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ABSTRACT

Recent advances in large language models (LLMs) have intensi-
fied the need for serving LLMs that are cost-efficient and QoS-
guaranteed. Existing frameworks often co-locate computationally
distinct prefill and decode instances on homogeneous GPUs, over-
looking their unique resource demands and under-utilizing hetero-
geneous GPUs. This leads to suboptimal resource utilization and
increased capital expenditure. We present CAucHY, a LLM serving
framework that adaptively deploys prefill and decode computation
to the most suitable heterogeneous GPUs and dynamically sched-
ules user requests. At the core of CaucHY is choosing proper GPU
Combo, a conceptual GPU combination encompassing diverse GPU
configurations, for their cost efficiency in running prefill-decode
pairs. CaucHY deploys a set of combos to satisfy QoS requirements
(e.g., goodput) of LLM inference. CAucHY further employs hierarchi-
cal scheduling to handle user requests, using opportunistic sched-
uling within the allocated GPU Combos and a goodput-weighted
round-robin policy across GPU Combos. Dynamic autoscaling is
used to stabilize the cost-efficiency in the face of surging requests.
Experiments show that CAucHY achieves up to a 38.3% improve-
ment in Tokens/USD efficiency over the state-of-the-art baselines,
while maintaining strict Service Level Objectives (SLOs). Our work
highlights the importance of leveraging workload and GPU hetero-
geneity to achieve superior cost-efficient LLM serving.
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1 INTRODUCTION

Large language models (LLMs) have significantly revolutionized
various aspects of engineering and science, from chatbot to docu-
ment summarization and code generation [4, 22, 25]. Transformer-
based models [1, 20, 21] have become the backbone architecture
of modern Al services. Deploying LLM models in a cost-efficient
manner remains an unsettled challenge, considering the workload
diversity and GPU heterogeneity.

LLM workloads exhibit distinct execution characteristics be-
tween prefill and decode phases, broadly falling into three cate-
gories: Long Input-Short Output (e.g., document summarization [4]),
Balanced Input-Output (e.g., chatbot [25]), and Short Input-Long
Output (e.g., creative writing [22]). For example, document sum-
marization tasks take long prompts as input yet produce short
outputs, and are thus heavily prefill-dominated. In contrast, cre-
ative writing tasks are decode-dominated, as they generate lengthy
output sequences from short input prompts. The diversity indicates
that the model deployment should be adaptive to different com-
putational and memory demands. However, existing deployment
policies [28, 32, 33] are agnostic to such workload patterns and fall
short in resource optimization among GPU devices. Recent prefill-
decode (PD) disaggregation approaches [26, 27, 37] optimize PD
resources to match workload patterns, but their static and homoge-
neous configurations cannot adapt to runtime variations, leading
to suboptimal QoS under dynamic traffic conditions.

Meanwhile, modern heterogeneous GPUs exhibit varying cost
and performance characteristics. As shown in Table 1, NVIDIA
HB800 GPU offers superior arithmetic efficiency (TFLOP/USD) ideal
for prefilling, while NVIDIA H20 GPU provides higher memory
bandwidth efficiency (GB/USD) suitable for decoding. The state-
of-the-art prefill-decode disaggregation schemes [26, 27, 37] sim-
ply aim to improve goodput without elaborating heterogeneity.
Mélange [14] is one of the first attempts to advance heterogeneous
GPU allocation for LLM serving. It examines the impact of varying
configurations including request size, request rate and SLO on the
cost efficiency of different GPU devices, and derives the minimal-
cost allocation through solving the cost-aware bin packing problem.
Mélange focuses on GPU selection based on the holistic perfor-
mance profiling of fine-grained request configurations, without
analyzing prefill/decode phases in depth or accounting for the indi-
vidual impact of heterogeneous GPUs on the cost efficiency. GPU
heterogeneity unleashes a huge potential for optimizing resource
allocation by matching the prefill-decode instances with the most
suitable and cost-efficient GPUs.
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Table 1: GPU Specifications (Data collected from [11, 34] specifications as of June 2025)

GPU TFLOPs BW (GB/s) Mem (GB) Price ($/h) TFLOPs/BW TFLOP/$ GB/$ Recommended Deployment
H800-SXM 989 3350 80 2.69 0.30 1.32M 4.48M Prefill
A10 125 600 24 0.75 0.21 600K 2.88M Prefill
RTX4090 165 1008 24 0.69 0.21 861K 5.26M Aggregated
A800-PCle 312 1935 80 1.19 0.16 944K 5.85M Aggregated
MI210 181 1638 64 1.40 0.11 465K 4.21M Decode
H20-NVL 148 4000 96 1.50 0.04 355K 9.60M Decode
In this paper, we present CAuCHY, an adaptive GPU schedul- EEE input 9 output &3 Prefill 3 Decode
ing and LLM serving framework that navigates the complexity of 12800 100
deploying LLM services through adaptively assigning GPU com- 6400
binations to different LLM workloads and dynamically scheduling 3200 s 80
user requests across these heterogeneous GPUs. The key insight is é 1600 2 60
to investigate the distinct performance of different workloads on s 80 g
various combinations of heterogeneous GPU devices, and select the 8 w0 % 40
most suitable combinations that can maximize the token through- 200 = .
put per monetary cost while satisfying the QoS such as goodput. 100
This design is driven by the fact that GPU clusters across different

environments — from cost-sensitive clouds to resource-constrained
organizations — are typically heterogeneous and have limited num-
ber of each GPU type. CaucHY introduces GPU Combo as the logical
representation of GPU combination and the basic unit of schedul-
ing, and automatically allocates GPUs by selecting top GPU Com-
bos and determines the optimal number of each GPU Combo via
multi-objective optimization. CAucHY employs hierarchical sched-
uling to handle requests, using opportunistic scheduling within
the allocated GPU Combos and a goodput-weighted round-robin
policy across GPU Combos to minimize GPU idle time. Dynamic
autoscaling is performed to stabilize the cost-efficiency and service
quality in the face of surging requests. Experiments on real-world
datasets demonstrate the effectiveness of Caucuy. Compared to
heterogeneity-agnostic deployment schemes, CAucHY achieves up
to a 38.3% improvement in Tokens/USD efficiency. CAucHY reduces
end-to-end latency by up to 59.1%, while maintaining high goodput
and consistent performance across different workloads.
The key contributions of this paper are as follows:

o A cost-efficiency optimization framework that estimates and
validates the optimal deployment of heterogeneous GPUs across
diverse workloads, maximizing token throughput per monetary
cost while satisfying QoS requirements (§3.2 and §3.3).

o A hierarchical scheduling architecture that optimizes request dis-
tribution across heterogeneous GPU devices to maximize system
goodput and minimize latency (§3.4).

o An elastic autoscaling mechanism that dynamically adjusts GPU
Combo deployments in response to workload fluctuations, main-
taining high cost-efficiency and goodput (§3.5).

2 BACKGROUND
2.1 LLM Serving
LLM Inference. LLM inference consists of two distinct phases:

prefill phase and decode phase. In the prefill phase, the model pro-
cesses the entire input sequence in parallel, computing hidden states
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Figure 1: Heterogeneity between different workloads a) input and output
distribution b) prefill and decode time of different workloads under NVIDIA
H800-SXM testbeds with Llama-3.1-8B [13].

and attention scores across all token pairs. This phase is compute-
intensive, involving heavy matrix multiplications and softmax op-
erations, thus requiring high arithmetic efficiency (TFLOP/USD).
In contrast, the decode phase generates tokens sequentially, one at
a time, relying heavily on previously computed KVCache to per-
form attention over the entire token history. This phase is memory-
intensive, demanding high memory bandwidth efficiency (GB/USD).
The different computational characteristics of these two phases ne-
cessitate distinct optimization strategies and cost considerations.

Prefill-Decode Aggregation or Disaggregation. There are many
works [2, 16, 35] that aggregate prefill and decode phases on the
same GPU. This approach avoids intermediate state transfer across
GPUs, as the KVCache generated during the prefill phase can be
directly used by the subsequent decode phase. This scheme is par-
ticularly beneficial for long inputs where the KVCache size is sub-
stantial. Loading model weights multiple times across different
instances can be eliminated, thereby conserving GPU memory.

Disaggregation schemes [26, 27, 37], on the other hand, separate
the prefill and decode phases onto different GPUs, thereby enabling
hardware selection and optimization strategies tailored to the char-
acteristics of each phase. Intuitively, GPUs with higher compute
capabilities can be dedicated to prefill instances, while GPUs with
higher memory bandwidth can be allocated to the decode phase.
However, disaggregation incurs overhead from KVCache migra-
tion, especially with long-context inputs, where the KVCache size is
substantial. It is therefore imperative to adaptively tune the prefill-
decode configuration and choose the appropriate architecture based
on the workload characteristics.
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Figure 2: Heterogeneous vs. Homogeneous Disaggregation: in H800-H20 setup,
CaucHy dedicates 2 H800 to prefill and 2 H20 to decode, while homogeneous
baseline (DistServe) deploys 2 instances: (1 H800 prefill + 1 H800 decode) and
(1 H20 prefill + 1 H20 decode). Both deployments use exactly 2 H800 and 2
H20 GPUs in total, with results normalized to DistServe.

2.2 Workload Diversity

As shown in Fig. 1, representative LLM workloads can be roughly
categorized according to the length of their input and output.

¢ Long Input-Short Output. Services like summarization [4] pro-
cess long inputs but produce brief outputs, making them prefill-
dominated (>60% latency). The large KVCache strains compute
during the prefill phase, while the decode phase underuses mem-
ory bandwidth. Aggregated architectures are preferred in this
context to avoid prohibitive KV cache migration overhead.
Balanced Input-Output. Conversational service [25] handles
symmetrical sequences, balancing compute-memory demands.
Moderate KVCache allows flexible architectures: aggregated ar-
chitecture simplifies cache management, while disaggregated
one suits high-throughput streaming. Hybrid approaches may
dynamically adjust resources based on real-time workload mixes.
Short Input-Long Output. Text and code generation tasks [22]
have minimal inputs but lengthy outputs, making them decode-
bound (>95% latency). Negligible prefill KVCache reduces trans-
fer overhead, favoring disaggregated architectures to maximize
memory bandwidth for memory-bound generation.

As will be shown in our study, the selection of different GPU
types for prefill and decode phases has a noticeable impact on the
performance of each type of workload.

2.3 Impact on LLM Inference Performance

Industrial LLM serving systems [3, 12, 23] measure cost efficiency
(CE) through Tokens/USD - the number of processed tokens per
dollar spent. As shown in Table 1, GPUs exhibit intrinsic hetero-
geneity — H800 delivers 3.7x higher compute efficiency but 2.1x
lower memory efficiency than H20-NVL, creating a 7.5 X disparity
in compute-to-memory ratio. We conduct an empirical study to
showcase the potential for performance improvement by exploiting
GPU heterogeneity. We deploy Llama-3.1-8B using the ShareGPT
dataset under the same QPS on H800 and H20. Fig. 2 shows it
consistently outperforms the disaggregated deployment scheme
with homogeneous configurations, achieving over 5% Tokens/USD
improvement. Even when the cross-node KVCache overhead be-
comes noticeable, a heterogeneous deployment (e.g., H800-A800,
AB800-H20) retains superior cost efficiency.
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2.4 Research Requirements

Designing and implementing an elastic LLM serving system for
real-world heterogeneous clusters needs to satisfy the following
research requirements.

¢ Quantifying the performance impact of heterogeneous
GPU combinations on LLM workloads. As hardware diver-
gence has an explicit impact on phase-specific performance, there
is a need to optimize GPU allocations for compute-bound prefill
and memory-bound decode phases jointly. It is thus desirable to
precisely model the cost-efficiency of GPU combinations with
heterogeneous devices, thereby unleashing the potential for LLM
serving acceleration.

Optimizing the holistic cost-efficiency of GPU allocation
while adhering to serving QoS. It is critical to optimize the
cost-efficiency by mapping diverse LLM workloads onto het-
erogeneous GPUs while satisfying economic and performance
constraints. The optimization should take into account hardware
capabilities and dynamic workload requirements (e.g., varying
input/output patterns and SLOs).

Stabilizing the LLM serving for surging requests. User re-
quests exhibit inherent temporal fluctuations. LLM serving sys-
tems need to dynamically address the diverse workload types
and fluctuating request volumes.

3 OUR APPROACH
3.1 Overview of CAUCHY

GPU Combo. To align with the distinct resource requirements of
the prefill and decode phases, we introduce the GPU Combo, a pair
of GPU devices defined by their types and counts that are best suited
to each phase, respectively. For instance, <2xH800, 4xH20> denotes
a pair of heterogeneous GPUs where two H800 and four H20 devices
are allocated to prefill and decode instances. When a phase requires
multiple GPUs of the same type, we prioritize consolidating them
into a single instance with higher Tensor Parallelism (TP), rather
than deploying multiple smaller instances. Heterogeneous GPU
combinations demonstrate directionality - assigning the high-FLOP
GPU to prefill and high-bandwidth GPU to decode yields superior
cost-efficiency, compared with the reverse configuration.

Cost Efficiency. Aligning with widely-used pricing strategies from
major cloud providers, we define Cost-Efficiency (CE) as the number
of processed tokens (including input and output) per US dollar
spent. CE captures both the compute-bound processing of input
tokens in the prefill phase and the memory-bound generation of
output tokens in the decode phase. CE is a higher-is-better metric
that reflects the economic effectiveness of the deployment strategy
and the resulting improved resource utilization.

Architecture. Fig. 3 illustrates CaucHY’s architecture and the basic
workflow among components. The system operates in two phases:

e Deployment Phase. Upon receiving a LLM service requirement
(model configurations, workload pattern, and expected goodput),
CaucHy initiates a modeling process to evaluate all feasible GPU
Combos. This involves estimating the CE of each GPU Combo
based on the workload’s characteristics (§3.2), and retrieving
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Figure 3: Overview of CAucHY. Shapes represent different GPU types.

pre-profiled goodput for the corresponding workload type. Af-
terwards, CAUCHY generates a set of GPU Combo candidates
tailored to the workload (§3.3.1). A multi-object integer linear
programming (ILP) solver is then employed to determine the
optimal number and type of GPU Combos to deploy, maximizing
CE under cluster resource constraints while satisfying the user’s
goodput target (§3.3.2).

Serving Phase. Once GPU Combos are deployed, incoming re-
quests are routed through a hierarchical scheduler that operates
at two levels for load balancing and performance optimization
(§3.4): i) inter-combo scheduling, during which requests are dis-
tributed across GPU Combos using a Goodput-Weighted Round
Robin policy for load balancing according to each GPU Combo’s
capacity; and ii) intra-combo scheduling, during which requests
are dynamically forwarded between prefill and decode instances
within a GPU Combo by using an opportunistic strategy to min-
imize GPU idle time and reduce the serving latency. Moreover,
to handle workload fluctuations, CAucHY conducts combo-level
autoscaling, based on real-time QPS monitoring within a sliding
time window. When a persistent deviation from the expected load
is detected, rescheduling of GPU Combos is triggered to maintain
goodput while preserving a competitive CE (§3.5).

3.2 Cost-Efficiency Modeling

This section describes how to quantify the cost-efficiency of a given
GPU Combo assigned to a specific LLM workload. The model con-
figurations (e.g., hidden size h, number of layers [) referenced in
our modeling, as detailed in Table 2, are used to derive the LLM
related coefficients C; — C, in the cost-efficiency model.

3.2.1 Calculating Token Throughput. The theoretical study of to-
ken throughput is based on the fact that prefilling is compute-bound
and decoding is memory-bound.

Prefill Phase. The prefill phase exhibits quadratic complexity with
respect to input length R;,, primarily due to attention computations,
with an additional linear term from feed-forward networks (FFN).
We first define two coefficients:

C; =4lh  (Quadratic attention term coefficient) (1)
C, = 8lh* + 6lhi (Linear FFN term coefficient) 2)
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Table 2: Notation Descriptions

Symbol Description

1 number of hidden layers

h hidden size

n number of attention heads

s head size (s = h/n)

k number of key-value heads

b block size of PagedAttention

i intermediate size

v vocab size

e max position embeddings

d torch dtype

B batch size

Rin average input tokens per request
Rout average output tokens per request
GPU,, number of GPUs

GPUy peek FLOPs of GPU

GPU,, peek memory bandwidth of GPU
GPU,, hosting price of GPU

Sprefill input token throughput

Sdecode output token throughput

The FLOP requirement is then:
FLOPp,efin = B(C1R3, + CaRin), (3
The prefill time is bounded by arithmetic performance:

B(ClRlZn + Csz)

Tyrefit1 (B, Rin) = 4
preftll( m) GPU, - GPUf ( )
Hence, the prefill throughput can be calculated by:
B-R; GPU, - GPU,
Sprefill = - = - ! (5

Tprefiti(B.Rin) ~ CiRin + C;

Decode Phase. To decode R,,; tokens, we first define two coeffi-
cients characterizing the memory access requirements:

Cs = d(20h + (4h® + 3hi + 2h)]) (Static model weight)  (6)
Cy = 2dlks (KVCache per token) (7)

The total memory access volume consists of weight access and
KVCache transfer:

Rout_l
Bytesecode = [C5 + B~ Ca(Rin + j)] ®)
Jj=0
1
= (Cs + B+ CaRin)Rous + 5B+ CaRoyy, )

The decode time is bounded by memory bandwidth:

(Cs + B - C4Rin)Rour + 3B - C4R?

Taecode (B: Rin, Rout) = GPU, - GPU, m (10)
n

The decode throughput turns out to be:

B - Rour _ GPU,, - GPUy
Taecode (B, Rin, Rout) % + C4Rip + %

Sdecode =



3.2.2 Calculating Cost-Efficiency. We define cost-efficiency (CE)
as Tokens/USD, representing the number of processed tokens per
dollar spent. The workload pattern for prefill and decode phases is
jointly determined by model parameters (C;-Cy4) and request char-
acteristics (R;, R,, B). We first define workload-specific coefficients
that capture this combined effect:

1
Ay = ——  (Prefill workload pattern) (12)
ClRin + C2
1
A; = (Decode workload pattern)  (13)
Gt 4 CyRp + &
The cost-efficiency is then:
Sprefi S,
prefill decode
CE = + (14)
GPU"prefill ! GPUpprefill GPU"decode : GPUPdecode

Substituting the throughput expressions from Eq. 5 and Eq. 11, the
cost-efficiency becomes:

GPU]ibrefill
GPUpprefill

GPUbdecude

CE=A;- .
' GPUpdecode

(15)

2

Equation 15 reveals the following key insights:

o Relative Advantage Principle. Cauchuy’s efficiency stems from
aligning each phase with the GPU that holds a comparative ad-
vantage in the required resource per dollar. Each phase is assigned
to the type of GPU that holds a relatively higher ratio of the re-
quired resource (TFLOPs for prefill, bandwidth for decode) per
dollar, when compared with other available GPUs.

e Workload-Dependent Coefficients. The weights A; (prefill)
and A; (decode) are dynamically determined by workload char-
acteristics. This explains why the GPU Combo A800-H20 excels
for short-input-long-output workloads (high A, dominance) but
underperforms for long-input-short-output workloads (A; domi-
nates but bandwidth remains underutilized).

3.3 Combo-Based GPU Allocation

Caucny allocates GPUs in units of GPU Combos to meet the paired
requirements of prefill and decoding instances on a per-workload
basis. GPU allocation is performed in two steps: selecting the GPU
Combos most likely to have the highest cost-efficiency, and deter-
mining the optimal number for each selected GPU Combo. Runtime
workload characteristics and SLO constraints can automatically
navigate the optimal GPU Combo selection and deployment.

3.3.1  Adaptive Combo Selection. CAucHY shortlists the GPU Combo
candidates from all possible combinations primarily based on their
individual CE for each workload scenario. The procedure encom-
passes the following steps:

e Workload Estimation: Computing the phase-wise coefficients

(A, Az) from model configurations and input/output token lengths.

o Profiling: For each GPU Combo, calculating the CE when con-
ducting a given LLM inference - considering such influencing
factors as FLOPs, bandwidth, and price — and profiling goodput
under given SLA.

o Pareto Filtering: Retaining the optimal configuration for each
unique GPU pair, eliminating suboptimal directional variants
(e.g., keeping H800-H20 while discarding H20-H800 when the
former has higher CE).
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e Candidate Ranking: Sorting valid configurations in descending
order of CE. The candidate information typically includes various
GPU Combos with their measured cost-efficiency metrics and the
actual goodput performance.

We also generalize the GPU Combo concept to include combi-
nations of only homogeneous devices, to accommodate some LLM
workloads suitable for prefill-decoding aggregation. This combo se-
lection criterion balances cost and performance trade-offs, ranging
from cost-efficient high-CE options to high-performance configu-
rations. It maintains deployment flexibility by preserving different
GPU Combos for various SLO requirements, especially in GPU clus-
ters with fluctuating saturation levels.

3.3.2  Combo Deployment Optimization. We formalize the deploy-
ment as an optimization problem to determine the specific GPU
Combo allocation for each submitted LLM workload, aiming for
maximizing holistic cost-efficiency while adhering to resource con-
straints and ensuring LLM QoS.

Problem Formulation. CaucHY takes the candidate information
(§3.3.1) and the user requirements as inputs. User requirements are
specified as follows: i) the workload type (as categorized in §2.2),
and ii) the target goodput, defined as the SLO-satisfying throughput
that inherently accounts for latency requirements.

The optimization aims to minimize deployment costs while max-
imizing cost-efficiency. Since the most cost-efficient GPU Combos
are often more expensive to deploy, CAUCHY manages this trade-off
by selecting combos that meet goodput requirements at the low-
est cost, even if they have marginally lower cost-efficiency. For
instance, to satisfy a residual goodput of 0.80, it chooses an A800
Combo (goodput=0.82 req/s, price=1.09 $/h, CE=1.07M token/$)
over an H20 Combo (goodput=1.23 req/s, price=1.50 $/h, CE=1.15M
token/$), as the former fulfills the requirement at lower cost.

The system must satisfy the goodput requirements for each
model to maintain system performance and user expectations. Ad-
ditionally, the total GPU resources consumed across all deployments
cannot exceed the available cluster capacity. These constraints are
critical to ensure that the optimization process is practical and
feasible within the given resource limitations.

Specifically, the multi-objective optimization problem can be
formulated with the workload input Dp,:

N M

min Z & - X,

xezZ* Cp m
n=1 m=

s.t. Tm (Xm) = Dm, Vmel,...,.M (16)
M

ZRg(xm)sG, Vge G

m=1

where the primary decision variable x,,, represents the number
of GPU Combo type n allocated to model m. The objective func-
tion combines both cost minimization and efficiency maximization
through the composite term P, /C,,, where P, denotes the hourly
price of GPU Combo n and C,, represents its cost-efficiency (Token-
s/USD). The constraints ensure that the goodput demand D,, is
satisfied for each model m by the goodput function 7,,(x,,), and
that the total GPU allocation across all deployments remains within
the cluster capacity G, for each GPU type g.
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Figure 4: An example of CE modeling and combo-based allocation.

Problem Solver. CaucHy solves the problem by using the PuLP[8]
package in Python. The GPU Combo search space grows as O(G?)
for G GPU types, encompassing both homogeneous and heteroge-
neous combinations with different prefill-decode counts (from 1:1 to
2:6). In our experimental setup with 3 GPU types, this yields up to 12
candidate combos, and the solver typically converges within 20-50
milliseconds. When the optimal solution cannot be obtained within
the specified constraints, CAUCHY resorts to a fallback strategy —
relaxing the optimization objective of maximizing cost-efficiency.
This prioritizes the satisfaction of user QoS requirements over the
strict optimization of cost-efficiency.

3.3.3 Working Example. Fig. 4 illustrates the evaluation and al-
location of different GPU Combos using cost-efficiency modeling
and goodput profiling. We consider a cluster with 24 heteroge-
neous GPUs (8 H800s, 8 A800s, 8 H20s), on which we evaluate
Llama-3.1-8B [13] and Qwen1.5-14B [6] using three datasets (CNN
DailyMail [15, 30], ShareGPT [18], LongWriter-6K [7]) that cover
all workload types.

For each model-dataset pair, CAucHY derives the phase-specific
coefficients A; and A, from workload statistics and model configu-
rations, enumerates all feasible GPU Combos among H800, A800,
and H20, and computes their theoretical CE via Eq. 15. Offline pro-
filing under SLOs (TTFT < 10/5/1 s; TBT < 50/30/30 ms) populates
an allocation lookup table with CE-goodput pairs. When a user
submits a requirement for Llama-3.1-8B on a short input-long out-
put workload with goodput > 6.4 req/s, the Combo Selector filters
unsuitable options and ranks the remainder by CE. The top four
GPU Combo candidates — <1xH800, 1xA800>, <1xA800, 1xH20>,
<2xA800>, and <1xH800, 1xH20> — are passed to the ILP solver. Un-
der the cluster’s resource constraints, the solver produces the final
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deployment plan: two <1xH800, 1xA800> combos, one <1xA800,
1xH20> combo, and one <2xA800> combo.

3.4 Hierarchical Request Scheduler

CaucHy employs a hierarchical LLM serving architecture to op-
timize request distribution across the allocated GPU devices. To
ensure efficient resource utilization while maintaining stringent la-
tency SLOs, the serving framework consists of the following compo-
nents: i) serving components such as API Gateway for service-level
routing and request classification, and QPS Monitor for autoscaling
triggers; ii) scheduling components including Combo Scheduler for
inter-combo load balancing and Instance Scheduler for intra-combo
optimization. The key techniques are as follows:

3.4.1 Combo Scheduler for Inter-Combo Balancing. As shown in
Fig. 5a, Combo Scheduler employs a Goodput-Weighted Round Robin
policy to distribute requests across GPU Combos in proportion to
their profiled goodput capacities (§3.2). Each GPU Combo’s weight
is dynamically calculated using its goodput divided by the ser-
vice’s total goodput, ensuring performance-proportional allocation
while respecting SLO constraints. This can automatically adapt
to runtime changes in GPU Combos configurations and workload
characteristics, thereby maintaining optimal load balancing across
heterogeneous hardware. By using goodput as the weighting met-
ric, the scheduler intrinsically prevents over-subscription of any
single GPU Combo, enabling CAucHY to maximize the utilization of
compute and memory capacity across different GPU combinations.

The goodput-weighted distribution provides inherent fairness:
high-performance GPU Combos handle proportionally more re-
quests without being overwhelmed, while lower-performance ones
contribute available goodput without becoming bottlenecks. This
balancing mechanism is particularly effective for heterogeneous de-
ployments where different GPU Combos can span order-of-magnitude
capability differences. The scheduler continuously maintains this
balance by adjusting the weights in real time as new GPU Combos
are added or removed during autoscaling (§3.5).

3.4.2 Instance Scheduler for Intra-Combo Optimization. Ideally,
with unlimited GPU resources, CaucHY could always select the op-
timal GPU Combo with perfectly balanced prefill-decode instances
ratio to match various workloads’ characteristics. However, real-
world constraints including dynamic variations in input-output
distributions and limited GPU availability oftern force suboptimal
deployments, preventing prefill and decode instances from main-
taining a balanced KVCache production and consumption. More-
over, traditional round-robin scheduling compounds this problem
by rigidly assigning requests to prefill-then-decode paths. This
leaves prefill GPUs underutilized while making decode instances
the performance bottleneck. CAucHY resolves this through Op-
portunistic Scheduling, a strategy designed to be fully compatible
with the continuous batching[35]. In particular, it employs three
collaborative techniques.

o Continuous telemetry collection via lightweight ping probes that
monitor per-instance metrics—including remaining tokens and
pending request queues—across all instances;
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Figure 5: Hierarchical request scheduling example

Dynamic workload redistribution that redirects incoming re-
quests to currently underutilized instances (either prefill or de-
code) when telemetry detects idle capacity. These requests are
immediately incorporated into the target instance’s continuous
batch for processing, avoiding any synchronization overhead;
Runtime path rewriting that replaces default forwarding rules
(e.g., modifying prefill-to-decode mappings from "0—0" to flexi-
ble "0—null" markers), enabling full in-place execution without
cross-instance transfers.

This metadata-driven approach routes and executes disaggre-
gated workflows locally through microsecond-level path switching.
This eliminates GPU idle time without costly context switches or
physical data movement, while preserving isolation guarantees.
Fig. 5b illustrates how Opportunistic Scheduling strategy works in
a 1P2D GPU Combo. Initially, Prefill 0 processes the first batch while
Decode 0 and 1 remain idle. The scheduler then routes the second
and third micro-batches to the idle decode instances for in-place
processing. Upon completing prefill, the first batch is assigned to
Decode 0, while Prefill 0 begins to process the fourth batch. This
scheduling scheme provides request load balancing and can effec-
tively reuse underutilized instances by eliminating GPU idle cycles,
thereby maintaining goodput under fluctuating workloads.

3.5 Adaptive Combo-Level Autoscaler

3.5.1 Reactive Combo-Level Scaling. To maintain QoS while avoid-
ing resource over-provisioning, Cauchy initiates fine-grained scal-
ing operations at the granularity of GPU Combos. When real-time
request goodput deviates from the provisioned GPU Combo capac-
ity, CAUCHY initiates scaling operations based on a sliding-window
mechanism to handle short-term traffic fluctuations.

Core Idea. The key insight is to implement responsive yet stable
scaling through a sliding-window mechanism. This window con-
tinuously tracks the current system load, measured in Queries Per
Second (QPS), which serves as the trigger for autoscaling decisions.
When a throughput mismatch persists beyond the monitoring win-
dow (default 2 minutes), autoscaling is triggered only if: i) the
relative throughput deviation exceeds the threshold (default 20%),
and ii) cluster resources permit safe adjustment. For scaling-out,
it selects the most cost-efficient GPU Combo covering the deficit
by invoking the ILP solver (§ 3.3.2). For scaling-in, it removes GPU

Combos with closest excess capacity after a graceful period (default
30s). This approach prevents over-reaction to transient fluctuations
while ensuring sub-minute response to actual workload changes.

Algorithm. As shown in Algorithm 1, the autoscaler maintains
a circular buffer of recent QPS measurements. When the window
duration elapses (Line 7), it compares the window-average QPS
with current deployment capacity (Line 10) and checks against the
ratio threshold (Line 11). Scaling-out occurs when the QPS deficit
exceeds the ratio threshold and cluster resources permit additional
GPU Combo deployment (Line 12). In contrast, scale-in requires the
excess throughput to surpass the same ratio threshold (Line 15),
ensuring minimal adjustment impact.

Hyperparameter Setting. Window (2min): This duration is care-
fully calibrated to the infrastructure’s instance lifecycle character-
istics, accounting for two key time periods: 90 seconds is required
for new inference instances to become operational (including re-
source provisioning, container initialization, model loading and net-
work connection); 30 seconds are needed for graceful termination
of released instances (completing in-flight requests and resource
cleanup). The 2-minute window ensures scaling operations com-
plete within one monitoring cycle, preventing overlapping scaling
commands while maintaining responsiveness. For latency-sensitive
services, this can be reduced to several seconds when using pre-
warmed instance pools. A threshold of 0.2 is used for triggering
scaling operations. Higher values decrease sensitivity to workload
fluctuations while lower values increase responsiveness.

3.5.2  Procative Global Combo Refinement. To maintain cost-efficient
operation in the long run, the periodic global combo refinement
(Lines 22-27) with a global_window (30 mins) is employed. The opti-
mization is triggered if QPS remains stable throughout the window
after the last scaling. Upon activation, the controller computes a
theoretically optimal cluster-wide allocation (Line 24), then updates
GPU Combos by reconciling the optimal and current states (Line
25). The adjustments follow a safe two-phase process: provisioning
new combos before decommissioning redundant resources to avoid
service interruption. This window-based approach provides sta-
bility against transient workload fluctuations while progressively
optimizing global resource efficiency, balancing responsiveness and
computational overhead.
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Algorithm 1 Dynamic Combo-Level Scaling

Input:

o Initial (W, Q) pair (Workload, QPS)

e Total resources R

e Params: ratio = 0.2, local_win = 2min, global_win = 30min

1: P « best_combo(W, Q)

2: tigsy < now()

3: Qpist < ring_buffer(local_win)

4: while True do

5: q « current_qps()

6: Onist-push(q)

7: if now() — t;4s¢+ = local_win then

8: ang — ths:~an()

9: Qrotal < ZpePP-Q

10: A Qtwg = Qrotal

11: if |A| > ratio - Qsotq; then

12: if A > 0 and avail_resources(R) > A then
13: // Scale-out

14: P « P U best_combo(W,A)
15: else if A < 0 then

16: // Scale-in

17: P « remove_combos(P, |A])
18: end if

19: trast < now()
20: continue
21: end if
22: if now() — t14s; > global_win then
23: // Stable-period optimization
24: Popr + best_combo(W, Qp;s;.global_avg())
25: P « optimize(P, Pop;t)
26: trast < now()
27: end if
28: end if

29: end while

3.6 Other Engineering Considerations

KVCache Migration Optimization. To minimize the latency
of transmitting KVCache over TCP/IP networks, we introduce a
parallelized pipeline for KVCache transmission between prefill
and decode instances. The prefill instance proactively pushes each
layer’s KVCache through dedicated pipelines, overlapping com-
putation with communication to hide migration overhead. The
decode instance buffers received key-value pairs in CPU memory
before flushing them to GPU. The buffer persists until the request’s
first forward pass completes, avoiding redundant migrations for
repeated prefixes and reducing access overhead.

Instance Role Switching. The system implements role switching
for inference instances via RESTful APIs to enable dynamic resource
allocation and fault tolerance. Using endpoints like init, activate,
show, and stop, running instances can be reconfigured as prefill
instances, decode instances, or restored to default standalone aggre-
gated state by disconnecting the prefill-decode connections. This
allows seamless integration within GPU Combos with automatic
connection handling. The design minimizes transition downtime,
supports traffic spike load balancing, and simplifies hardware failure
recovery through role redistribution.

Y. Zhang, H. Shen, et. al

Fault Tolerance. The system transmits layers independently with
CPU buffering to avoid GPU memory contention during peak loads.
The CPU buffer mitigates transmission rate fluctuations between
instances. The parallel pipeline design provides redundancy where
failed pipelines do not affect others, ensuring system reliability.
This approach maintains low latency and KVCache consistency
across instances.

4 EXPERIMENTS
4.1 Experiment Setup

Hardware and Software. All experiments are performed in a
cluster with 8 NVIDIA H800-SXM GPUs, 8 NVIDIA H20-NVL GPUs
and 8 NVIDIA A800-PCle GPUs. Each server is equipped with 2
GPU devices, which allows a tensor parallelism degree of 2, Intel
Xeon Platinum 8352Y CPUs @ 2.20GHz, and 1TB RAM. KVCache
migration is implemented via Gloo’s TCP backend. The inference
engine is based on vLLM[19] v0.6.5, and CAUCHY serving framework
is implemented on Kubernetes v1.16.0. We use the Llama-3.1-8B[13]
model for all experiments to ensure a consistent evaluation baseline.

Methodology and Baselines. We conduct a comprehensive eval-
uation of CaucHY at both macro and micro levels. We first conduct
an end-to-end study to evaluate the overall performance against the
state-of-the-art deployment strategy named Mélange[14] (§4.2). Af-
terwards, we examine the performance improvements contributed
by individual system components. Specifically, we analyze the GPU
Combo deployment strategy’s operation (§4.3), before quantifying
performance gains from intra-combo instance scheduling (§4.5)
and inter-combo scheduling (§4.4). We further investigate the per-
formance contributions of autoscaling and KVCache optimization
(§4.6 and §4.7). As fine-grained comparisons have different specific
goals, we detail the related baselines in each subsection.

Workloads. We select three distinct workload datasets that repre-
sent the spectrum of real-world LLM serving scenarios:

e CNN DailyMail [15, 30]: This workload features extended input
sequences followed by concise outputs, representing document
processing tasks. (mean input/output=702/42 tokens)

e ShareGPT [18]: This workload features balanced input-output
ratios, typical of chatbot interactions. (mean input/output=290/207
tokens)

e LongWriter-6K [7]: This workload exhibits short prompts that
trigger lengthy generations, common in creative writing applica-
tions. (mean input/output=337/1330 tokens)

Evaluation Metrics. To effectively assess the performance of
CaucHy, we consider the following metrics:

e Cost-Efficiency: The number of tokens processed per dollar
spent, calculated by dividing the total tokens by the total cost of
all GPU Combos.

¢ E2E Request Latency: The total duration from request submis-
sion to final token delivery, covering queuing, inference, and
network overhead.

o Time-to-First-Token (TTFT): The delay before the first gener-
ated token is received.

e Time-Between-Tokens (TBT): The interval between consecu-
tive tokens during streaming.
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Figure 6: E2E performance comparison between CaucHy and Mélange frameworks across heterogeneous datasets.

Performance Report. To mitigate random fluctuations, we repeat
each experiment 20 times and report the average of the collected
metrics. We generate requests for each workload using two methods:
sampling from the Azure LLM Inference Trace[5, 31] or generating
requests following a Poisson distribution, with the same target QPS
values (54 for DailyMail, 50 for ShareGPT, and 6 for LongWriter) in
both cases. To ensure a fair comparison, the same hyperparameters
are used across all competing methods for any given task.

4.2 Overall Performance of CAucHY

Settings.We evaluate CAucHY’s performance using Azure LLM
Inference Trace[5, 31] across all three workloads.

Comparative Methods. We primarily compare Caucay with
Mélange[14], the most recent work in heterogeneity-aware GPU
scheduling, serving as primary baseline. It uses mixed GPUs as
aggregated deployments with static allocation. Mélange shares a
similar goal of cost optimization, while CaucHY introduces novel
innovations in phase-aware GPU combo allocation and dynamic
scheduling. We omit homogeneous baselines [37] due to the notice-
able superiority of heterogeneous deployment over homogeneous
approaches shown in §2.3. Baselines are detailed as follows:

e Mélange: The state-of-the-art heterogeneity-aware GPU allo-
cation framework, which employs mixed GPUs in aggregated
deployments with static allocation.

e CAUCHY *: A variant of CAuCHY that only supports aggregated
GPU Combos. Compared to Mélange, its primary advantage lies
in dynamic resource adjustment.

Results. As shown in Fig. 7, CAucHY * achieves 7.8%-17.1% improve-
ment in cost-efficiency over Mélange, and CAuCHY’s performance
promotes to 16.4%- 38.3% by introducing phase-aware GPU Com-
bos. This demonstrates the advantage of matching relative high-
compute GPUs to prefill and high-bandwidth GPUs to decode in-
stances, overcoming Mélange’s coarse-grained GPU heterogeneity
exploitation. As shown in Fig. 6, CaucHy significantly outperforms
Mélange, achieving 21.2%-59.1% lower end-to-end latency, 28.5%-
95.1% lower TTFT, and 18.9%-61.5% lower TBT. Such consistent
improvements reassure CAUCHY'’s ability to maintain QoS across
different workload patterns through adaptive scheduling.

4.3 Effectiveness of Allocation Strategy

Settings.To evaluate the effectiveness of Caucuy’s GPU Combo
allocation strategy, we conducted experiments comparing differ-
ent LP algorithms for deploying GPU Combo to handle all three
workloads. All allocator methods were evaluated under identical
goodput requirements and request arrival patterns.

Comparative Methods. We implemented three linear program-
ming strategies within the Cauchy framework:

o Maximum Cost-Efficiency LP (MCE-LP): This algorithm en-
forces minimum goodput constraints while maximizing overall
cost-efficiency.

e Minimum Cost LP (MC-LP): This algorithm minimizes GPU
deployment costs while meeting goodput requirements.

e CaucHY’s Optimized LP (CO-LP): This algorithm simultane-
ously minimizes costs while maximizing cost-efficiency.
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Figure 9: Comparison of GPU Combo scheduling strategies with mean E2E
request latency metrics. Each scheduling strategy was evaluated under the
same QPS across different workloads.

Results. As shown in Fig. 8, CO-LP consistently achieves the high-
est cost-efficiency across all datasets. On DailyMail, it outperforms
MCE-LP by 46.9% by avoiding over-provisioning of high-end GPUs,
and maintains a 28.9% cost advantage over MC-LP. While MC-LP’s
cost-minimization leads to allocations that barely meet goodput
thresholds, CO-LP identifies better cost-efficiency trade-offs among
similarly-priced options, ensuring optimal GPU Combos allocations.

4.4 Effectiveness of Combo Scheduler

Settings. We evaluate inter-GPU Combo scheduling using three
benchmark datasets deployed on multiple identically configured
GPU Combos. Workloads follow Poisson arrival processes with
request rates matching each dataset’s goodput requirements.

Comparative Methods. We implemented three different request
scheduling strategies for inter-combo scheduling:
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¢ Basic Round Robin: This strategy schedules requests among
GPU Combos in a cyclic manner.

e Token-Weighted Round Robin: This strategy prioritizes sched-
uling requests to the GPU Combo with the highest remaining
token count at any given time.

¢ Goodput-Weighted Round Robin: This strategy schedules
requests among GPU Combos based on the maximum goodput
value associated with each GPU Combo.

Results. As shown in Fig. 9, Goodput-Weighted RR achieves the
lowest latency across all workloads, notably reducing mean latency
by 25.4% on LongWriter compared to Basic RR. This gain comes
from dynamically balancing load based on each GPU Combo’s ca-
pacity, unlike Basic RR which ignores its capabilities. While Token-
Weighted RR performs similarly on ShareGPT (within 1%), Goodput-
Weighted RR consistently outperforms it by 3-6% on DailyMail and
LongWriter, showing that token-based scheduling alone cannot
fully model combo performance. These results confirm the uni-
versal effectiveness of goodput-aware scheduling under diverse
workload patterns.

4.5 Effectiveness of Instance Scheduler

Settings. To evaluate the effectiveness of the instance scheduler
within disaggregated GPU Combos, we conducted experiments on
various 1PxD GPU Combo configurations (where x = 1, 2, and 3)
using the ShareGPT dataset. These configurations used NVIDIA
H800 GPUs for the prefill instance and NVIDIA H20 GPUs for the
decode instance.

Comparative Methods. We implemented two different request
scheduling strategies:

¢ Basic Round Robin: This policy routes requests uniformly
across x decode instances in a 1PxD Combo, strictly following
the prefill-then-decode paths.

e Opportunistic Scheduling: This policy dynamically routes re-
quests to the least-loaded decode instance, while also retaining
the option to perform full-phase, in-place inference on any idle
instance (prefill or decode).

Results. As shown in Table 3, Opportunistic Scheduling consis-
tently outperforms Basic Round Robin across all configurations. In
1P1D setups, it improves computational efficiency by 8.7% and re-
duces latency by 8.5% by eliminating prefill GPU idle time through
dynamic in-place execution. While the performance gap narrows
in multi-decode configurations (1P2D/1P3D) due to improved load
balancing, our method maintains a 6-13% advantage across metrics.
These results confirm the scheduler’s effectiveness in optimizing
both balanced and unbalanced workload scenarios.

4.6 Effectiveness of Combo Autoscaler

Settings. To evaluate the benefits of combo-level autoscaling, we
initialized all deployments using the same initial allocation plan
generated by CAucHY’s combo allocator. We used all three datasets
and traffic patterns scaled from Azure LLM Inference Trace [5, 31].
We generated dynamic request arrivals while ensuring equal total
requests across methods for fair comparison. This setup cleanly
isolates the effectiveness of autoscaler’s resource adaptation.
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Table 3: Performance comparison under different request scheduling strategies

Max CE
P M E2EL TTFT M TBT
GPU Combo Strategy (K Tokens/USD) ax Goodput (req/s) Mean atency (s) Mean (ms) ean (ms)
1P1D Basic RR 1505.23 2.14 22.03 237.03 15.92
Opportunistic 1636.24 18.7% 2.32 18.4% 20.16 |8.5% 219.09 |7.6% 14.74 |7.4%
1P2D Basic RR 1525.31 2.90 17.75 230.35 12.84
Opportunistic 1630.15 16.9% 3.14 18.3% 16.38 |7.7% 200.83 [12.8% 12.00 |6.5%
1P3D Basic RR 1231.35 2.96 14.56 221.55 10.51
Opportunistic 1329.15 17.9% 3.22 18.8% 14.47 221.10 10.50
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Figure 10: End-to-end (E2E) performance comparison of Cauchy algorithm with autoscale vs. without autoscale across three datasets
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Figure 11: KVCache migration latency between different methods.

Comparative Methods. We compare our combo-level autoscaling
against static deployment as the baseline:

e CaucHY w/o Autoscaling: This method maintains fixed GPU
Combo allocation configured for average historical QPS through-
out the experiment.

e CaucHY’s Combo-Level Autoscaling: CAucHY’s autoscaler
adjusts GPU Combo allocations through a dual-phase strategy
combining reactive scaling with periodic global optimization.

Results. As shown in Fig. 10, CAucHY’s combo-level autoscaling
improves end-to-end latency compared to static deployment across
all datasets. P90 latency is consistently reduced across all datasets:
from 25.57s to 21.88s on DailyMail, 11.16s to 10.68s on ShareGPT,
and 36.77s to 32.83s on LongWriter. These improvements are attrib-
uted to the autoscaler’s dynamic resource adaptation, which avoids
both over-provisioning during low utilization and performance
degradation during traffic spikes.

4.7 Effectiveness of KVCache Migration

Settings. We evaluate our parallelized KVCache pipelines on NVIDIA
H800 and H20 GPUs under cross-rack configurations. Latency
L(d, t) is measured across pipeline degrees d=1-16 and token sizes
t=256-2048 at QPS=1. Comparisons include: (1) vLLM’s synchro-
nous bulk transfer; (2) CAUCHY’s serial (degree=1) and parallel (de-
gree=2-16) modes with layer-wise migration.

Results. As shown in Fig. 11, our parallelized KVCache pipeline
significantly reduces migration latency compared to synchronous
transfer. For 2048-token inputs, latency drops from 625ms to 85ms—a
7.4x improvement—achieved through layer-wise pipelining that
overlaps computation and communication. The design maintains
3.4-5.5x speedups across 256-2048 token lengths via dynamic load
balancing across pipelines, with optimal performance at pipeline
degree=8. Further increasing the degree to 16 shows limited im-
provement because the cost of managing more threads starts to
outweigh the benefits of faster data transfer. This gains stem from
three key optimizations: 1) proactive layer pushing through dedi-
cated channels, 2) parallel tranasmission queues for bandwidth max-
imization, and 3) lightweight synchronization to minimize pipeline
coordination overhead.

5 DISCUSSION

Inter-node Networking. Efficient KVCache migration is essential
in CAaucHY's disaggregated architecture. To hide migration latency
by overlapping it with prefill computation, the inter-node band-
width must meet the constraint:

KVCachesoren X Rin X GPU .
Net > token in fprelel (17)
FLOPyrefin
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Substituting Eq. 3 and Eq. 7 yields:

Cy X GPUmeefill

Net > —————
B(ClRin + CZ)

(18)

This requirement is modest: prefilling 2048 tokens for Llama-3.1-8B
on an A100 merely requires 10GB/s, and the number is reduced to
5GB/s for the 70B model. Lower Model FLOPS Utilization (MFU), of-
ten caused by small batch sizes and inter-operator synchronization,
further reduces the bandwidth requirement. This relaxed bandwidth
demand makes CaucHY practical in typical data center networks.

Compatibility and Scalability. CaucHy exhibits strong compat-
ibility across diverse hardware and model architectures. Its cost-
efficiency optimization is hardware-agnostic, readily incorporating
new GPU series from various vendors (e.g., the prefilling-optimized
NVIDIA Rubin CPX [24]) to enhance service economics. CAUCHY
can seamlessly integrate with standard model parallelism tech-
niques to accommodate large-scale models (e.g., 70B or 405B pa-
rameters). Similarly, CAucHY can effectively cooperate with expert
parallelism and other distributed strategies to support Mixture-of-
Experts (MoE) model [20] serving. This indicates the flexibility and
generic capability of serving framework for the evolving landscape
of LLMs and accelerators.

Performance in Homogeneous Clusters. While CAucHy achieves
optimal cost-efficiency in heterogeneous environments, it remains
functional in homogeneous clusters with more limited gains. The ab-
sence of hardware diversity restricts the system’s ability to strategi-
cally match GPU capabilities to phase-specific requirements, though
scheduling and resource management optimizations still apply.

Limitation. CAuCHY’s current implementation employs TCP-based
transmission for KVCache migration. Several systems like Split-
wise [26] have demonstrated the effectiveness of RDMA for re-
ducing latency in disaggregated architectures. Integrating RDMA
support represents a key direction for future work. We plan to
extend CAUCHY to: (1) prioritize forming GPU Combos between
RDMA-equipped servers, and (2) implement intelligent request
scheduling that routes long-context requests to RDMA-enabled
combos to minimize KVCache migration overhead.

6 RELATED WORK

Semi-Disaggregated Architecture. Recent works [9, 17, 29] have
explored semi-disaggregated architectures to balance resource uti-
lization and latency. DynaServe [29] introduces a Tandem Serving
model that splits requests into virtual sub-requests processed by
GPU pairs, enabling elastic load balancing and hybrid execution
without rigid disaggregation. semi-PD [17] uses phase-wise dis-
aggregated computation with unified storage and SM-level parti-
tioning to reduce interference and KVCache migration overhead.
EcoServe [9] proposes a partially disaggregated strategy that tempo-
rally separates phases within instances while coordinating macro-
instances for cost-effective scaling. While these systems demon-
strate the effectiveness of semi-disaggregation on homogeneous
GPUs, Cauchy is orthogonal to them and maintains compatibility,
allowing semi-disaggregated instances to be integrated as supple-
mentary GPU Combos.
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Resource Management. Recent research [14, 28, 32] have ex-
plored various strategies to improve LLM serving efficiency. VTC
(Virtual Token Counter) [32] ensures fair resource allocation across
clients through token-level service tracking. BCA (Batching Con-
figuration Advisor) [28] identifies DRAM bandwidth saturation
as the fundamental bottleneck in large-batch LLM inference, and
proposes memory-aware batch sizing. Closely related to our work
is Mélange [14], which introduces a cost-aware GPU allocation
framework that formulates resource assignment as a bin-packing
problem. While Mélange effectively leverages GPU heterogeneity,
it treats LLM inference monolithically without distinguishing the
distinct resource demands of prefill and decode phases, nor does it
provide autoscaling mechanisms for dynamic workloads. CAucHY
addresses these limitations through phase-aware GPU Combos and
combo-level autoscaling, enabling more efficient and adaptive re-
source utilization.

Request Scheduling for LLM Service. Traditional scheduling

strategies like First-Come-First-Served suffer from Head-of-Line

blocking, limiting throughput and service quality. Advanced sched-
uling techniques [10, 33, 36] address this through various approaches.
Learning-to-rank [10] approach predicts the relative order of LLM

request lengths, enabling near-optimal Shortest-Job-First schedul-
ing. Llumnix [33] exploys dynamic request rescheduling and live

migration to handle workload heterogeneity. Tempo [36] incor-
porates SLO awareness through a hybrid approach of conserva-
tive estimation and online refinement. These works demonstrate

ongoing efforts to enhance LLM service efficiency, fairness, and

responsiveness through innovative request scheduling.

7 CONCLUSION

This paper introduces CAUCHY, a cost-efficient LLM serving sys-
tem that fundamentally rethinks GPU resource allocation through
adaptive heterogeneous deployment. Our system combines three
key innovations: (1) the GPU Combo, a novel abstraction that strate-
gically matches hardware capabilities to phase-specific compu-
tational demands, (2) a hierarchical scheduling architecture that
maximizes resource utilization while maintaining QoS, and (3) an
autoscaling mechanism that dynamically adjusts to workload fluc-
tuations. These components work collaboratively to deliver supe-
rior cost-efficiency without sacrificing service reliability. We will
open-source CAUCHY and investigate fine-grained GPU sharing,
promoting further advances in cost-efficient LLM serving.
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