three points associated with flow f1, f2, and f3, we
can select two rules r5 and r7 in the transformed rule space,
which saves a large amount of TCAM capacity. In particular,
different from the packet classification problem that is solved
by rule space dividing, our paper aims to efficiently realize
dynamic rule caching by removing rule dependency among
rules. Thus, the packet classification methods [27], [28], [29]
cannot be applied to our problem.

Fig. 3. Example of theoretical analysis.

Given a list of independent hypercubes c1, c2, . . . , cT
associated with independent rules in the multi-dimensional
space, let p1, p2, . . . , pM denote the M points corresponding
to the flows appearing in the current time window. There
are three independent hypercube sets B, I and E . Set B, E
represent the independent hypercube set selected in the last
time window, and newly selected ones in the current time
window, respectively. Set I represents the set of independent
hypercubes in B that are unselected in the current time
window. Let HB, Wi denote the points that independent
hypercube set B can cover in the multi-dimensional space, and
the weight of point i, respectively.

Obviously, c, p, B, I, E , H and W in this problem
correspond to s, f, S , R, A, F and P in the original problem
respectively. Now we can formalize the multi-dimensional
space point coverage problem:

max
∑

i

Wi · I
(
pi ∈ H(B−I)∪E

)
, (11)

s.t. |I| ≤ |B|, (12)

|(B − I) ∪ E| ≤ C . (13)

Our objective is to maximize the sum of the weights of
points covered by independent hypercubes. We can traverse
each point in the multi-dimensional space to count the sum of
weights of points covered by independent hypercubes.

D. Theoretical Analysis

We now analyze the computational complexity of the
independent rule space transformation problem in the multi-
dimensional space. We can divide the multi-dimensional
space into multiple subspaces along the boundaries of each
hypercube, such that the hypercube division in each subspace
does not affect each other. These subspaces are called isolated
blocks. Figure 3(a) shows the isolated blocks of Figure 2(b).
The isolated blocks do not cross each other, and obviously,
each independent hypercube only appears in one isolated
block. Let us use Λ(k ,B ,C ) to represent the problem of
selecting C independent hypercubes associated with indepen-
dent rules in the transformed space from B isolated blocks in
the k-dimensional space, which aims to maximize the sum of
weights of the number of covered points. We can have the
following theorem.

Lemma 1: Problem Λ(2, 1,C ) is an NP-Hard problem.
Proof: This can be proved by reducing the rectilinear picture

compression problem [26], a known NP-Complete problem,
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to problem Λ(2, 1,C ). Given a positive integer C and a
matrix with values being either 0 or 1, the rectilinear picture
compression problem is whether we can find C or fewer
rectangles to only cover all units with the value being 1.
As shown in Figure 3(b), for an instance of a rectilinear
picture compression problem, now we start to construct the
instance of problem Λ(2, 1,C ). First, we delete all units with
the value being 0. Then we can transform the instance into
an isolated block in the two-dimensional space. Finally, we
convert each unit with the value being 1 in the instance of
the original problem to a point with weight being 1 in the
instance of problem Λ(2, 1,C ). Obviously, we can complete
the construction of the instance of problem Λ(2, 1,C ) in
polynomial time. Now we prove the equivalence of these two
instances. Problem Λ(2, 1,C ) aims to find a solution that
selects C or fewer rectangles that cover the most points in
the space (i.e., maximize the sum of weights of the covered
point). If a solution of the instance of problem Λ(2, 1,C )
can cover all points, then the rectilinear picture compression
problem has a corresponding solution that only can cover all
units with a value being 1, or it does not have a solution
otherwise. For a solution of the instance of the rectilinear
picture compression problem, there is a corresponding solution
that can cover all points of the instance of problem Λ(2, 1,C ).
Therefore, we can reduce the rectilinear picture compression
problem to problem Λ(2, 1,C ). Since the rectilinear picture
compression problem is NP-Complete, problem Λ(2, 1,C ) is
NP-Hard.

Theorem 1: Problem Λ(k ,B ,C ) is an NP-Hard problem.
Proof: We can prove it by contradiction. Assume problem

Λ(k ,B ,C ) is not an NP-hard problem, there will be a solution
for problem Λ(k ,B ,C ) with the polynomial time complexity.
Since problem Λ(2, 1,C ) is a case of problem Λ(k ,B ,C ),
there must be a solution with the polynomial time complexity
for problem Λ(2, 1,C ). However, according to Lemma 1,
problem Λ(2, 1,C ) is an NP-Hard problem, which contradicts
the assumption.

According to Theorem 1, we know that problem Λ(k ,B ,C )
is NP-hard. Therefore, we design an efficient algorithm based
on clear physical meanings of rule caching to solve this
problem.

IV. DROPS DESIGN

In this section, we propose DROPS (dynamic rule
caching for programmable switches), a dynamic rule caching
framework that realizes efficient rule placement under rule
dependency constraints for programmable switches.

A. Overview of DROPS

According to the analysis in Section III-D, in order to
realize efficient rule caching in TCAM, we need to transform
the original rule space into the independent rule space, and
then select the top C independent hypercubes associated with
independent rules with the largest sum of weights of covered
points for TCAM, where C is the number of rules that can be
placed in TCAM. Note that the weight and spatial distribution

Fig. 4. The framework of DROPS.

of points are dynamically changing because the flow distribu-
tion is dynamic. Therefore, the transformation of rule space
needs to update dynamically with the flow distribution. To
efficiently cache independent rules, we first build a flow-aware
decision tree to reduce rule dependency by dividing rule space.
Meanwhile, the tree can capture the current flow distribution
and further transform the rule space into the independent
rule space according to the flow distribution. By selecting the
top C independent rules generated by the tree with the largest
sum of weights for the covered points, we solve the original
optimization problem in Section III.

Figure 4 shows the framework of DROPS, which consists
of three main modules. The dividing rule space module builds
a flow-aware decision tree to divide the multidimensional
space corresponding to the rule set to reduce rule dependency.
Based on the flow-aware decision tree built by the dividing
rule space module, the dynamic independent rules generation
module captures the distribution of flow in the slow path,
and generates independent rules for TCAM according to the
number of removed rules in the TCAM monitored by cold
rule monitor module. The rule lookup module enables fast
rule matching to forward the packets in the slow path if these
rules cannot be cached in the fast path. Note that, the fast path
means that packets are processed by the dedicated high-speed
hardware switch with TCAM, and the slow path indicates that
the packets are processed by software switches.

The dividing rule space module divides the
multidimensional space corresponding to the rule set by
utilizing the flow-aware decision tree. Note that, the pattern
of a rule (e.g., source and destination IP address prefixes)
represents the dimension in the geometric spaces of the
packet header and thus we can use a hypercube in this
multi-dimensional space to represent the rule. Thus, we can
transform the rule space by dividing the rule space so that we
reduce the number of rule dependency relationships. Different
from packet classification schemes [27], [28], [29] built upon
a decision tree, our flow-aware decision tree transforms the
rule space with heavy rule dependency to that with reduced
rule dependency, and generates independent rules according
to the current flow distribution, which cannot be achieved by
packet classification schemes.

The dynamic independent rules generation module captures
flow distribution and generates independent rules associated
with each subspace in the leaf node of the tree instead of all
rule space. Due to the locality of flow distribution, we only
need to select a small number of leaf nodes (i.e., rule subspace)
to generate independent rules. It assigns higher priorities to the
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Fig. 5. The example of rule space division.

leaf node if the corresponding space contains the points with
a large sum of weights. Thus, we can generate independent
rules based on flow distribution. Since there does not exist rule
dependency in independent rules, the insertion and update of
rules in TCAM will not incur significant movement of TCAM
entries. Therefore, DROPS can efficiently generate and place
independent rules for TCAM.

Meanwhile, the rule lookup module lookups at the decision
tree and identifies the correct rule in leaf nodes if the
corresponding rule is not cached in TCAM. Thus, we can
enable fast rule matching for packet forwarding in the slow
path.

B. Dividing Rule Space

We build a flow-aware decision tree to reduce rule depen-
dency by dividing rule space, in which each node is associated
with a subspace of multi-dimensional space corresponding to
the rule set. In Section III-C, we have shown that a pattern
of a rule (e.g., source and destination IP address prefixes)
represents a dimension in the geometric space associated
with the packet header. According to one value in a certain
dimension, we can divide the multi-dimensional space into
two non-overlapping subspaces, which can further be divided.
For example, as shown in Figure 5(a), we can divide a
two-dimensional space based on the rule set in Figure 2(a),
and the space dividing lines (i.e., dashed lines in the figure)
can effectively divide the space.

The dividing rule space module in DROPS only considers
the boundaries of the hypercubes corresponding to the rules
as the space dividing lines. Let us take a rule r with pattern
fields 10** and 1*** as an example. The upper of the
hypercube corresponding to rule r in the first and second
dimensions are 1011 and 1111, respectively, while the lower
boundaries in the first and second dimensions are both 1000.
Note that, we need to build a balanced decision tree since
the balanced tree with the smaller maximum depth has better
lookup performance [30]. To achieve this, DROPS divides the
rule space by selecting the boundary that can evenly divide
rules.

Figure 5(b) shows an example of the rule space dividing
process. First, we divide the entire rule space, which represents
the root of a tree, into two subspaces along the boundary of
the rule r1 on the dimension F1. It leads to the creation of two
children. If a rule intersects a child’s subspace, it is added to
that child. For example, rules r2, r3 and r4 intersect in the first
subspace (i.e., the first half in this space), and thus they are all
added to the first root’s child. If a rule intersects in multiple

Algorithm 2: Dividing Rule Spaces
Input:
O: the rule set
H : the height of decision tree
L: maximum number of rules associated with leaf nodes

Output:
Γ: the flow-aware decision tree

1 Procedures:
2 Function BuildTree(Γ,O,H ,L):
3 if |O| ≤ L or Γ.h ≥ H then
4 return
5 end
6 n ← Number of dimensions of the rule space
7 S1,S2 ← ∅
8 for i ∈ [1,n] do
9 N1,N2 ← Divide the rule set evenly on the dimension i

10 if ||N1| − |N2|| < ||S1| − |S2|| then
11 S1,S2 ← N1,N2
12 end
13 end
14 Γ.lchild ← NewTreeNode(S1)
15 Γ.rchild ← NewTreeNode(S2)
16 BuildTree(Γ.lchild , S1, H, L)
17 BuildTree(Γ.rchild , S2, H, L)
18 Function Main:
19 Γ← NewTreeNode()
20 BuildTree(Γ,O,H ,L)
21 return Γ

subspaces, it is added to each corresponding child, e.g., rule r3
is added to the first and second children. We repeatedly divide
each subspace until the number of rules does not exceed L or
the depth of the tree reaches H.

The pseudo-code of the rule space division algorithm is
shown in Algorithm 2. For a given rule set O, the algorithm
outputs the flow-aware decision tree representing the division
result of the corresponding multi-dimensional space associated
with the rules in rule set O. We utilize a recursive tree-building
algorithm to divide the space. Given a node Γ, we search all
dimensions and calculate division values, i.e., the boundary
that divides rules evenly in each dimension. Then we select
the dimension d if there exists the smallest difference in the
number of rules associated with child nodes after division in d.
Finally, we divide node Γ based on the boundary value of rule
r in dimension d, and recursively divide the child nodes until
the number of rules does not exceed L or the node’s depth
reaches H. Therefore, for a node with a depth of H, the number
of rules associated with it may exceed L. DROPS constraints
the tree depth to ensure real-time lookup performance. We
analyze the impact of parameters L and H in Section V-B.

DROPS can adapt to rule changes and enable real-time rule
updates. Specifically, when a rule changes, DROPS locates
the smallest tree node containing the change and incrementally
updates the subtree corresponding to the node. Leveraging the
advantages of the balanced tree, the rule space division of
DROPS is efficient and can be performed real-time.

C. Independent Rule Generation for Rule Caching in TCAM

Since the flow distribution changes over time, we need
to dynamically update rules in TCAM. Therefore, we peri-
odically generate new independent rules that can be placed
in TCAM according to the flow-aware decision tree in each
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Fig. 6. The example of independent rule generation.

time window. The cold rule monitor module identifies and
removes cold rules in TCAM according to the number of flows
associated with the rules during each time window, and the
dynamic independent rules generation module generates the
same number of independent rules to that of the removed cold
rules. Note that, similar to [7], [31], [32], we utilize a hash
table-based cold rule monitor module to count the hits of rules
in TCAM during each time window.

Let λ denote the number of new independent rules to be gen-
erated based on the flow distribution in the last time window.
The flow distribution in the time window can be converted into
multiple points in the multi-dimensional space. Thus, we can
easily count the sum of weights of points associated with each
subspace of the leaf node in the flow-aware decision tree. Due
to the locality of the flow distribution [33], a small number
of leaf nodes always contain most packets, i.e., the sum of
weights of points. To generate λ independent rules, we select
the top C leaf nodes with the largest sum of weights of points
in the flow-aware decision tree. Note that DROPS generates
independent rules based on the traffic that did not hit the cache.
Therefore, the newly generated independent rules by DROPS
are different from the cached rules.

We define the hot flow subspace as the subspace associated
with the leaf node with the maximum sum of weights of points.
To fast locate the hot flow subspace, each node Γ in the flow-
aware decision tree is associated with an integer σ:

Γ.σ =

{∑
i Wi · I (pi ∈ Γ) Γ is a leaf node,

max (Γ.lchild .σ,Γ.rchild .σ) else.

(14)

Note that, if Γ is a leaf node, the value of the associated σ is
the sum of weights of points in Γ. Otherwise, the value of σ
is the largest σ in the children of Γ.

Figure 6 shows an example of independent rule generation.
We start from the root node of the flow-aware decision tree
and search recursively along the child node with the largest σ,
which allows us to quickly locate the hot flow subspace and
generate the corresponding independent rule. We reset the σ
of the leaf node to 0 and update the corresponding nodes
according to Equation (14).

The pseudo-code of the independent rule generation algo-
rithm is presented in Algorithm 3. For the flow set F in the
slow path in a time window, we count the number of packets
(i.e., the sum of weights of points) associated with each leaf
node in the decision tree (the function LeafNodeLocate is given

Algorithm 3: Independent Rule Generation
Input:
Γ: the flow-aware decision tree
λ: the number of independent rules that need to be generated
F : the flow set in a time window

Output:
U : the generated independent rule set

1 Procedures:
2 Function GenerateRule(Γ):
3 if Γ is a leaf node then
4 r ← CalIndependentRule(Γ)
5 Γ.σ ← 0
6 return r
7 end
8 Γ.σ ← 0
9 if Γ.lchild .σ < Γ.rchild .σ then

10 r ← GenerateRule(Γ.lchild)
11 else
12 r ← GenerateRule(Γ.rchild)
13 end
14 Γ.σ ← max(Γ.lchild .σ,Γ.rchild .σ)
15 return r
16 Function Main:
17 U ← ∅
18 for f ∈ F do
19 LeafNodeLocate(Γ, f )// Update the leaf node

containing f
20 end
21 for i ∈ [0, λ− 1] do
22 U ← U + GenerateRule(Γ)
23 end
24 return U

Algorithm 4: Rule Lookup in Slow Path
Input:
Γ: the decision tree
p: the packet

Output:
r : the matched rule

1 Procedures:
2 Function LeafNodeLocate(Γ, p):
3 if Γ is a leaf node then
4 Γ.σ ← Γ.σ + 1
5 r ← locate the matched rule
6 return r
7 end
8 if p in Γ.lchild .ranges then
9 r ← LeafNodeLocate(Γ.lchild , p)

10 else
11 r ← LeafNodeLocate(Γ.rchild , p)
12 end
13 Γ.σ ← max(Γ.lchild .σ,Γ.rchild .σ)
14 return r

in Algorithm 4), and then update the value σ of all the non-
leaf node. We utilize the independent rule generation function
λ times to generate λ independent rules since we removed λ
rules in TCAM and we can insert λ new independent rules
in TCAM. To achieve this, we locate the hot flow subspace
by recursively searching the child node with maximum σ and
calculate the independent rule associated with the hot flow
subspace. Especially, for the leaf node with more than one rule,
we calculate the independent rule associated with the largest
subspace based on the point with the largest weight in the hot
flow subspace. The greedy strategy of DROPS cannot achieve
optimal independent rule generation but ensures the real-time
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TABLE III
THE RULE SET AND TRACES IN EXPERIMENT

generation of independent rules. Finally, we set the value of
σ in the leaf node associated with the hot flow subspace to 0.

D. Rule Lookup in Slow Path

Now we design a rule lookup algorithm to realize fast packet
forwarding in the slow path. For an incoming packet, TCAM
will be looked up for rule matching. If the packet does not
match the rules in the TCAM, it will be processed by the
rule lookup module to match rules based on the flow-aware
decision tree. Since all rules in the rule set are stored in the
decision tree, packets can always match the correct rule. Based
on our analysis in Section III-C, a packet is represented as a
point in the rule space. Therefore, the rule lookup in the slow
path is equivalent to locating the point in the rule space. Note
that, since the decision tree is a balanced structure, the lookup
module can quickly locate the leaf node containing the point
from the tree. Thus, it performs efficient packet classification
according to the rule corresponding to the located leaf node.

The pseudo-code of the locating leaf node algorithm is
shown in Algorithm 4. For each packet f in F , we recur-
sively traverse the tree from the root node to locate a leaf
node. According to the rule space division algorithm (see
Section IV-B), we locate a point associated with the packet
header of f in the multi-dimensional space associated with the
current node Γ and use the corresponding value of the point
in the division dimension of node Γ to locate the next child
node. We can repeatedly look up the nodes in different division
dimensions until we can identify a leaf node. Therefore, we
can quickly match the rules corresponding to the fields in the
packet header of each packet.

V. EVALUATION

In this section, we evaluate DROPS in comparison with
existing schemes through simulations. Moreover, we prototype
our framework in a hardware programmable switch and use a
real testbed built upon the hardware switches to demonstrate
the effectiveness and performance of our framework.

A. Experimental Setup

Implementation. We first compare DROPS with existing
schemes through software simulation, including dependent-set
(DS) and cover-set (CS) based method of CacheFlow [15],
which is designed with a greedy algorithm based on rule
dependence, and isolate rule (IR) based method of T-Cache [7],
which calculates isolate-rule for each individual hot flow to
eliminate rule dependence. For DROPS, we set the height
of the flow-aware decision tree H to 30 and the maximum
number of rules associated with the leaf nodes L to 3. We

implement them using Python. In particular, we use 2000 LoCs
to implement DROPS. Moreover, we implement simulators
on the commercial cloud server with Ubuntu 20.04.1-LTS
operating system to run all these methods.

We prototype DROPS and the existing schemes in
a programmable 32 × 100 Gbps switch EdgeCore
Wedge100BF-32X. We use the P4-16 language to implement
packet processing and forwarding, and we set the matching
type to ternary to ensure that the lookup table is handled by
TCAM. By setting the default matching action to the CPU
port, the unmatched packets will be punted to the slow path.
In particular, the independent rules generated by DROPS are
assigned the same priority value.

Datasets. We show the rule set and packet traces used in our
experiments in Table III. We use four rule sets in experiments.
The Equinix datacenter routing table [23] includes 709K IP
prefixes. The CAIDA traffic traces were collected from an OC-
192 backbone link of a Tier 1 ISP at Equinix datacenter on
March 15, 2018 from 13:00 to 13:30 UTC. We use 1-minute
window traffic with 87 million packets and 30-minutes window
traffic with 2 billion packets for static and dynamic exper-
iments, respectively. We utilize the standard benchmark of
ClassBench [24] to generate various types of rule sets, which
is widely used [7], [28], [29], [34]. We generate two types of
rule sets, i.e., Access Control List (ACL), and Firewall (FW)
datasets, each of which is consistent with the real-world rule
sets. Meanwhile, we obtain a rule set of Forwarding (FWD),
which is the real routing table from a real-world Cisco router
configuration on a Stanford backbone network [35]. FWD has
around 180K rules that are used to forward packets according
to destination IP addresses. For the above three rule sets,
we use ClassBench to generate corresponding packet traces,
in which the flow volume associated with each rule follows
the Zipf distribution. We replay these traces to measure the
performance.

B. Simulation Results

Cache Hit Ratios without Rule Update. Suppose the traffic
information is known in advance. We measure the best-case
cache hit ratio of four schemes on four rule sets. Figure 7
shows the TCAM hit ratio on four rule sets. Figure 7(a) shows
the cache hit ratios on the rule set of Equinix. When the
size of TCAM is 100, DS, CS, IR and DROPS achieve
37.69%, 37.80%, 52.20%, 62.55% hit ratio, respectively. We
observe that the hit ratio of DS and CS are significantly lower
than IR and DROPS, because DS and CS retain the rule
dependency, which causes a large number of cold rules to
be cached in TCAM. Figure 7(b) shows the cache hit ratio
on the rule set of FWD. In this case, DROPS significantly
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Fig. 7. Comparison of cache hit ratio in the absence of rule update.

Fig. 8. Evaluation of caching delays and hit ratios with rule updates.

outperforms other methods, because DS, CS, IR ignore the
spatial locality of traffic while DROPS can accurately identify
the hot flow subspaces and generate independent rules with
a high hit ratio. For example, when the TCAM size is 2000,
DS, CS, and IR achieve only 60.85%, 64.18% and 63.08%
TCAM hit ratio, respectively, while DROPS can achieve a hit
ratio more than 77.99%. Thus, DROPS achieves the highest
hit ratio. Note that, since IR does not consider the overall
flow distribution and only generates independent rules based
on a single flow heuristically, the achieved hit ratio is lower.
Figure 7(c) shows the cache hit ratio on the multi-field rule
table, i.e., ACL. In this case, our scheme outperforms DS, CS,
and IR even though the TCAM hit ratio of DROPS is close to
other methods due to the high locality of traces with 10 million
packets and only 61K flow. When the TCAM size is 2000,
all methods achieve hit ratios of more than 93%. Similarly, as
shown in Figure 7(d), DROPS and IR can achieve hit ratios of
more than 83% on the rule set of FW with TCAM capacity 2k.
Due to strong dependency, DS and CS only achieve hit ratios
of 28.69% and 30.47%.

The Caching Delays during Bootstrapping. In this exper-
iment, we measure the delay of filling caching in TCAM.
Note that, when the cache is empty, all new arriving flows
will trigger cache misses, which incurs a delay to select rules
and fill the cache in TCAM. Figure 8(a) shows that DROPS

Fig. 9. The Impact of Parameter Setting of Decision Tree.

incurs a much shorter delay than DS, CS, and IR to fill
the cache to increase the hit ratio on the rule set of Equinix
with 709K rules. For instance, when TCAM size is 100, DS,
CS, and IR need 2.05, 2.02, and 0.91 seconds. respectively
to achieve a high TCAM hit ratio, while our scheme only
needs 0.79s. In particular, the implementation using lower-
level languages, such as C and C++, can speed up the process.
The results are reasonable because DROPS only needs to
generate independent rules based on the balanced decision tree,
which requires much less computation time than DS, CS, and
IR. Although DROPS requires 5x memory of DS and CS to
build the flow-aware decision tree, the memory overhead can
be ignored due to the adequate memory of a slow path (e.g.,
CPU).

Cache Hit Ratios with Rule Update. In order to compare
DROPS with DS, CS, and IR, the above experiments are
carried out under a relatively static situation. Now we run
the four systems in a dynamic environment and the results
are shown in Figure 8(b). Under 709K rules with 30 minutes
high-speed traffic flows with 2 billion packets, DROPS can
achieve an average TCAM hit ratio of about 88.3% with 1K
TCAM entries, while the average TCAM hit ratio of IR, CS
and DS are only 83.9%, 61.6% and 59.8% with the same
TCAM capacity. The reason is that the competition among
rules in TCAM is more intensive for DS and CS, which
leads to frequent caching and eviction of rules in a dynamic
flow environment. Since DROPS generates independent rules
based on hot flow subspaces, each rule potentially has a higher
hit rate than rules generated by other schemes such as IR.

The Impact of Parameter Settings. We measure the effect
of parameter settings of the flow-aware decision tree on
DROPS performance. As shown in Figure 9(a), we show
DROPS performance on the different heights of decision tree
H. DROPS achieves the maximum hit ratio 86.35% when
the tree height H is 30. When the tree height H is small, the
decision tree cannot sufficiently divide the rule space so that
it loses the ability to sense heat flow subspaces. Furthermore,
the hot flow subspaces will be small with large tree height H,
and we can only achieve the local optimum of the hit ratio,
thus reducing the overall performance. Meanwhile, too large
tree height will incur many nodes. For instance, when the tree
height is 50, the number of nodes is 2,190,821.

Figure 9(b) shows the effect of the maximum number of
rules in the leaf nodes L setting on DROPS performance. We
observe that the hit ratios slightly change with different L. For
instance, the cache hit ratio is 86.35% with a value of L 1,
and the cache hit ratio reaches 84.74% with a value of L 10.
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TABLE IV
THE PERFORMANCE OF REAL TESTBED

However, adopting a too-small value of L will make too many
nodes in the decision tree, which will incur a large overhead.
For example, when the value of L is 3, the number of nodes is
1607727, while the number of nodes is 16383 with the value
of L 50.

C. Real Testbed Results

In the real-world experiment, we set a Barefoot Tofino
switch chip as the fast path and the Intel Xeon Gold 6258R
CPU as the slow path. We set the egress port of the default
matching action of the switch to the CPU port so that packets
that do not match the cache will be sent to the slow path.
The software part of all schemes is implemented using Python
3.8, while the hardware part is implemented using the P4-14
language. The data plane TCAM has 1024 entries. We replay
the traces by using DPDK [36].

We evaluate the performance of DROPS, DS, CS, and
IR in the real testbed. We use real-world traffic traces and
rules and measure the cold start delay,3 the total hit ratio,
and the throughput, which validates our simulation results and
demonstrates the effectiveness and feasibility of DROPS. To
cope with cold starts, we set a time window of 1 second in
the beginning. All schemes calculate rules based on traffic
distribution during the time window and insert the rules into
the TCAM. The TCAM will not evict any existing rules until it
is full. The delay of cold start includes the calculation delay in
the software part and the rule insertion delay in the hardware
part.

As shown in Table IV, DROPS and IR only take
1357.43 milliseconds and 1418.42 milliseconds to complete
the cold start process, while DS and CS consume 3555.08 mil-
liseconds and 3230.37 milliseconds, respectively. Since the
DS and CS schemes maintain dependencies and priorities
among rules, rule insertion causes rule movement in the
TCAM, resulting in significant time overhead. Compared to
IR, DROPS incurs a smaller time overhead in rule calculation.
Therefore, DROPS is more efficient in cold starts compared
to existing schemes. Furthermore, we observe that DROPS
significantly improves the hit ratios and the throughput. It
achieves 88.45% hit ratio, while DS, CS and IR only achieve
60.59%, 63.61%, and 82.14% hit ratio, respectively, which
is consistent with our simulation results (see Section V-B).
Meanwhile, DROPS achieves 48.1%, 40.1%, and 10.2%
higher throughput than DS, CS and IR, respectively. The
throughput difference is related to the cache hit ratio and rule
update delay of different schemes. DROPS eliminates rule
dependencies by constructing a flow-aware decision tree and

3Cold start denotes the procedure of placing the initial rules.

generates independent rules in real-time based on dynamic
traffic distribution, resulting in a higher cache hit ratio and
reducing the number of packets processed by the slow path.
Furthermore, DROPS has higher efficiency in rule calculation
and updating, reducing the time overhead of rule updates.
Therefore, DROPS significantly outperforms the existing
schemes.

VI. RELATED WORK

Rule Compression. Compacting rule tables have been exten-
sively studied to alleviate the TCAM memory limit [18], [37],
[38], [39], [40]. For example, Dong et al. [18] construct com-
pressed rules for evolving flows to improve TCAM utilization.
However, it cannot handle high dynamic flows with a high
churn rate of rules, which is well addressed in this paper.
Furthermore, multi-dimensional packet classification rules
can be compressed through decision trees [27], [28], [29].
HiCuts [27] cuts the space of each node in one dimen-
sion to create multiple equal-sized subspaces to separate
rules, and NuevoMatch [14] applies neural networks to
the virtual network switch. NeuroCuts [29] utilizes rein-
forcement learning to build a decision tree for packet
classification. RQ-RMI [41] accelerates packet classification
based on the Range-Query RMI machine learning model.
Rottenstreich et al. [42] utilize spare resources at the fast data
plane for cooperative rule caching. Unfortunately, they fail
to remove rule dependency and generate independent rules
for efficient rule caching. Kang et al. [43] design the policy
transformation in Software Defined Networks (SDN), which
also fails to remove rule dependency and cannot be applied to
programmable switches.

Efficient Rule Placement. Traditional static flow place-
ment [44], [45], [46] is unable to efficiently utilizes
TCAM. Rule dependency [15], [47] and popular rule place-
ment [15], [48], [49] have been studied to address this issue.
Rottenstreich et al. [48] improved hit ratios by increasing the
number of switches and designing a rule placement algorithm
based on cooperative caching among switches. Kang et al. [49]
achieve efficient rule placement through hierarchical rule
management and optimized rule distribution. These methods
still cannot effectively eliminate rule dependencies and do not
support efficient dynamic rule caching, making them unsuit-
able for real-world deployment in programmable switches.
Katta et al. [15] design a CacheFlow system, which optimizes
TCAM hit ratios by splicing dependency chains and caching
smaller groups of rules. However, they do not consider the
overhead of rule updates and cannot achieve efficient rule
caching in TCAMs because it will incur significant entry
updating in TCAMs due to rule dependency. Wu et al. [50]
apply the dynamic programming algorithm to generate and
place rules without dependencies, which results in a signif-
icant time overhead that cannot be realistically applied to
programmable switches.

Dynamic Rule Update. A number of studies have been
proposed to eliminate the unnecessary rule moves incurred by
rule updates. Ding et al. [22] update rules for the purpose of
minimizing the rule update overhead when selecting cached
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rules. However, it sacrifices update latency to achieve high
TCAM’s hit ratios. Mercury [51] maps a logical TCAM flow
table into two physical flow tables with different capacities.
The small flow table is used for rule updates to reduce
update overhead, and the rules of the small flow table are
regularly migrated to the large flow table for matching traffic.
He et al. [25] performed an in-depth analysis of the TCAM
update problem and design a rule update algorithm based on
the partial order theory to reduce the number of TCAM moved
entries. T-Cache [7] selects an isolated rule that has the most
extensive coverage for individual hot flow, which eliminates
the rule dependency. However, generated rules in T-Cache
cannot effectively improve the hit ratios due to disregarding
the flow distribution. To sum up, these methods incur signifi-
cant computation overhead or resource consumption. DROPS
addresses these issues by constructing the flow-aware decision
tree, which allows us to maximize hit ratios of TCAM, and
significantly reduce the update overhead.

VII. CONCLUSION

In this paper, we utilize a modeling-based method to
formulate the rule caching problem in programmable switches
and prove its NP-hardness. In order to solve the problem, we
propose DROPS built upon efficient algorithms to transform
all rules into independent rules that are non-overlapping with
each other and cache independent rules in TCAM in the granu-
larity of independent rules. DROPS ensures that rules cached
in switches always with a higher hit ratio and rule insertion
will not interfere with cached rules. We use experiments with
datasets and real hardware switch testbed to demonstrate that
DROPS significantly outperforms all existing methods, which
sheds light on developing a general framework for efficient
rule caching in real hardware switches.
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