
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 7659

Cactus: Obfuscating Bidirectional Encrypted TCP
Traffic at Client Side

Renjie Xie , Jiahao Cao , Member, IEEE, Yuxi Zhu , Yixiang Zhang , Yi He , Hanyi Peng,
Yixiao Wang , Mingwei Xu , Kun Sun , Member, IEEE, Enhuan Dong , Member, IEEE,

Qi Li , Senior Member, IEEE, Menghao Zhang , Member, IEEE, and Jiang Li

Abstract— As the mainstream encrypted protocols adopt TCP
protocol to ensure lossless data transmissions, the privacy of
encrypted TCP traffic becomes a significant focus for adversaries.
They can leverage Deep Learning (DL) models to infer the
sensitive information from encrypted TCP traffic by analyzing
its packet size, direction, and timing information. To defend
against such DL-based traffic analysis attacks, recent advances
reshape the encrypted traffic and achieve desired results.
However, they typically require deploying cooperative modules
on both communication endpoints and only support specific
applications, such as browsers. In this paper, we propose Cactus,
a client-side plug-in to obfuscate bidirectional encrypted TCP
traffic for a wide range of applications transparently using
the inherent TCP semantics and the emerging eBPF technique.
In particular, Cactus provides four effective operations to enable
bidirectional traffic obfuscation while preserving communication
semantics of applications. Besides, Cactus empowers users
to specify which applications to conduct traffic obfuscation
and what obfuscation level for each application. We conduct
comprehensive experiments to demonstrate that Cactus can
effectively obfuscate encrypted TCP traffic with low overhead
to hinder the traffic analysis efforts in website fingerprinting
and application identification.

Index Terms— Encrypted TCP traffic, traffic analysis attacks,
traffic obfuscation.

I. INTRODUCTION

THE Transmission Control Protocol (TCP) is the dominant
protocol in today’s Internet, which provides reliable,

ordered, and error-checked stream delivery for network

Manuscript received 2 April 2024; revised 4 July 2024; accepted 23 July
2024. Date of publication 13 August 2024; date of current version 22 August
2024. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 62132011, Grant 623B2062,
Grant 62202260, and Grant 62221003. The associate editor coordinating the
review of this article and approving it for publication was Dr. Guowen Xu.
(Corresponding authors: Jiahao Cao; Mingwei Xu.)

Renjie Xie, Jiahao Cao, Yi He, Mingwei Xu, Enhuan Dong, and
Qi Li are with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China (e-mail: xrj21@mailstsinghua.edu.cn;
caojh2021@tsinghua.edu.cn; heyi21@mailstsinghua.edu.cn; xmw@cernet.
edu.cn; dongenhuan@tsinghua.edu.cn; qli01@tsinghua.edu.cn).

Yuxi Zhu, Yixiang Zhang, Hanyi Peng, and Yixiao Wang are
with the Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China (e-mail: zyx23@mailstsinghua.edu.cn;
zhangyix19@mailstsinghua.edu.cn; peng-hy21@mailstsinghua.edu.cn;
yixiao-w20@mailstsinghua.edu.cn).

Kun Sun is with the Department of Information Sciences and Technology,
George Mason University, Fairfax, VA 22030 USA (e-mail: ksun3@gmu.edu).

Menghao Zhang is with the School of Software, Beihang University, Beijing
100191, China (e-mail: zhangmenghao0503@gmail.com).

Jiang Li is with the Zhongguancun Laboratory, Beijing 100094, China
(e-mail: lij@mail.zgclab.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3442530

applications. According to a large-scale investigation [32],
more than 85% of total Internet traffic is TCP traffic.
Meanwhile, to provide the privacy and anonymity for TCP
traffic, various encryption protocols are built on top of it, such
as Secure Sockets Layer (SSL) [25], Transport Layer Security
(TLS) [19], [47], Secure Shell (SSH) [65], tcpcrypt [7], and
Hypertext Transfer Protocol Secure (HTTPS) [46].

Despite the use of encryption, the privacy of encrypted
TCP traffic remains at risk. Recent studies [21], [37], [48],
[53] have shown that metadata including packet size, packet
direction, and packet timing can still leak rich information
about the traffic, raising significant privacy concerns. Partic-
ularly, the recent advances in deep learning offer powerful
tools for adversaries to automatically and accurately infer
sensitive information from the encrypted traffic. They can
conduct various traffic analysis attacks, including application
identification [5], [60], website fingerprinting [53], [54], user
profiling [17], [23], operating system identification [30], [57],
IoT device identification [2], [38], content identification of
VoIP calls [4], [16], password guessing of secure shell
logins [56], and even medical records and financial data
identification [14].

To defeat these traffic analysis attacks and protect the traffic
privacy, numerous defense approaches have been proposed
to obfuscate the underlying traffic patterns [8], [9], [13],
[21], [22], [29], [40], [41], [43], [44], [61], [62]. They
typically modify the software or employ proxies tailored
to specific applications at the endpoints to enforce various
traffic obfuscation operations [8], [9], [21], [22], [29], [40],
[43], [61], [62], such as packet padding, packet splitting,
and dummy packet generation. Besides, recent studies [13],
[41], [44] propose to leverage specific high-performance
network devices, such as programmable switches, to add
packet padding and introduce chaff packets into the traffic.
Hence, the privacy for a large amount of network traffic can
be efficiently safeguarded.

Although existing solutions can effectively obfuscate TCP
traffic patterns, their practical deployment suffers from
quite a few problems. First, they typically require two-side
deployment to obfuscate the bidirectional flows to and from
the client [8], [9], [13], [21], [29], [41], [43], [44], [61], [62].
In this way, the obfuscated flows can be correctly decoded
without affecting the original communication semantics.
However, modifying the remote endpoints or deploying
network devices on the remote networks is out of the client’s

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0004-1742-4122
https://orcid.org/0000-0001-7139-376X
https://orcid.org/0000-0002-8345-1346
https://orcid.org/0009-0006-4501-0167
https://orcid.org/0000-0002-1807-4185
https://orcid.org/0009-0009-0526-2150
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0003-4152-2107
https://orcid.org/0000-0002-2539-8241
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-5274-5512


7660 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

control. It is infeasible in many circumstances, particularly
when there are numerous remote endpoints on the Internet that
clients may communicate with. Second, existing approaches
are mostly tightly coupled to specific network applications,
such as browsers [40]. They fail to support obfuscating the
TCP traffic for various applications. In practice, users may
want the freedom of choosing which applications’ TCP flows
to be obfuscated for privacy and performance considerations.
It is also desirable for users to set different privacy demands
for TCP flows of different network applications. However,
none of the existing traffic obfuscation solutions allow users
to choose which applications to protect with what protection
levels.

In this paper, we aim to explore a client-side and
application-transparent approach to obfuscate encrypted TCP
traffic for various applications. However, realizing such goals
poses two significant challenges. First, we cannot add chaff
packets or pad packets at will like existing approaches [29],
[43] to obfuscate the uplink traffic. As we do not have the
explicit cooperation of the remote side, the original contents of
the communications cannot be correctly decoded. Also, we do
not have the capability to directly control or modify the packets
at the remote side to obfuscate the downlink traffic. Second,
since different applications have different implementations and
communication behaviors, it is challenging to transparently
enforce TCP traffic obfuscation for them without affecting
their functionalities and communication semantics. We may
manually analyze and change the source code for each
application to add traffic obfuscation operations; however,
it is time-consuming and mostly impossible to access the
source code of various applications. While modifying and
recompiling the kernel to enforce traffic obfuscation seems
like a general solution to support various applications, it is too
complex and error-prone for users to adopt such a solution.

We show in this paper that it is possible to tackle the above
challenges by presenting Cactus. It can reshape bidirectional
TCP traffic at client side to achieve effective obfuscation while
preserving the underlying communication semantics. The key
insight is to leverage the inherent interaction and collaboration
mechanisms of TCP protocol between two endpoints to
introduce chaff packets, split packets, and limit the maximum
size of packets. Cactus provides four fundamental operations
to effectively obfuscate the uplink and downlink TCP traffic
without affecting the communication semantics. For instance,
Cactus can craft a chaff packet on the uplink and ensure it will
not match the receiving window of the server. Consequently,
the chaff packet is naturally disregarded by the server, without
interfering with the normal communication process.

Additionally, it is crucial for Cactus to operate in
an application-transparent manner, especially for various
applications that require traffic obfuscation. Fortunately,
the emerging eBPF technique offers a way for users to
manipulate packets from different applications at the eBPF-
TC kernel hook. By leveraging this feature, Cactus can
transparently enforce traffic obfuscation across different
applications without the need for kernel recompilation or
modifications to the applications themselves. Specifically,
Cactus injects customized traffic obfuscation eBPF programs

at the eBPF-TC kernel hook, manipulating application
packets in a way that triggers inherent TCP interaction and
collaboration mechanisms. This approach effectively reshapes
various application TCP flows. Moreover, to enforce different
obfuscation levels for applications, Cactus automatically traces
TCP flows for each application by leveraging the eBPF
capability to attach a probe function to TCP socket creation
functions. Whenever an application initiates a TCP flow,
Cactus can precisely identify the application that generates
the flow with the information collected from socket creation
functions. Thus, Cactus can support users to choose which
applications to conduct obfuscation operations and set suitable
obfuscation levels for different applications.

We conduct extensive experiments to evaluate the effec-
tiveness of Cactus on defeating typical encrypted TCP traffic
analysis attacks in website fingerprinting and application
identification. The results show that Cactus can effectively pre-
vent DL-based traffic analysis attacks from inferring sensitive
information over encrypted TCP flows. For instance, Cactus
effectively reduces the accuracy of website fingerprinting from
86.25% to 25.66%. Similarly, the accuracy of application
identification experiences a significant drop of 38.15% with
Cactus. Furthermore, Cactus introduces low overheads. For
instance, it only consumes additional 10% bandwidth to
achieve 44.43% accuracy drop for website fingerprinting.
It is also worth mentioning that Cactus introduces negligible
additional latency for packet transmission.

In summary, we make the following contributions:
• We design Cactus, a client-side plug-in that protects the

sensitive information of encrypted TCP traffic from being
inferred by DL-based traffic analysis attacks.

• We leverage the inherent mechanisms of TCP protocol to
design four fundamental operations that can effectively
obfuscate bidirectional TCP traffic at client side while
preserving the underlying communication semantics.

• We leverage the emerging eBPF technique to trans-
parently enforce traffic obfuscation, allowing users to
choose the applications conducting traffic obfuscation and
customize the obfuscation level for each application.

• We conduct extensive experiments across various attack
scenarios, including website fingerprinting and applica-
tion identification, to verify the effectiveness of Cactus.

The rest of the paper is organized as follows. Section II
describes the threat model, and presents the high-level design
of Cactus. Section III provides the four fundamental TCP
traffic obfuscation operations of Cactus. Section IV presents
how to enforce the TCP traffic obfuscation with eBPF.
Section V evaluates the effectiveness of Cactus. Section VI
reviews related work. Section VII discusses the potential
extensions and limitations of Cactus. Section VIII concludes
the paper.

II. THREAT MODEL AND CACTUS DESIGN

In this section, we present the threat model for traffic
analysis attacks. We then introduce the design goal and the
design overview of Cactus.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7661

Fig. 1. Threat model.

A. Threat Model

We focus on the scenario where a passive adversary engages
in traffic analysis attacks on a network device [48], [53], [54],
as shown in Figure 1. The adversary intercepts encrypted
TCP traffic and accesses encrypted packets exchanged
between the client and server. We do not assume the
adversary has the ability to decrypt these packets, but it can
leverage the advanced DL-based traffic analysis methods [37],
[48], [53], [54] to automatically extract the implicit and
informative features from the packet size, direction, and
timing information. These features can be leveraged to infer
various information, such as the visited website [53], [54],
applications that users use [5], [60], device identities [1], [2],
operating systems [30], [57], and even the contents of VOIP
calls [4], [16].

Considering that traffic analysis attacks can exploit
information from both the uplink TCP traffic and the downlink
TCP traffic between a client and a server, it is crucial
for our defense to provide obfuscation for the bidirectional
traffic. We do not require the capability to control remote
networks or servers, or deploy network devices in local and
remote networks. Neither do we require the capability to
change source code of applications or recompile OS kernels.
Our defense aims to obfuscate bidirectional encrypted TCP
traffic for various applications in a client-side and application-
transparent manner, which renders DL-based traffic analysis
attacks ineffective.

B. Design Goal

Our defense aims to provide effective obfuscation for
bidirectional TCP traffic without requiring any modification
on the remote side. Meanwhile, our approach provides a
unified traffic obfuscation manner for various applications
without changing applications or recompiling OS kernels.
It can provide users with the flexibility to customize the
protected application and obfuscation level according to their
specific requirements. In summary, we have two design goals:

1) Goal-1 (G1): Client-side Deployment: Despite the preva-
lence of two-side deployment in existing approaches [61],
[62], its practical usage meets great challenges. Notably,
the client’s capability to control remote networks or servers
is limited. It may be infeasible in many circumstances,
especially when a client interacts with numerous remote
endpoints scattered across the Internet. As a consequence,
client-side deployment would be a better solution in practice.
We aim to obfuscate bidirectional traffic while focusing solely

on client-side deployment without affecting the underlying
communication semantics.

2) Goal-2 (G2): Application-transparent Obfuscation:
Existing approaches typically exhibit a strong dependency
on specific applications [40], [43], primarily focusing on
browsers. They lack the capacity to obfuscate TCP traffic
originating from various applications transparently. Neither
they support distinct traffic obfuscation levels for different
applications that have diverse privacy protection requirements.
We aim to provide an application-transparent obfuscation
method, which empowers users to specify which application
to enforce obfuscation operations and set different obfuscation
levels for different applications.

C. Cactus Overview

To achieve the above design goals, we propose Cactus,
a client-side and application-transparent plug-in aimed at
obfuscating bidirectional encrypted TCP traffic for appli-
cations. As Figure 2 shows, Cactus consists of two main
modules: user-defined obfuscation strategy module and TCP
traffic obfuscation execution module. The former module
enables the user to specify the obfuscation level for a given
application. Then, it automatically tracks the flows associated
with the given application and calculates the execution
probabilities. The latter module leverages four fundamental
obfuscation operations to reshape the bidirectional traffic.
It executes the operations according to the execution
probabilities delivered by the former module.

In order to achieve G1, Cactus introduces four fundamental
operations to obfuscate the communication between the client
and server. Two of these operations leverage the byte stream
transmission of the TCP protocol to directly manipulate the
uplink traffic without introducing additional delays, while the
other two operations indirectly manipulate the downlink traffic
by utilizing the flow control and retransmission mechanisms
of the TCP protocol. For instance, Cactus can obfuscate the
uplink traffic by dividing a packet into multiple smaller packets
without causing any disruption to the server’s receiving
process. Besides, through truncating a received packet, Cactus
can achieve indirect manipulation of the server, introducing
the transmission of a new downlink packet. Section III details
the design of the four fundamental operations.

In order to achieve G2, Cactus enables users to flexibly
set different obfuscation levels for different applications, and
enforces traffic obfuscation for application flows by leveraging
the eBPF techniques. When given the root privilege of
the operating system, the eBPF techniques provide Cactus
with the ability to manipulate the application packets at the
eBPF-TC (Traffic Control) hooks and track the information
about the executed functions. Cactus tracks the flows
for applications by attaching a probe function to the TCP
socket creation function. Whenever an application initiates
a TCP flow by invoking the socket creation function, the
probe function will be automatically activated to obtain the
process ID of the application and the flow information. Next,
Cactus calculates distinct execution probabilities in accordance
with obfuscation levels for different applications. Eventually,

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7662 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. The architecture of Cactus plug-in. Packets with blue headers represent the original application packets. The packets influenced by Cactus include
various types, distinguished by their headers. Uplink packets with purple headers are identified as chaff packets, those with green headers are fragmented
packets, and downlink packets with purple headers indicate retransmitted packets. The shading within the packet payload area highlights the actual data being
transmitted.

it executes obfuscation operations for application flows at
the eBPF-TC hooks based on execution probabilities. In our
design, Cactus functions as a global module operating on the
system and intercepting traffic from all processes at the eBPF-
TC hooks simultaneously. Section IV details the design.

III. TCP TRAFFIC OBFUSCATION OPERATION DESIGN

This section provides the design of Cactus’s four fun-
damental traffic obfuscation operations at client side. All
these operations can effectively obfuscate encrypted TCP
traffic without affecting the communication semantics of
applications.

A. Obfuscation Operations for Uplink Traffic

Building upon the byte stream delivery characteristics of
the TCP protocol, our approach incorporates two fundamental
operations aimed at reshaping uplink traffic to the server: chaff
packet generation (OP-I) and packet fragmentation (OP-II).
They are meticulously designed to ensure efficiency and the
preservation of communication semantics.

To ensure optimal transmission efficiency, it is crucial that
the operations involved in Cactus introduce smaller delays.
We should avoid adopting operations that directly increase the
delays of packets. If we directly shuffle the outgoing packets to
introduce deliberate delays for traffic obfuscation, it adversely
impacts the user experience of the application, rendering it
undesirable.

In addition to optimizing efficiency, it is important for
the operations to preserve communication semantics while
adhering to client deployment restrictions. In particular, the
enforcement of operations should not interfere with the normal
function of applications. If we send a dummy packet with
fabricated data to obfuscate traffic, it may corrupt application
semantics and potentially cause the server to crash upon
successful reception of the packet due to the unexpected
information in the dummy packet.

1) Chaff Packet Generation: According to the basic
mechanisms of TCP, a receiver keeps a record of received
data at the receiver window and disregards any data that have
already been received. This behavior inherent in TCP creates
an opportunity for Cactus to devise Operation I (OP-I) that
generates chaff packets without affecting the communication
semantics.

OP-I involves creating a chaff packet with fake data
and disguising the chaff packet as a previously received

Fig. 3. Diagrams of OP-I.

packet by assigning it a proper sequence number. Specifically,
the acknowledgment packet from the server contains an
acknowledgment number which indicates the maximum
sequence number of received data. Each time the client
receives an acknowledgment packet, the client can craft a
chaff packet and assigns it a sequence number of a value
lower than the acknowledged number. Consequently, the chaff
packet will be disregarded by the server since the assigned
sequence number makes it seem like a previously received
packet.

Figure 3 shows how the operation is designed. Figure 3a
shows the diagrams of generating a single chaff packet.
As the client receives a corresponding acknowledgment
packet with an acknowledgment number of 200, it indicates
that the server will only accept a packet with a sequence
number of more than 200 in subsequent communications.
Thus, Cactus generates a chaff packet to carry fake data
of 20 bytes with a sequence number of 50. If no packet
is lost, the server finally receives three packets with packet
length sequences of [100, 20, 200]. However, as the sequence
number of the chaff packet is smaller than 200, the chaff
packet is disregarded by the server TCP/IP stack. Therefore,
the fake data in the chaff packet will not be received by
the applications running on the server. By leveraging this
operation, we can flexibly introduce chaff packets in the TCP
flows without affecting communication semantics for different
applications. Furthermore, we can generate multiple chaff
packets when the client receives an acknowledgment packet
to achieve aggressive traffic obfuscation, which is shown
in Figure 3b.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7663

TABLE I
FUNDAMENTAL OPERATIONS OF CACTUS

Fig. 4. Diagrams of OP-II.

OP-I introduces chaff packets into the uplink traffic with
different size. Moreover, the increased number of uplink
packets changes the packet direction information, and the
additional intervals between the chaff packets and the original
packets alter the packet timing information. Here, the term
interval refers to the time period between the transmission of
two consecutive network packets.

2) Packet Fragmentation: A TCP connection allows the
utilization of multiple smaller packets to transmit the data
originally contained in a single packet, while preserving
the integrity of the communication semantics. This is made
feasible by the ability of the receiving side to reconstruct the
original packet from the smaller packets with the byte stream
delivery mechanism inherent to TCP.

Cactus leverages the above mechanism to develop Operation
II (OP-II) to fragment TCP packets, i.e. distributing the
payload contained within a packet across multiple packets.
OP-II employs a procedure that involves extracting the payload
from a packet and organizing them into distinct subsets. These
subsets are subsequently encapsulated into multiple smaller
packets and transmitted individually. The TCP/IP stack of the
server will utilize sequence numbers to ensure that the data are
received and reassembled correctly. Consequently, applications
receive the complete data as it was originally transmitted,
despite the fragmentation that occurred during transmission.

Figure 4 shows that OP-II fragments a packet during the
transmission. For simplicity, we consider that a packet with
a payload length of 1000 is sent from the network stack of
the client. Figure 4a displays the enforcement of OP-II in a
network without packet loss. It distributes the packet’s data
into three packets with payload lengths of 200, 300, and 500,
respectively. They are then transmitted to the server.

Fig. 5. Diagrams of OP-III.

Figure 4b demonstrates the resilience of OP-II when facing
packet loss. In the scenario where Cactus distributes the
packet’s data into four packets with payload lengths of 200,
200, 200, and 400, respectively, the first packet is lost in
transit and the server receives the remaining three packets.
Subsequently, the server informs the client of the lost data
by sending duplicate acknowledgment packets. Due to the
fast retransmission mechanism, the client will resend the
lost packet. Consequently, the server ultimately receives four
packets with a payload sequence of [200, 200, 400, 1000].
Although the traffic pattern is changed by Cactus, all data are
reliably received by the server. By leveraging the operation,
we can flexibly fragment packets in the TCP flows while
preserving the communication semantics.

As OP-II distributes the data in a packet into several smaller
packets, the packet size and direction information are directly
affected by the increased packet number and smaller packet
size. Additionally, the time intervals between the smaller
packets serve to obfuscate the timing information of the traffic,
further changing the traffic pattern.

B. Obfuscation Operations for Downlink Traffic

As Cactus enforces client-side deployment, we fail to
directly control the downlink traffic at the server side.
Fortunately, we can indirectly manipulate the downlink traffic
by altering the state of the TCP connection at the client side.
We present two fundamental operations to affect the downlink
traffic based on the byte stream delivery and retransmission
mechanisms of TCP protocol. These operations are partial data
uploading (OP-III) and window size modification (OP-IV).

1) Partial Data Uploading: In a TCP connection, the
network stack of the server maintains a Sender Window

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7664 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

swnd to buffer unacknowledged data. According to the TCP
specification [3], if the server receives multiple duplicate
acknowledgment packets from the client, it typically indicates
that specific unacknowledged data is lost. Consequently, the
server will generate packets to retransmit the lost data.

Leveraging this characteristic of the TCP protocol, we pro-
vide Operation III (OP-III) to indirectly manipulate the server
to retransmit data buffered in swnd by actively triggering
acknowledgment packets at the client side. Specifically,
OP-III truncates the received packet and uploads partial
data to the network stack at the client side. Meanwhile,
OP-III crafts corresponding duplicate acknowledgment packets
to inform the server, simulating that partial data are lost.
Consequently, the server will generate new packets to
retransmit the “lost” data. OP-III thus indirectly introduces
new packets to obfuscate the downlink traffic. In practice,
the impact of OP-III can be changed by the size of data
buffered in swnd. Assuming that the server receives duplicate
acknowledgment packets from the client, following the typical
TCP implementation [36], the server attempts to encapsulate
all the unacknowledged data into a packet. However, in cases
where the total size of data buffered in swnd exceeds the
Maximum Segment Size (MSS), the server will send multiple
packets to transmit the unacknowledged data. This process
ensures that the length of each packet is less than or equal to
MSS.

Figure 5a demonstrates the design of OP-III for packets
with data stored in the swnd that do not exceed the MSS of
1460 bytes. For simplicity, we assume that the server sends
four packets to the client with payload length sequences of
[100, 200, 300, 400]. Meanwhile, the payload data are stored
in the swnd of the server network stack. OP-III truncates the
first packet and uploads only 50 bytes of data to the network
stack at the client side. Subsequently, the client receives
the next three packets. Meanwhile, OP-III generates three
duplicate acknowledgment packets, which signals to the server
that it only accepts the first 50 bytes of data and requests the
server to retransmit the unacknowledged data. In response, the
server transmits a packet containing all the unacknowledged
data, totaling 950 bytes (50 + 200 + 300 + 400), back to the
client. Five packets with payload lengths of 100, 200, 300,
400, and 950 are captured on the Internet. Consequently, the
downlink traffic is obfuscated by introducing new packets with
partial data uploading.

Figure 5b illustrates the design of OP-III for packets
containing data stored in the swnd that exceed the MSS of
1460 bytes. We consider a scenario where the server sends
four packets to the client, with payload length sequences of
[600, 1200, 900, 900]. Meanwhile, the payload data are stored
in the swnd of the server network stack. OP-III truncates the
first packet and uploads only the first 100 bytes of data to
the network stack at the client side. Subsequently, the client
receives the next three packets. Meanwhile, OP-III generates
three duplicate acknowledgment packets, which signals to
the server that it only accepts the first 100 bytes of data
and requests the server to retransmit the unacknowledged
data. In response, the server is expected to retransmit all the
unacknowledged data, totaling 3500 bytes (500 + 1200 +

Fig. 6. An example of how OP-IV affects the downlink packet by modifying
the window size in the uplink packet.

900 + 900). However, the total length of the unacknowledged
data exceeds the MSS of 1460 bytes. Following the typical
TCP implementation [36], the server does not merge the data
into a single packet. Instead, it will transmit four separate
packets to accommodate the data. The first packet carries
500 bytes of data, while the remaining packets carry 1200,
900, and 900 bytes of data, respectively. Consequently, eight
packets can be captured on the Internet, with payload length
sequences of [600, 1200, 900, 900, 500, 1200, 900, 900].

OP-III utilizes the byte stream delivery and the retrans-
mission mechanisms of TCP to indirectly manipulate the
server’s behavior on sending data. Instead of sending all data
in a single packet, OP-III triggers the server to retransmit
only a subset of data within a packet of arbitrary length.
As a result, both the packet size and direction information
are altered due to the presence of the crafted retransmitted
packets. Furthermore, the introduction of the retransmitted
packets also affects the timing information of packets. The
unexpected inclusion of retransmission packets modifies the
intervals between the original packets, reshaping the packet
timing characteristics.

2) Window Size Modification: The TCP header contains
a window size field that regulates the amount of data that
can be transmitted before receiving acknowledgment packets.
If the client sends a TCP packet to the server, the window
size in the packet header will limit the maximum length
of the subsequent downlink packets. Leveraging this TCP
mechanism, we present Operation IV (OP-IV) that modifies
the window size field in uplink packets to manipulate the
length of downlink packets.

Figure 6 illustrates how OP-IV indirectly crafts the packet
length of downlink traffic by manipulating the window size in
the uplink packet. As shown in Figure 6a, if the server receives
an uplink packet with a window size of 10, the server can
generate a downlink packet carrying 10 bytes of data at most.
However, if OP-IV modifies the window size of the uplink
packet to 6 at the client side, the server can only generate a
downlink packet carrying 6 bytes of data at most, as shown
in Figure 6b.

OP-IV thus can obfuscate the downlink traffic at the client
side. For instance, if the server intends to send data of
450 bytes, the data will typically be encapsulated into a
single packet when receiving an uplink packet indicating a
window size greater than 450. However, OP-IV can specify
a window size of 250 in the uplink packet. Therefore, the
server will be compelled to transmit at least two packets to

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7665

accommodate these data. In this case, the payload of the first
packet will be limited to 250 bytes. As a result, the packet
size and direction information will be altered. Meanwhile, the
additional packet interval of the two packets alters the packet
timing information.

IV. TCP TRAFFIC OBFUSCATION ENFORCEMENT

In this section, we initially present how users can enforce
different obfuscation strategies for various applications. Next,
we introduce the implementation of our traffic obfuscation
operations using eBPF in an application-transparent manner.

A. User-Defined Traffic Obfuscation Strategy

Cactus enables users to configure different obfuscation
levels for various applications for privacy and performance
considerations. To achieve this capability, it initially tracks
TCP flows specific to an application and then allows users to
specify the desired obfuscation level with a demand parameter.

1) Tracking TCP Flows of Applications: As the obfuscation
levels are configured for applications while the operations
are executed for TCP flows, Cactus initially acquires the
correlation between applications and flows. Cactus leverages
the eBPF technique to automatically track the flows of
any given application. It attaches a probe function to the
TCP socket creation function and monitors which application
establishes the TCP flows.

Specifically, Cactus attaches a probe function to the kernel
function inet_csk_accept. Each time an application
establishes a new TCP flow, inet_csk_accept will
be invoked. Correspondingly, the probe function will be
automatically activated to retrieve the application’s process
identification (PID) and the 5-tuple information of the new
flow. Here, the 5-tuple information contains source and
destination IP addresses, source and destination ports, and
the transport layer protocol identifier. Based on the mapping
between the application’s PID and the 5-tuple information
of the flows, Cactus can efficiently identify and track the
application flows by inspecting packet headers.

2) Specifying the Traffic Obfuscation Level: Cactus allows
users to modify a key demand parameter denoted by α for
a given application to specify the obfuscation level. Here,
α is a user-defined parameter that ranges from 0 to 1. If a
user assigns a high value to α for a given application, Cactus
will interpret this as an indication that the application has a
correspondingly high obfuscation demand. By setting different
α values for different applications, Cactus can enforce different
obfuscation levels for TCP flows of an application. In addition
to user demands, it is important to consider the network
environment when executing the operations. For example, in a
congested network, generating excessive chaff packets may
severely exacerbate network congestion and lead to significant
performance degradation.

Hence, we should explore an execution probability equation
to control the execution of operations with the constraints of
user demands and the network environment. The execution
probability equation should meet two important requirements:
1) it enables Cactus to execute obfuscation operations more

Fig. 7. The procedure for execution probability calculation.

frequently with a higher value of α. 2) if the retransmission
rate is high, the operations should be executed less frequently
to avoid significant performance degradation. Consequently,
we design an equation for execution probability as follows:1

Fα(rr ts) = α(1− rr ts). (1)

According to the above equation, a higher α value can
typically increase the execution probability, leading to more
frequent execution of obfuscation operations. This increased
frequency of operations enhances the variability of traffic
patterns, resulting in a higher level of obfuscation for network
flows.

Figure 7 shows the procedure on how we calculate the
execution probability. Considering the scenario that a user
defines an obfuscation level α for an application. To calculate
execution probabilities for the application flows, we follow
the three steps: (1) collecting the 5-tuple information of flows
associated with the application by attaching a probe function;
(2) retrieving the retransmission rates of these flows from
the TCP sockets associated with the flows; (3) calculating
the execution probabilities for flows according to Equation 1.
Additionally, considering the dynamic nature of the network
environment, we periodically gather the retransmission rates
of the flows to update the execution probabilities. In our
implementation, we store the execution probability in eBPF
maps so that traffic obfuscation programs at the eBPF-TC
hooks can quickly retrieve the probability information.

Algorithm 1 details how obfuscation is enforced with a
given obfuscation level α for an application. For a host
deployed with Cactus host , the given obfuscation level for
the application α, and the maximum segment size M SS,
obfuscation is enforced when an application packet is injected
into eBPF-TC. The procedure commences by querying the host
for the retransmission rate of the flow (rr ts) associated with
the packet. Subsequently, it computes the execution probability
(exe_p) based on α and rr ts . Lines 3 to 18 address the scenario
where pkt should be received by host . In Lines 4 to 12, when
pkt is an acknowledgment packet, OP-I will be executed with
a probability of exe_p. OP-I begins by generating a chaff
packet ch_pkt by cloning pkt . The algorithm then randomizes
the size of ch_pkt through padding and truncation. Next,
it sets the sequence number of ch_pkt to the acknowledgment
number of pkt minus M SS. It then swaps the source and
destination information in the TCP header. Finally, host sends
ch_pkt as a chaff packet to obfuscate uplink traffic. In Lines
13 to 16, when pkt has a payload size greater than 1, OP-III
will be executed to randomly truncate pkt with a probability
of exe_p. Lines 18 to 30 address the scenario where the

1Other equations can also be available if meeting the above requirements.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7666 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 1 Obfuscation Enforcement for an Application
Input: pkt : an application packet ;

α : Obf uscation level f or the application;
host : a host deployed wi th Cactus;
M SS : Maximum Segment Si ze

1: rr ts ← host.query(pkt.header) ▷ Retransmission rate
2: exe_p← α ∗ (1− rr ts)

3: if pkt.dip = host.i p then ▷ pkt is received by the host.
4: if Random(0, 1) < exe_p and pkt. f lag.ack = true

then ▷ Necessary condition of OP-I
5: ch_pkt ← pkt.copy()

6: ch_pkt.seq_num ← pkt.ack_num − M SS
7: ch_pkt.payload.padding(M SS)

8: ch_pkt.payload.truncate(Random I nt (0, M SS))

9: exchange(ch_pkt.sip, ch_pkt.dip)

10: exchange(ch_pkt.sport, ch_pkt.dport)
11: host.send(ch_pkt)
12: end if
13: if Random(0, 1) < exe_p and pkt.payload.len > 1

then ▷ Necessary condition of OP-III
14: L ← Random I nt (0, pkt.payload.len)

15: pkt.payload.truncate(0, L)

16: end if
17: host.receive(pkt)
18: else ▷ pkt is sent from the host.
19: if Random(0, 1) < exe_p and pkt.wnd_si ze >

M SS then ▷ Necessary condition of OP-IV
20: pkt.wnd_si ze← Random I nt (0, M SS)

21: end if
22: if Random(0, 1) < exe_p and pkt.payload.len > 1

then ▷ Necessary condition of OP-II
23: adt_pkt ← pkt.copy()

24: L ← Random I nt (1, pkt.payload.len)

25: pkt.payload.truncate(0, L)

26: adt_pkt.payload.truncate(L , pkt.payload.len)

27: host.send(pkt)
28: pkt ← adt_pkt
29: end if
30: host.send(pkt)
31: end if

packet is sent by the host. In Lines 18 to 21, when pkt
has a window size wnd_si ze greater than M SS, OP-IV will
be executed to modify its window size to a smaller value
with a probability of exe_p. In Lines 22 to 29, if pkt has
a payload size greater than 1, OP-II will be executed with a
probability of exe_p. OP-II begins by generating an additional
packet adt_pkt by cloning pkt . Then, it generates a random
integer value L ranging from 1 to the payload size of pkt .
Subsequently, it truncates both pkt and adt_pkt . Here, pkt
retains the first L bytes of payload, while adt_pkt retains the
last (pkt.payload.len− L) bytes of payload. Finally, it sends
pkt and assigns adt_pkt to pkt .

B. Traffic Obfuscation Implementation With eBPF

In order to effectively obfuscate the bidirectional TCP
traffic, we implement the four operations at the eBPF-TC

Fig. 8. The eBPF implementation of OP-I at the eBPF-TC ingress and egress
hooks.

TABLE II
NECESSARY EXECUTION CONDITION OF OPERATIONS

ingress and egress hooks.2 The necessary execution conditions
for these operations are shown in Table II. The operations
are triggered when the client receives or sends specific
types of packets. When the necessary execution condition
for an operation is met, Cactus retrieves the corresponding
execution probability from the eBPF maps. The operation is
then executed with the retrieved execution probability. In the
following, we detail the eBPF implementations of the four
obfuscation operations.

1) eBPF Implementation of OP-I: Figure 8 illustrates
the procedure of generating a chaff packet at the eBPF-
TC ingress and egress hooks. In the event that the
client receives a packet containing a valid acknowledgment
number, Cactus utilizes the bpf_clone_redirect helper
to generate a replica of the packet. Subsequently, it invokes
the bpf_skb_change_tail helper to alter the length of
the replicated packet. The length of the packet payload is
adjusted to a randomized value, which ranges from 0 up to
the Maximum Segment Size (MSS) of the TCP connection.
Following this modification, Cactus modifies its sequence
number to ensure that the sum of this value and the
payload length is smaller than the acknowledgment number
present in the original packet. By using the bpf_redirect
helper, Cactus redirects the modified packet to the eBPF-TC
egress hook point. Furthermore, it exchanges the source and
destination information in the TCP header of the modified
packet. Finally, the modified packet is transmitted to the
server as a chaff packet. By repeating the process, Cactus can
generate multiple chaff packets.

2) eBPF Implementation of OP-II: Figure 9 depicts the
process of fragmenting a packet into two smaller packets at
the eBPF-TC egress hook. Assuming a packet is transmitted
from the client, its payload can be considered to consist of
two subsets. Cactus employs the bpf_clone_redirect
helper function to create a replicated packet as the initial step.

2For more detailed information about the eBPF technique, refer to the eBPF
tutorial available at https://docs.cilium.io/en/latest/bpf/

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7667

Fig. 9. The eBPF implementation of OP-II at the eBPF-TC egress hook.

Fig. 10. The eBPF implementation of OP-III at the eBPF-TC ingress hook
and OP-IV at the eBPF-TC egress hook.

Subsequently, it leverages the bpf_skb_change_tail
helper function to truncate the original packet while preserving
the front subset within it. Here, the size of the front subset
ranges from 1 to the original packet length. Additionally,
it overwrites the payload of the replicated packet with the latter
subset by invoking bpf_skb_load_bytes helper. Next,
Cactus applies the same bpf_skb_change_tail helper
function to truncate the replicated packet, ensuring that the
latter subset is appropriately retained. Consequently, the server
can receive the complete data in the original packet after
receiving the two truncated packets. By repeating the process,
a packet can be split into multiple segmented packets.

3) eBPF Implementation of OP-III: Figure 10 illustrates
the implementation of OP-III at the eBPF-TC ingress hook.
When the client receives a packet with payload at the eBPF-
TC ingress hook, Cactus truncates the packet by invoking the
bpf_skb_change_tail helper function. Subsequently, the
modified packet is passed to the network stack for further
processing. As a result of the intentional data truncating, the
client triggers the retransmission mechanism, prompting the
server to retransmit the dropped data.

4) eBPF Implementation of OP-IV: Figure 10 presents
the implementation of OP-IV at the eBPF-TC egress hook.
In the event that the client transmits a packet that includes
a valid window size, OP-IV modifies the window size to
a smaller value at the eBPF-TC egress hook. Subsequently,
the packet is forwarded to the server, thereby limiting the
maximum size of the received packets.

V. EVALUATION

In this section, we evaluate the effectiveness of Cactus
on defeating typical encrypted TCP traffic analysis attacks,
including website fingerprinting and application identification.

A. Experiments on Website Fingerprinting

1) Web Traffic Collection: We leverage 20 sender hosts in
China as the clients to visit popular websites with the Selenium
web driver [45] driving the Firefox browser. We collect
web traffic without deploying Cactus at the beginning. Then,
we deploy Cactus to obfuscate the traffic generated by
the Firefox browser. We collect 1,462,961 TCP flows by
visiting ten popular websites, including Adobe, Baidu, Bilibili,
Microsoft, QQ, Taobao, Warner Bros, WordPress, Zhihu, and
Zoom. Hence, there are ten labels in this dataset.

2) Model Training and Testing: We consider four typical
deep learning models in our experiments, i.e. Convolutional
Neural Network (CNN) [31], Long-Short Term Memory
(LSTM) [26], and Deep Fingerprinting (DF) [53], and Robust
Fingerprinting (RF) [49]. The first two models achieve good
results on website fingerprinting [48]. DF effectively improves
the performance of website fingerprinting in the scenario
where the traffic is mixed with randomly padding packets.
RF can effectively fingerprint the website even under various
obfuscation approaches. In the experiments, we first train and
test them using the flows collected without deploying Cactus.
This establishes a baseline for comparison. Subsequently,
to demonstrate the effectiveness of Cactus in obfuscating
website traffic, we then train and test these models using the
flows gathered after deploying Cactus. This approach assumes
that attackers may be aware of the deployment of Cactus
when conducting traffic analysis. Here, the ratio of the number
of flows in the training set, validation set, and testing set is
6:2:2 for experiments with different α. We extract packet size,
direction, and interval as representative features. Furthermore,
as flows in real networks are naturally unbalanced [35], [37],
we use the original ratio of different flows to train and test the
existing models on website traffic classification. We utilize
an RTX A6000 GPU for the training and testing in all the
experiments.

3) Experimental Results: We apply two metrics, i.e.,
accuracy (AC) and macro-F1-Score (F1) to present our
experimental results. Here, we compare different obfuscation
levels by evaluating the AC and F1 performance of traffic
analysis attacks on obfuscated flows. The low performance
typically indicates a high obfuscation level for the flows.
Table III shows the effectiveness of Cactus on defeating
website fingerprinting with different obfuscation parameter
α. More than 82% accuracy and F1-Score can be achieved
without deploying Cactus, i.e. α = 0. Particularly, DF achieves
92.00% accuracy and 91.80% F1-Score. However, we observe
that the accuracy and F1-Score of all models consistently drop
when α increases. Despite a small α of 0.02 in Cactus, the
average accuracy decreases from 86.25% to 66.74%. When the
α is set as 0.1, the average accuracy decreases by 60.60% and
the average F1-Score decreases by 63.05%. The experimental
results demonstrate that Cactus can effectively obfuscate
website traffic even with small α, and α indeed provides users
with the ability to control the obfuscation level. With a high
α, the obfuscated flows are difficult to classify due to the
high obfuscation level. Furthermore, we conduct an extensive
evaluation of the transmission overhead in Section V-D to

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7668 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE III
PERFORMANCE ON DEFEATING WEBSITE FINGERPRINTING. LOWER AC AND F1 REPRESENT A BETTER DEFENSE

understand the impact of Cactus on the transmission of website
visits.

B. Experiments on Application Identification

1) Application Traffic Collection: We leverage 20 hosts
to run popular applications and collect their traffic. Initially,
we capture the traffic without deploying Cactus. Subsequently,
we deploy Cactus to introduce obfuscation for the application
traffic. We collect 221,933 flows by running five popular
applications, including QQmusic, TencentDoc, YoudaoNote,
and NeCmusic. Hence, there are four labels in this dataset.

2) Model Training and Testing: We follow the experimental
setting in Section V-A to evaluate the effectiveness of Cactus
on defeating application identification.

3) Experimental Results: Table IV shows the effectiveness
of Cactus on defeating application identification with different
obfuscation parameter α. Without deploying Cactus, the four
models achieve more than 93% accuracy and F1-Score on
average. However, a significant drop occurs when Cactus is
enabled. For instance, the accuracy of CNN is dropped from
91.81% to 48.33% when α is set as 0.1. The experimental
results demonstrate that Cactus is effective for obfuscating
application traffic.

C. Analysis on Feature Distribution

The layer before the last output layer of a deep learning
model will generate a feature vector that reflects the implicit
features of the input traffic. We hence can explore the implicit
features with feature vectors extracted by deep learning models
to demonstrate that Cactus effectively obfuscates the traffic.
We use website flows to show our results since experiments
with the application flows present similar results. We extract
the feature vectors of flows collected with different α to
check whether Cactus could effectively obfuscate the traffic.
To better illustrate how the feature vectors change with the
increasing of α, we apply the t-SNE [59] method to project
high-dimensional feature vectors extracted by the DF model
into 2D vectors. For simplicity, we only take DF as an example
for illustration since other models show similar results like
DF. We draw the vectors in 2D space, which is shown in

Fig. 11. Feature distribution of flows under different α.

Figure 11.3 When Cactus is not enabled, i.e., α = 0, there
is a clear separation between feature vectors of different
classes, while those belonging to the same class appear to be
closely clustered. However, when we increase α, the boundary
between classes becomes less distinct. This is evident in the
observation that certain feature vectors, despite belonging to
different classes, appear to be in close proximity, making it
challenging to discern their true classes. This indicates that
users can achieve a high obfuscation level for a flow by setting
a high α.

D. Overhead

1) Bandwidth and Latency Overhead: We evaluate the
bandwidth and latency overhead introduced by Cactus. We use
the experiments with website flows to show the results.
Note that experiments with other TCP flows present similar
results. Figure 12a shows the additional bandwidth introduced
by Cactus. With the increase of α, more bandwidth is
consumed during the transmission. When α is set to 0.1,

3Here, we show the vectors of six typical websites for clear presentation.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7669

TABLE IV
PERFORMANCE ON DEFEATING APPLICATION IDENTIFICATION. LOWER AC AND F1 REPRESENT A BETTER DEFENSE

Cactus consumes about 17% additional bandwidth. It is
because Cactus introduces chaff packets in the uplink flows
and the retransmitted packets in the downlink flows for
traffic obfuscation. However, such bandwidth consumption is
acceptable in practice. Besides, Cactus allows users to flexibly
set α to tradeoff the obfuscation level and the additional
bandwidth consumption. Besides, we measure the latency from
the time when the client sends a packet to the time when
the client receives the acknowledgment packet. The latency
distribution is depicted in Figure 12b. It is noteworthy that the
latency remains relatively stable regardless of the increase of
α in Cactus. This can be attributed to the fact that the four
operations implemented in Cactus do not introduce significant
delays for packets. Instead, variations in latency are likely due
to minor fluctuations in the network environment.

2) Total_Time and Accuracy Trade-off: Cactus leverages
various TCP mechanisms to effectively obfuscate bidirectional
traffic at client side. These operations may affect the
congestion control and flow control of TCP connections,
leading to a potential increase in data transmission time.
Hence, we use a popular tool named curl [18] to measure
how Cactus affects the data transmission time with different
obfuscation levels. Here, curl applies the metric total_time
to indicate the time from the sending of the first byte to
the receiving of the last response from the server, which can
reflect the data transmission time. Following the settings in
Section V-A, we set the α from 0 to 0.1 in Cactus and
measure the total_time of visiting the Google website. For
each α, we measure the total_time 100 times and record the
average total_time. Figure 13 presents the trade-off between
the average total_time and the average accuracy of DL models
with Cactus for different obfuscation levels. We can see that
the total_time increases as the obfuscation level α grows.
Simultaneously, Cactus becomes more effective in countering
traffic analysis attacks (i.e., more accuracy drops). We observe
that when α is set to a value of 0.06, the total_time increases
slightly from 359 ms to 438 ms, and the accuracy significantly
decreases by 34%. Furthermore, even if a user sets α to
0.1 for high-level traffic obfuscation, our results show it only
increases the total_time to 650 ms. According to Google’s

Fig. 12. Bandwidth and latency overhead for Cactus.

Fig. 13. Trade-off between total_time and accuracy.

report [24], 800 ms is an acceptable time for users. Note that
the parameter α is essential for balancing data transmission
performance and obfuscation levels, allowing users to tailor
settings to their specific needs. For applications demanding
real-time, fast data transmission, like voice communication,
a smaller α is preferable. Conversely, for applications with
less urgent needs for real-time data transmission, such as file
downloads, a larger α can be employed to enhance privacy
without notably affecting the user experience.

E. Ablation Study

We conduct ablation experiments by removing one of the
four fundamental operations in Cactus each time. Table V
shows the results of our ablation experiments. When we apply
all the four operations in Cactus to obfuscate traffic, the
accuracy decreases by 49.13%. However, the accuracy drop

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7670 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE V
ABLATION STUDY ON DIFFERENT OPERATIONS

ranges from 13.07% to 39.67% when removing one of the
four operations. We can see that any of the four operations
is helpful to obfuscate traffic. Furthermore, we can see that
the minimal drop in accuracy is 13.07% when removing OP-I.
Thus, OP-I plays the most important role in traffic obfuscation.

VI. RELATED WORK

A. Traffic Analysis Attacks

Traffic analysis attacks aim to infer sensitive information
from network traffic by analyzing metadata such as packet
timing, size, and direction. These attacks serve as the founda-
tion for various tasks, including application identification [5],
[58], [60], [66], website fingerprinting [21], [28], [48],
[51], [53], [54], user profiling [17], [23], operating system
identification [30], [57], and IoT device identification [2], [38].
Recent studies [17], [34], [39], [51], [53], [54], [64] focus on
automatic feature extraction and employ Deep Learning (DL)
to execute the attacks using raw traffic inputs.

Cao et al. [11] utilize DL models to fingerprint applications
in software-defined networking by analyzing packet length
sequences of TLS encrypted control traffic. Shen et al. [52]
fingerprint decentralized applications by employing graph
neural networks to analyze packet length sequences of
encrypted flows. Rimmer et al. [48] automatically fingerprint
websites by analyzing direction sequences of cells in encrypted
Tor packets. Similarly, Sirinam et al. [53] propose Deep
Fingerprint, which learns representations from packet direction
sequences of encrypted Tor packets to achieve accurate
website fingerprinting. Cherubin et al. [15] further evaluate
website fingerprinting attacks in real-world network environ-
ments. In addition, traffic classification approaches [27], [35],
[37] and malicious flow detection approaches [20], [42] are
available for traffic analysis attacks.

Even though the above approaches achieve excellent results
in inferring sensitive information from the encrypted TCP
traffic, our experiments demonstrate that Cactus can effectively
defend against typical DL-based traffic analysis attacks.
Indeed, Xie et al. [63] present Rosetta to make DL models
aware of regular changes with TCP semantics. Despite this
advancement, Cactus is effective in defending against Rosetta
as Appendix A presents.

B. Countermeasures for Traffic Analysis Attacks

Various approaches [10], [12], [33], [41], [44], [50]
have been proposed to defeat traffic analysis attacks. They
typically deploy proxies for specific applications or modify

TABLE VI
COMPARISON OF OBFUSCATION APPROACHES

the specific applications to enable various traffic obfuscation
operations [8], [9], [21], [22], [29], [40], [43], [55], [61], [62],
such as splitting and padding packets [62], generating dummy
packets [29]. Nasr et al. [43] use generative adversarial
networks to perturb traffic with minimal overhead. Several
approaches [8], [9], [21] regularize the traffic features by
fixing the packet size and interval. Besides, recent studies [6],
[12], [13], [41], [44] rely on specific network devices, such as
programmable switches, to enable efficient traffic obfuscation.

Although these approaches can effectively obfuscate TCP
traffic patterns, they require two-side deployment to decode
the obfuscated flows correctly. However, modifying the remote
endpoints or deploying network devices on the remote
networks is typically outside the client’s control in practice.
Several approaches [40], [55] have been provided to obfuscate
traffic at the client side. Luo et al. [40] implement a browser
proxy to obfuscate encrypted web traffic by modifying packet
size, packet timing, web object size, and flow size at the
client side. Smith et al. [55] overwrite the browser library to
reshape QUIC traffic by padding packets, adding chaff packets,
splitting, and delaying the packets at the client side. However,
these approaches are tightly coupled to the web traffic and the
specific network application, i.e. browsers. They fail to support
obfuscating the TCP traffic for various applications.

We compare Cactus with the existing approaches in
Table VI. Cactus can achieve bidirectional TCP traffic
obfuscation at the client side. Meanwhile, it provides traffic
obfuscation for various applications, and enables users to
select the applications conducting traffic obfuscation and
customize the obfuscation level for each application.

VII. DISCUSSION

A. The Extension of Cactus for Non-TCP Encrypted Traffic

While initially designed for encrypted TCP traffic, Cactus
can be extended to non-TCP protocols that have similar
mechanisms like TCP. A typical protocol is QUIC, which
incorporates a retransmission mechanism to ensure reliable
communication. By leveraging the capabilities of eBPF
programs to analyze QUIC packets, Cactus can identify a
QUIC flow and intentionally drop its packets. This action
can trigger the server to initiate the retransmission of

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7671

the lost packets, introducing obfuscation into the traffic
pattern. However, it should be noted that Cactus cannot
be directly applied to QUIC or any non-TCP protocols
due to the difference in design. The development of a
similar approach for QUIC or any non-TCP protocol would
indeed require a comprehensive understanding of the inner
working mechanisms of the specific protocols. To effectively
reshape the traffic of QUIC or other non-TCP protocols
without disrupting their normal functionalities, it is essential
to delve into the intricate details of each protocol’s unique
characteristics.

B. Deploying Cactus at Server Side

Even though Cactus is designed to be deployed at client
side initially, it is feasible to deploy Cactus at the server side.
In the scenario where an application service provider aims
to prevent sensitive information from being inferred through
its encrypted TCP traffic, it can deploy Cactus at the server
side. Unlike existing approaches [22], [43], [61] that require
upgrades for applications both on the server side and the client
side, Cactus does not require any upgrades for the users’
application software.

C. Considerations on Reconstructing Original Flows

An advanced adversary may attempt to reconstruct original
flows by analyzing TCP packets to eliminate the traffic
obfuscation that Cactus enforces. However, it is infeasible
in practice. First, the original uplink flow is hard to be
reconstructed since the packet fragmentation operation (OP-
II) brings significant difficulties for the attacker. The attackers
cannot know which packets are fragmented by analyzing the
TCP packets, failing to reconstruct the original packet by
possibly merging packets. Second, the reconstruction of the
original downlink flow also poses a significant challenge due
to the arbitrary reshaping capabilities of Cactus through OP-
IV that manipulates the window size. By manipulating the
window size, Cactus can alter the traffic pattern at will, making
it difficult for the attacker to accurately reconstruct the original
downlink flows.

D. Considerations on Obfuscation in Low-Volume Packet
Exchanges

The effectiveness of adding chaff and fragmented packets
is affected by the total number of packets transmitted between
the client and server. In scenarios where only a small
number of packets are exchanged, the limited number of chaff
and fragmented packets may not sufficiently obfuscate key
information, potentially exposing it to adversaries. To mitigate
this, the frequency of these operations can be increased. Two
strategies are available: one approach is to set a higher α

value for the flows, which increases the likelihood of these
operations being executed. Alternatively, multiple chaff and
fragmented packets can be generated by repeatedly executing
operations OP-I and OP-II each time a packet is received
or sent by the client. This method would help increase the
variability in traffic patterns, enhancing the overall obfuscation
effectiveness.

Fig. 14. The effectiveness of Cactus in defending against Rosetta.

VIII. CONCLUSION

We present Cactus, a client-side plug-in aimed at
safeguarding encrypted TCP traffic against DL-based traffic
analysis attacks. By leveraging the inherent interaction and
collaboration mechanism of TCP, Cactus provides four
fundamental operations to effectively obfuscate bidirectional
traffic while preserving the communication semantics. Besides,
with the emerging eBPF technique, Cactus empowers users
to specify which applications to conduct traffic obfuscation
and what obfuscation level for each application. To validate
the effectiveness of Cactus, we conduct extensive experiments
to assess its performance in typical tasks, including website
fingerprinting and application identification. The experimental
results demonstrate the effectiveness of Cactus in defending
against DL-based traffic analysis attacks.

APPENDIX A
EFFECTIVENESS OF CACTUS IN DEFEATING ROSETTA

Rosetta [63] provides an approach to make DL models
aware of regular changes with TCP semantics in packet length
sequences, and it may significantly improve the performance
of DL models on conducting traffic analysis attacks. Hence,
we conduct experiments to explore whether Cactus can
effectively defeat Rosetta. As Rosetta extracts robust features
from flows and applies DF [53] as a representative DL model
to classify traffic based on the robust features, we use DF in
our experiments as well. Moreover, we conduct experiments
with the dataset mentioned in Section V-A. As Rosetta is
designed to enable DL models to achieve stable performance
in various network environments, we train DF with Rosetta
on the traffic data collected without deploying Cactus and test
the model on the traffic data collected with deploying Cactus.
As Figure 14 presents, Rosetta cannot accurately classify
traffic when Cactus is deployed. This can be attributed to
Cactus’s OP-I and OP-IV operations. OP-I introduces chaff
packets with varying lengths and OP-IV sets a random window
size to limit the maximum size of packets, which intentionally
violates the normal TCP changes that Rosetta considers.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSFC and other sponsors.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



7672 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

REFERENCES

[1] A. Acar et al., “Peek-a-boo: I see your smart home activities, even
encrypted!” in Proc. 13th ACM Conf. Secur. Privacy Wireless Mobile
Netw., 2020, pp. 207–218.

[2] A. Aksoy and M. H. Gunes, “Automated IoT device identification using
network traffic,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1–7.

[3] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” IETF,
USA, Tech. Rep. rfc5681, 2009.

[4] M. Backes, G. Doychev, M. Dürmuth, and B. Köpf, “Speaker
recognition in encrypted voice streams,” in Proc. 15th Eur. Symp. Res.
Comput. Secur. (ESORICS), Athens, Greece. Germany: Springer, 2010,
pp. 508–523.

[5] A. Bahramali, R. Soltani, A. Houmansadr, D. Goeckel, and D. Towsley,
“Practical traffic analysis attacks on secure messaging applications,” in
Proc. 27th Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego,
CA, USA, Feb. 2020, pp. 1–18.

[6] L. Barman et al., “PriFi: Low-latency anonymity for organizational
networks,” 2017, arXiv:1710.10237.

[7] A. Bittau, D. Giffin, M. Handley, D. Mazieres, Q. Slack, and E. Smith,
“Cryptographic protection of TCP streams (tcpcrypt),” IETF, USA,
Tech. Rep. rfc8548, 2019.

[8] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in Proc. 13th Workshop
Privacy Electron. Soc., Nov. 2014, pp. 121–130.

[9] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg,
“A systematic approach to developing and evaluating website fingerprint-
ing defenses,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2014, pp. 227–238.

[10] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proc. ACM
Conf. Comput. Commun. Security, 2012, pp. 605–616.

[11] J. Cao, Z. Yang, K. Sun, Q. Li, M. Xu, and P. Han, “Fingerprinting SDN
applications via encrypted control traffic,” in Proc. 22nd Int. Symp. Res.
Attacks, Intrusions Defenses (RAID), 2019, pp. 501–515.

[12] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HORNET:
High-speed onion routing at the network layer,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 1441–1454.

[13] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and
C. Troncoso, “TARANET: Traffic-analysis resistant anonymity at the
network layer,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P),
Apr. 2018, pp. 137–152.

[14] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in Proc. IEEE
Symp. Secur. Privacy, May 2010, pp. 191–206.

[15] G. Cherubin, R. Jansen, and C. Troncoso, “Online website fingerprinting:
Evaluating website fingerprinting attacks on Tor in the real world,” in
Proc. 31st USENIX Security Symp., Aug. 2022, pp. 753–770.

[16] B. Coskun and N. Memon, “Tracking encrypted VoIP calls via robust
hashing of network flows,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Mar. 2010, pp. 1818–1821.

[17] T. Cui, G. Gou, G. Xiong, Z. Li, M. Cui, and C. Liu, “SiamHAN:
IPv6 address correlation attacks on TLS encrypted traffic via Siamese
heterogeneous graph attention network,” in Proc. 30th USENIX Secur.
Symp. (USENIX Secur.), 2021, pp. 4329–4346.

[18] Curl. (2023). Crul. [Online]. Available: https://github.com/curl/curl
[19] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol

version 1.2,” IETF, USA, Tech. Rep. rfc5246, 2008.
[20] P. Dodia, M. AlSabah, O. Alrawi, and T. Wang, “Exposing the rat in the

tunnel: Using traffic analysis for tor-based malware detection,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2022, pp. 875–889.

[21] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 332–346.

[22] J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in Proc. 29th USENIX Secur. Symp. (USENIX Security),
2020, pp. 717–734.

[23] R. Gonzalez, C. Soriente, and N. Laoutaris, “User profiling in the time
of HTTPS,” in Proc. Internet Meas. Conf., 2016, pp. 373–379.

[24] Google. (2023). Google for Developers. [Online]. Available:
https://developers.google.com/speed/docs/insights/v5/about

[25] K. Hickman and T. Elgamal, “The SSL protocol,” Internet Draft RFC,
Netscape, USA, Tech. Rep., 1995.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[27] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions
in automated traffic analysis,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2021, pp. 3366–3383.

[28] G. Huang et al., “Efficient and low overhead website fingerprinting
attacks and defenses based on TCP/IP traffic,” in Proc. ACM Web Conf.,
2023, pp. 1991–1999.

[29] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward
an efficient website fingerprinting defense,” in Proc. 21st Eur. Symp.
Res. Comput. Secur. (ESORICS), Heraklion, Greece. Germany: Springer,
2016, pp. 27–46.

[30] M. Laštovička, S. Špaček, P. Velan, and P. Čeleda, “Using TLS
fingerprints for OS identification in encrypted traffic,” in Proc.
IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), Apr. 2020, pp. 1–6.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[32] D. J. Lee, B. E. Carpenter, and N. Brownlee, “Observations of UDP
to TCP ratio and port numbers,” in Proc. 5th Int. Conf. Internet Monit.
Protection, May 2010, pp. 99–104.

[33] W. Li et al., “Prism: Real-time privacy protection against temporal
network traffic analyzers,” IEEE Trans. Inf. Forensics Security, vol. 18,
pp. 2524–2537, 2023.

[34] X. Li, W. Chen, Q. Zhang, and L. Wu, “Building auto-encoder intrusion
detection system based on random forest feature selection,” Comput.
Secur., vol. 95, Aug. 2020, Art. no. 101851.

[35] X. Lin, G. Xiong, and G. Gou, “ET-BERT: A contextualized datagram
representation with pre-training transformers for encrypted traffic
classification,” in Proc. ACM Web Conf., 2022, pp. 633–642.

[36] Linus Torvalds. (2023). Linux Kernel. [Online]. Available:
https://github.com/torvalds/linux.git

[37] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow
sequence network for encrypted traffic classification,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr./May 2019, pp. 1171–1179.

[38] Y. Liu, J. Wang, J. Li, S. Niu, and H. Song, “Machine learning for the
detection and identification of Internet of Things devices: A survey,”
IEEE Internet Things J., vol. 9, no. 1, pp. 298–320, Jan. 2022.

[39] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Comput., vol. 24, no. 3,
pp. 1999–2012, Feb. 2020.

[40] X. Luo et al., “HTTPOS: Sealing information leaks with browser-side
obfuscation of encrypted flows,” in Proc. NDSS, vol. 11, 2011, pp. 1–20.

[41] R. Meier, V. Lenders, and L. Vanbever, “ditto: WAN traffic obfuscation
at line rate,” in Proc. NDSS Symp., 2022, pp. 1–45.

[42] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Proc. Netw. Distrib. Syst. Secur. (NDSS) Symp., 2018, pp. 1–15.

[43] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-
based traffic analysis systems in real-time with blind adversarial
perturbations,” in Proc. 30th USENIX Secur. Symp. (USENIX Security),
2021, pp. 2705–2722.

[44] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The Loopix anonymity system,” in Proc. 26th USENIX Security Symp.,
Aug. 2017, pp. 1199–1216.

[45] Selenium Project. (2023). Selenium Webdriver. [Online]. Available:
https://www.selenium.dev/documentation/webdriver/

[46] E. Rescorla, “HTTP over TLS,” IETF, USA, Tech. Rep. rfc2818, 2000.
[47] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”

IETF, USA, Tech. Rep. rfc8446, 2018.
[48] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,

“Automated website fingerprinting through deep learning,” in Proc.
Netw. Distrib. Syst. Secur. (NDSS) Symp., 2018, pp. 1–15.

[49] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Subverting website
fingerprinting defenses with robust traffic representation,” in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 607–624.

[50] M. Shen et al., “Real-time website fingerprinting defense via traffic
cluster anonymization,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2024, p. 263.

[51] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, “Fine-grained webpage
fingerprinting using only packet length information of encrypted
traffic,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2046–2059,
2021.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: CACTUS: OBFUSCATING BIDIRECTIONAL ENCRYPTED TCP TRAFFIC AT CLIENT SIDE 7673

[52] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized
application identification via encrypted traffic analysis using graph
neural networks,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 2367–2380, 2021.

[53] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), Oct. 2018,
pp. 1928–1943.

[54] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
N-shot learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 1131–1148.

[55] J.-P. Smith, L. Dolfi, P. Mittal, and A. Perrig, “QCSD: A QUIC client-
side website-fingerprinting defence framework,” in Proc. 31st USENIX
Secur. Symp., 2022, pp. 771–789.

[56] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and
timing attacks on SSH,” in Proc. 10th USENIX Secur. Symp. (USENIX
Secur.), 2001, pp. 1–17.

[57] J. Song, C. H. Cho, and Y. Won, “Analysis of operating system
identification via fingerprinting and machine learning,” Comput. Elect.
Eng., vol. 78, pp. 1–10, Sep. 2019.

[58] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
smartphone app identification via encrypted network traffic analysis,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 1, pp. 63–78, Jan. 2018.

[59] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.

[60] T. van Ede et al., “FlowPrint: Semi-supervised mobile-app fingerprinting
on encrypted network traffic,” in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), vol. 27, 2020, pp. 1–18.

[61] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in Proc. 26th USENIX Secur.
Symp. (SEC), Aug. 2017, pp. 1375–1390.

[62] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis,” in Proc. NDSS,
vol. 9, 2009, pp. 1–14.

[63] R. Xie et al., “Rosetta: Enabling robust TLS encrypted traffic
classification in diverse network environments with TCP-aware traffic
augmentation,” in Proc. 32nd USENIX Secur. Symp. (USENIX Secur.),
2023, pp. 625–642.

[64] J. Xing and C. Wu, “Detecting anomalies in encrypted traffic via deep
dictionary learning,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Jul. 2020, pp. 734–739.

[65] T. Ylonen and C. Lonvick, “The secure shell (SSH) transport layer
protocol,” IETF, USA, Tech. Rep. rfc4253, 2006.

[66] W. Zhang et al., “HoMonit: Monitoring smart home apps from encrypted
traffic,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018,
pp. 1074–1088.

Renjie Xie received the B.Eng. degree from Beijing University of Posts and
Telecommunications in 2016 and the M.Sc. degree from Tsinghua University
in 2019, where he is currently pursuing the Ph.D. degree. His research interests
include network and machine learning security.

Jiahao Cao (Member, IEEE) received the B.Eng. degree from Beijing
University of Posts and Telecommunications in 2015 and the Ph.D. degree
from Tsinghua University in 2020. He was a Visiting Scholar with George
Mason University. He is currently an Assistant Research Professor with the
Institute for Network Sciences and Cyberspace, Tsinghua University. His
current research interests include network protocol security, network attack
detection, and network traffic analysis.

Yuxi Zhu received the B.Eng. degree from Tsinghua University in 2022,
where he is currently pursuing the Ph.D. degree. His research interests include
fuzzing and fingerprinting.

Yixiang Zhang received the B.Sc. degree from Tsinghua University in 2024,
where he is currently pursuing the Ph.D. degree. His research interests include
network security.

Yi He received the M.Sc. and Ph.D. degrees from Tsinghua University, China.
His research interests include system security and program analysis.

Hanyi Peng is currently pursuing the B.Sc. degree with Tsinghua University.
His research interests include network security.

Yixiao Wang is currently pursuing the B.Sc. degree with Tsinghua University.
His research interests include network security.

Mingwei Xu received the B.Sc. and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor with the Department of Computer
Science, Tsinghua University. His research interests include computer network
architecture, high-speed router architecture, and network security.

Kun Sun (Member, IEEE) received the Ph.D. degree from the Department
of Computer Science, North Carolina State University. He is currently a
Full Professor with the Department of Information Sciences and Technology,
George Mason University. He is also the Associate Director of the Center for
Secure Information Systems and the Director of the Sun Security Laboratory,
George Mason University. He has more than 15 years of working experience
in both the industry and academia on systems and network security.

Enhuan Dong (Member, IEEE) received the B.E. degree from Harbin Institute
of Technology, Harbin, China, in 2013, and the Ph.D. degree from Tsinghua
University, Beijing, China, in 2019. He was a Visiting Ph.D. Student with
the University of Göttingen from 2016 to 2017. He is currently an Assistant
Research Professor with the Institute for Network Sciences and Cyberspace,
Tsinghua University. His research interests include network security, network
operations, and network transport.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University, Beijing, China. He is currently an Associate Professor with the
Institute for Network Sciences and Cyberspace, Tsinghua University. His
research interests include network and system security, particularly in internet
and cloud security, mobile security, and big data security. He is currently an
Editorial Board Member of IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING and ACM DTRAP.

Menghao Zhang (Member, IEEE) received the B.S. and Ph.D. degrees in
computer science from Tsinghua University in 2016 and 2021, respectively.
He is currently an Associate Professor with the School of Software, Beihang
University. His research interests include programmable networks, high-
performance networks, networked systems, and network security.

Jiang Li received the B.Eng. degree from Beijing University of Posts and
Telecommunications in 2017 and the Ph.D. degree from Tsinghua University
in 2024. He is currently an Assistant Researcher with the Zhongguancun
Laboratory. His research interests include inter-domain routing security,
network measurement, and AI for networking.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2024 at 08:28:30 UTC from IEEE Xplore.  Restrictions apply. 


