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ABSTRACT

Recent advances in large language models (LLMs) have intensi-

fied the need for serving LLMs that are cost-efficient and QoS-

guaranteed. Existing frameworks often co-locate computationally

distinct prefill and decode instances on homogeneous GPUs, over-

looking their unique resource demands and under-utilizing hetero-

geneous GPUs. This leads to suboptimal resource utilization and

increased capital expenditure. We present Cauchy, a LLM serving

framework that adaptively deploys prefill and decode computation

to the most suitable heterogeneous GPUs and dynamically sched-

ules user requests. At the core of Cauchy is choosing proper GPU
Combo, a conceptual GPU combination encompassing diverse GPU

configurations, for their cost efficiency in running prefill-decode

pairs. Cauchy deploys a set of combos to satisfy QoS requirements

(e.g., goodput) of LLM inference. Cauchy further employs hierarchi-

cal scheduling to handle user requests, using opportunistic sched-

uling within the allocated GPU Combos and a goodput-weighted

round-robin policy across GPU Combos. Dynamic autoscaling is

used to stabilize the cost-efficiency in the face of surging requests.

Experiments show that Cauchy achieves up to a 38.3% improve-

ment in Tokens/USD efficiency over the state-of-the-art baselines,

while maintaining strict Service Level Objectives (SLOs). Our work

highlights the importance of leveraging workload and GPU hetero-

geneity to achieve superior cost-efficient LLM serving.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; • Soft-

ware and its engineering→ Cloud computing.
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1 INTRODUCTION

Large language models (LLMs) have significantly revolutionized

various aspects of engineering and science, from chatbot to docu-

ment summarization and code generation [4, 22, 25]. Transformer-

based models [1, 20, 21] have become the backbone architecture

of modern AI services. Deploying LLM models in a cost-efficient

manner remains an unsettled challenge, considering the workload

diversity and GPU heterogeneity.

LLM workloads exhibit distinct execution characteristics be-

tween prefill and decode phases, broadly falling into three cate-

gories: Long Input-Short Output (e.g., document summarization [4]),

Balanced Input-Output (e.g., chatbot [25]), and Short Input-Long

Output (e.g., creative writing [22]). For example, document sum-

marization tasks take long prompts as input yet produce short

outputs, and are thus heavily prefill-dominated. In contrast, cre-

ative writing tasks are decode-dominated, as they generate lengthy

output sequences from short input prompts. The diversity indicates

that the model deployment should be adaptive to different com-

putational and memory demands. However, existing deployment

policies [28, 32, 33] are agnostic to such workload patterns and fall

short in resource optimization among GPU devices. Recent prefill-

decode (PD) disaggregation approaches [26, 27, 37] optimize PD

resources to match workload patterns, but their static and homoge-

neous configurations cannot adapt to runtime variations, leading

to suboptimal QoS under dynamic traffic conditions.

Meanwhile, modern heterogeneous GPUs exhibit varying cost

and performance characteristics. As shown in Table 1, NVIDIA

H800 GPU offers superior arithmetic efficiency (TFLOP/USD) ideal

for prefilling, while NVIDIA H20 GPU provides higher memory

bandwidth efficiency (GB/USD) suitable for decoding. The state-

of-the-art prefill-decode disaggregation schemes [26, 27, 37] sim-

ply aim to improve goodput without elaborating heterogeneity.

Mélange [14] is one of the first attempts to advance heterogeneous

GPU allocation for LLM serving. It examines the impact of varying

configurations including request size, request rate and SLO on the

cost efficiency of different GPU devices, and derives the minimal-

cost allocation through solving the cost-aware bin packing problem.

Mélange focuses on GPU selection based on the holistic perfor-

mance profiling of fine-grained request configurations, without

analyzing prefill/decode phases in depth or accounting for the indi-

vidual impact of heterogeneous GPUs on the cost efficiency. GPU

heterogeneity unleashes a huge potential for optimizing resource

allocation by matching the prefill-decode instances with the most

suitable and cost-efficient GPUs.

https://doi.org/10.1145/3772052.3772264
https://doi.org/10.1145/3772052.3772264
https://doi.org/10.1145/3772052.3772264
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Table 1: GPU Specifications (Data collected from [11, 34] specifications as of June 2025)

GPU TFLOPs BW (GB/s) Mem (GB) Price ($/h) TFLOPs/BW TFLOP/$ GB/$ Recommended Deployment

H800-SXM 989 3350 80 2.69 0.30 1.32M 4.48M Prefill

A10 125 600 24 0.75 0.21 600K 2.88M Prefill

RTX4090 165 1008 24 0.69 0.21 861K 5.26M Aggregated

A800-PCIe 312 1935 80 1.19 0.16 944K 5.85M Aggregated

MI210 181 1638 64 1.40 0.11 465K 4.21M Decode

H20-NVL 148 4000 96 1.50 0.04 355K 9.60M Decode

In this paper, we present Cauchy, an adaptive GPU schedul-

ing and LLM serving framework that navigates the complexity of

deploying LLM services through adaptively assigning GPU com-

binations to different LLM workloads and dynamically scheduling

user requests across these heterogeneous GPUs. The key insight is

to investigate the distinct performance of different workloads on

various combinations of heterogeneous GPU devices, and select the

most suitable combinations that can maximize the token through-

put per monetary cost while satisfying the QoS such as goodput.

This design is driven by the fact that GPU clusters across different

environments – from cost-sensitive clouds to resource-constrained

organizations – are typically heterogeneous and have limited num-

ber of each GPU type. Cauchy introduces GPU Combo as the logical
representation of GPU combination and the basic unit of schedul-

ing, and automatically allocates GPUs by selecting top GPU Com-
bos and determines the optimal number of each GPU Combo via
multi-objective optimization. Cauchy employs hierarchical sched-

uling to handle requests, using opportunistic scheduling within

the allocated GPU Combos and a goodput-weighted round-robin

policy across GPU Combos to minimize GPU idle time. Dynamic

autoscaling is performed to stabilize the cost-efficiency and service

quality in the face of surging requests. Experiments on real-world

datasets demonstrate the effectiveness of Cauchy. Compared to

heterogeneity-agnostic deployment schemes, Cauchy achieves up

to a 38.3% improvement in Tokens/USD efficiency. Cauchy reduces

end-to-end latency by up to 59.1%, while maintaining high goodput

and consistent performance across different workloads.

The key contributions of this paper are as follows:

• A cost-efficiency optimization framework that estimates and

validates the optimal deployment of heterogeneous GPUs across

diverse workloads, maximizing token throughput per monetary

cost while satisfying QoS requirements (§3.2 and §3.3).

• A hierarchical scheduling architecture that optimizes request dis-

tribution across heterogeneous GPU devices to maximize system

goodput and minimize latency (§3.4).

• An elastic autoscaling mechanism that dynamically adjusts GPU
Combo deployments in response to workload fluctuations, main-

taining high cost-efficiency and goodput (§3.5).

2 BACKGROUND

2.1 LLM Serving

LLM Inference. LLM inference consists of two distinct phases:

prefill phase and decode phase. In the prefill phase, the model pro-

cesses the entire input sequence in parallel, computing hidden states
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Figure 1: Heterogeneity between different workloads a) input and output

distribution b) prefill and decode time of different workloads under NVIDIA

H800-SXM testbeds with Llama-3.1-8B [13].

and attention scores across all token pairs. This phase is compute-

intensive, involving heavy matrix multiplications and softmax op-

erations, thus requiring high arithmetic efficiency (TFLOP/USD).

In contrast, the decode phase generates tokens sequentially, one at

a time, relying heavily on previously computed KVCache to per-

form attention over the entire token history. This phase is memory-

intensive, demanding high memory bandwidth efficiency (GB/USD).

The different computational characteristics of these two phases ne-

cessitate distinct optimization strategies and cost considerations.

Prefill-Decode Aggregation or Disaggregation. There are many

works [2, 16, 35] that aggregate prefill and decode phases on the

same GPU. This approach avoids intermediate state transfer across

GPUs, as the KVCache generated during the prefill phase can be

directly used by the subsequent decode phase. This scheme is par-

ticularly beneficial for long inputs where the KVCache size is sub-

stantial. Loading model weights multiple times across different

instances can be eliminated, thereby conserving GPU memory.

Disaggregation schemes [26, 27, 37], on the other hand, separate

the prefill and decode phases onto different GPUs, thereby enabling

hardware selection and optimization strategies tailored to the char-

acteristics of each phase. Intuitively, GPUs with higher compute

capabilities can be dedicated to prefill instances, while GPUs with

higher memory bandwidth can be allocated to the decode phase.

However, disaggregation incurs overhead from KVCache migra-

tion, especially with long-context inputs, where the KVCache size is

substantial. It is therefore imperative to adaptively tune the prefill-

decode configuration and choose the appropriate architecture based

on the workload characteristics.
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Figure 2: Heterogeneous vs. Homogeneous Disaggregation: in H800-H20 setup,

Cauchy dedicates 2 H800 to prefill and 2 H20 to decode, while homogeneous

baseline (DistServe) deploys 2 instances: (1 H800 prefill + 1 H800 decode) and

(1 H20 prefill + 1 H20 decode). Both deployments use exactly 2 H800 and 2

H20 GPUs in total, with results normalized to DistServe.

2.2 Workload Diversity

As shown in Fig. 1, representative LLM workloads can be roughly

categorized according to the length of their input and output.

• Long Input-Short Output. Services like summarization [4] pro-

cess long inputs but produce brief outputs, making them prefill-

dominated (>60% latency). The large KVCache strains compute

during the prefill phase, while the decode phase underuses mem-

ory bandwidth. Aggregated architectures are preferred in this

context to avoid prohibitive KV cache migration overhead.

• Balanced Input-Output. Conversational service [25] handles

symmetrical sequences, balancing compute-memory demands.

Moderate KVCache allows flexible architectures: aggregated ar-

chitecture simplifies cache management, while disaggregated

one suits high-throughput streaming. Hybrid approaches may

dynamically adjust resources based on real-time workload mixes.

• Short Input-Long Output. Text and code generation tasks [22]

have minimal inputs but lengthy outputs, making them decode-

bound (>95% latency). Negligible prefill KVCache reduces trans-

fer overhead, favoring disaggregated architectures to maximize

memory bandwidth for memory-bound generation.

As will be shown in our study, the selection of different GPU

types for prefill and decode phases has a noticeable impact on the

performance of each type of workload.

2.3 Impact on LLM Inference Performance

Industrial LLM serving systems [3, 12, 23] measure cost efficiency

(CE) through Tokens/USD - the number of processed tokens per

dollar spent. As shown in Table 1, GPUs exhibit intrinsic hetero-

geneity – H800 delivers 3.7× higher compute efficiency but 2.1×
lower memory efficiency than H20-NVL, creating a 7.5 × disparity

in compute-to-memory ratio. We conduct an empirical study to

showcase the potential for performance improvement by exploiting

GPU heterogeneity. We deploy Llama-3.1-8B using the ShareGPT

dataset under the same QPS on H800 and H20. Fig. 2 shows it

consistently outperforms the disaggregated deployment scheme

with homogeneous configurations, achieving over 5% Tokens/USD

improvement. Even when the cross-node KVCache overhead be-

comes noticeable, a heterogeneous deployment (e.g., H800-A800,

A800-H20) retains superior cost efficiency.

2.4 Research Requirements

Designing and implementing an elastic LLM serving system for

real-world heterogeneous clusters needs to satisfy the following

research requirements.

• Quantifying the performance impact of heterogeneous

GPU combinations on LLM workloads. As hardware diver-

gence has an explicit impact on phase-specific performance, there

is a need to optimize GPU allocations for compute-bound prefill

and memory-bound decode phases jointly. It is thus desirable to

precisely model the cost-efficiency of GPU combinations with

heterogeneous devices, thereby unleashing the potential for LLM

serving acceleration.

• Optimizing the holistic cost-efficiency of GPU allocation

while adhering to serving QoS. It is critical to optimize the

cost-efficiency by mapping diverse LLM workloads onto het-

erogeneous GPUs while satisfying economic and performance

constraints. The optimization should take into account hardware

capabilities and dynamic workload requirements (e.g., varying

input/output patterns and SLOs).

• Stabilizing the LLM serving for surging requests. User re-

quests exhibit inherent temporal fluctuations. LLM serving sys-

tems need to dynamically address the diverse workload types

and fluctuating request volumes.

3 OUR APPROACH

3.1 Overview of Cauchy

GPU Combo. To align with the distinct resource requirements of

the prefill and decode phases, we introduce the GPU Combo, a pair
of GPU devices defined by their types and counts that are best suited

to each phase, respectively. For instance, <2×H800, 4×H20> denotes

a pair of heterogeneous GPUs where twoH800 and four H20 devices

are allocated to prefill and decode instances. When a phase requires

multiple GPUs of the same type, we prioritize consolidating them

into a single instance with higher Tensor Parallelism (TP), rather

than deploying multiple smaller instances. Heterogeneous GPU

combinations demonstrate directionality - assigning the high-FLOP

GPU to prefill and high-bandwidth GPU to decode yields superior

cost-efficiency, compared with the reverse configuration.

Cost Efficiency. Aligning with widely-used pricing strategies from

major cloud providers, we define Cost-Efficiency (CE) as the number

of processed tokens (including input and output) per US dollar

spent. CE captures both the compute-bound processing of input

tokens in the prefill phase and the memory-bound generation of

output tokens in the decode phase. CE is a higher-is-better metric

that reflects the economic effectiveness of the deployment strategy

and the resulting improved resource utilization.

Architecture. Fig. 3 illustrates Cauchy’s architecture and the basic

workflow among components. The system operates in two phases:

• Deployment Phase. Upon receiving a LLM service requirement

(model configurations, workload pattern, and expected goodput),

Cauchy initiates a modeling process to evaluate all feasible GPU
Combos. This involves estimating the CE of each GPU Combo
based on the workload’s characteristics (§3.2), and retrieving
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Figure 3: Overview of Cauchy. Shapes represent different GPU types.

pre-profiled goodput for the corresponding workload type. Af-

terwards, Cauchy generates a set of GPU Combo candidates

tailored to the workload (§3.3.1). A multi-object integer linear

programming (ILP) solver is then employed to determine the

optimal number and type of GPU Combos to deploy, maximizing

CE under cluster resource constraints while satisfying the user’s

goodput target (§3.3.2).

• Serving Phase. Once GPU Combos are deployed, incoming re-

quests are routed through a hierarchical scheduler that operates

at two levels for load balancing and performance optimization

(§3.4): i) inter-combo scheduling, during which requests are dis-

tributed across GPU Combos using a Goodput-Weighted Round

Robin policy for load balancing according to each GPU Combo’s
capacity; and ii) intra-combo scheduling, during which requests

are dynamically forwarded between prefill and decode instances

within a GPU Combo by using an opportunistic strategy to min-

imize GPU idle time and reduce the serving latency. Moreover,

to handle workload fluctuations, Cauchy conducts combo-level

autoscaling, based on real-time QPS monitoring within a sliding

time window.When a persistent deviation from the expected load

is detected, rescheduling of GPU Combos is triggered to maintain

goodput while preserving a competitive CE (§3.5).

3.2 Cost-Efficiency Modeling

This section describes how to quantify the cost-efficiency of a given

GPU Combo assigned to a specific LLM workload. The model con-

figurations (e.g., hidden size ℎ, number of layers 𝑙) referenced in

our modeling, as detailed in Table 2, are used to derive the LLM

related coefficients 𝐶1 −𝐶4 in the cost-efficiency model.

3.2.1 Calculating Token Throughput. The theoretical study of to-

ken throughput is based on the fact that prefilling is compute-bound

and decoding is memory-bound.

Prefill Phase. The prefill phase exhibits quadratic complexity with

respect to input length 𝑅𝑖𝑛 , primarily due to attention computations,

with an additional linear term from feed-forward networks (FFN).

We first define two coefficients:

𝐶1 = 4𝑙ℎ (Quadratic attention term coefficient) (1)

𝐶2 = 8𝑙ℎ2 + 6𝑙ℎ𝑖 (Linear FFN term coefficient) (2)

Table 2: Notation Descriptions

Symbol Description

𝑙 number of hidden layers

ℎ hidden size

𝑛 number of attention heads

𝑠 head size (𝑠 = ℎ/𝑛)
𝑘 number of key-value heads

𝑏 block size of PagedAttention

𝑖 intermediate size

𝑣 vocab size

𝑒 max position embeddings

𝑑 torch dtype

𝐵 batch size

𝑅𝑖𝑛 average input tokens per request

𝑅𝑜𝑢𝑡 average output tokens per request

𝐺𝑃𝑈𝑛 number of GPUs

𝐺𝑃𝑈𝑓 peek FLOPs of GPU

𝐺𝑃𝑈𝑏 peek memory bandwidth of GPU

𝐺𝑃𝑈𝑝 hosting price of GPU

𝑆𝑝𝑟𝑒𝑓 𝑖𝑙𝑙 input token throughput

𝑆𝑑𝑒𝑐𝑜𝑑𝑒 output token throughput

The FLOP requirement is then:

𝐹𝐿𝑂𝑃𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙 = 𝐵(𝐶1𝑅
2

𝑖𝑛 +𝐶2𝑅𝑖𝑛), (3)

The prefill time is bounded by arithmetic performance:

𝑇𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙 (𝐵, 𝑅𝑖𝑛) =
𝐵(𝐶1𝑅

2

𝑖𝑛 +𝐶2𝑅𝑖𝑛)
𝐺𝑃𝑈𝑛 ·𝐺𝑃𝑈𝑓

(4)

Hence, the prefill throughput can be calculated by:

𝑆𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙 =
𝐵 · 𝑅𝑖𝑛

𝑇𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙 (𝐵, 𝑅𝑖𝑛)
=
𝐺𝑃𝑈𝑛 ·𝐺𝑃𝑈𝑓

𝐶1𝑅𝑖𝑛 +𝐶2

(5)

Decode Phase. To decode 𝑅𝑜𝑢𝑡 tokens, we first define two coeffi-

cients characterizing the memory access requirements:

𝐶3 = 𝑑 (2𝑣ℎ + (4ℎ2 + 3ℎ𝑖 + 2ℎ)𝑙) (Static model weight) (6)

𝐶4 = 2𝑑𝑙𝑘𝑠 (KVCache per token) (7)

The total memory access volume consists of weight access and

KVCache transfer:

Byte𝑑𝑒𝑐𝑜𝑑𝑒 =

𝑅𝑜𝑢𝑡 −1∑︁
𝑗=0

[𝐶3 + 𝐵 ·𝐶4 (𝑅𝑖𝑛 + 𝑗)] (8)

= (𝐶3 + 𝐵 ·𝐶4𝑅𝑖𝑛)𝑅𝑜𝑢𝑡 +
1

2

𝐵 ·𝐶4𝑅
2

𝑜𝑢𝑡 , (9)

The decode time is bounded by memory bandwidth:

𝑇𝑑𝑒𝑐𝑜𝑑𝑒 (𝐵, 𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ) =
(𝐶3 + 𝐵 ·𝐶4𝑅𝑖𝑛)𝑅𝑜𝑢𝑡 + 1

2
𝐵 ·𝐶4𝑅

2

𝑜𝑢𝑡

𝐺𝑃𝑈𝑛 ·𝐺𝑃𝑈𝑏

(10)

The decode throughput turns out to be:

𝑆𝑑𝑒𝑐𝑜𝑑𝑒 =
𝐵 · 𝑅𝑜𝑢𝑡

𝑇𝑑𝑒𝑐𝑜𝑑𝑒 (𝐵, 𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 )
=

𝐺𝑃𝑈𝑛 ·𝐺𝑃𝑈𝑏

𝐶4𝑅𝑜𝑢𝑡
2
+𝐶4𝑅𝑖𝑛 + 𝐶3

𝐵

(11)
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3.2.2 Calculating Cost-Efficiency. We define cost-efficiency (CE)

as Tokens/USD, representing the number of processed tokens per

dollar spent. The workload pattern for prefill and decode phases is

jointly determined by model parameters (𝐶1-𝐶4) and request char-

acteristics (𝑅𝑖 , 𝑅𝑜 , 𝐵). We first define workload-specific coefficients

that capture this combined effect:

𝐴1 =
1

𝐶1𝑅𝑖𝑛 +𝐶2

(Prefill workload pattern) (12)

𝐴2 =
1

𝐶4𝑅𝑜𝑢𝑡
2
+𝐶4𝑅𝑖𝑛 + 𝐶3

𝐵

(Decode workload pattern) (13)

The cost-efficiency is then:

𝐶𝐸 =
𝑆𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙

𝐺𝑃𝑈𝑛𝑝𝑟𝑒𝑓 𝑖𝑙𝑙 ·𝐺𝑃𝑈𝑝𝑝𝑟𝑒𝑓 𝑖𝑙𝑙

+ 𝑆𝑑𝑒𝑐𝑜𝑑𝑒

𝐺𝑃𝑈𝑛𝑑𝑒𝑐𝑜𝑑𝑒 ·𝐺𝑃𝑈𝑝𝑑𝑒𝑐𝑜𝑑𝑒

(14)

Substituting the throughput expressions from Eq. 5 and Eq. 11, the

cost-efficiency becomes:

𝐶𝐸 = 𝐴1 ·
𝐺𝑃𝑈𝑓𝑝𝑟𝑒𝑓 𝑖𝑙𝑙

𝐺𝑃𝑈𝑝𝑝𝑟𝑒𝑓 𝑖𝑙𝑙

+𝐴2 ·
𝐺𝑃𝑈𝑏𝑑𝑒𝑐𝑜𝑑𝑒

𝐺𝑃𝑈𝑝𝑑𝑒𝑐𝑜𝑑𝑒

(15)

Equation 15 reveals the following key insights:

• Relative Advantage Principle. Cauchy’s efficiency stems from

aligning each phase with the GPU that holds a comparative ad-

vantage in the required resource per dollar. Each phase is assigned

to the type of GPU that holds a relatively higher ratio of the re-

quired resource (TFLOPs for prefill, bandwidth for decode) per

dollar, when compared with other available GPUs.

• Workload-Dependent Coefficients. The weights 𝐴1 (prefill)

and 𝐴2 (decode) are dynamically determined by workload char-

acteristics. This explains why the GPU Combo A800-H20 excels
for short-input-long-output workloads (high 𝐴2 dominance) but

underperforms for long-input-short-output workloads (𝐴1 domi-

nates but bandwidth remains underutilized).

3.3 Combo-Based GPU Allocation

Cauchy allocates GPUs in units of GPU Combos to meet the paired

requirements of prefill and decoding instances on a per-workload

basis. GPU allocation is performed in two steps: selecting the GPU
Combos most likely to have the highest cost-efficiency, and deter-

mining the optimal number for each selected GPU Combo. Runtime

workload characteristics and SLO constraints can automatically

navigate the optimal GPU Combo selection and deployment.

3.3.1 Adaptive Combo Selection. Cauchy shortlists theGPUCombo
candidates from all possible combinations primarily based on their

individual CE for each workload scenario. The procedure encom-

passes the following steps:

• Workload Estimation: Computing the phase-wise coefficients

(𝐴1,𝐴2) frommodel configurations and input/output token lengths.

• Profiling: For each GPU Combo, calculating the CE when con-

ducting a given LLM inference – considering such influencing

factors as FLOPs, bandwidth, and price – and profiling goodput

under given SLA.

• Pareto Filtering: Retaining the optimal configuration for each

unique GPU pair, eliminating suboptimal directional variants

(e.g., keeping H800-H20 while discarding H20-H800 when the

former has higher CE).

• Candidate Ranking: Sorting valid configurations in descending

order of CE. The candidate information typically includes various

GPU Combos with their measured cost-efficiency metrics and the

actual goodput performance.

We also generalize the GPU Combo concept to include combi-

nations of only homogeneous devices, to accommodate some LLM

workloads suitable for prefill-decoding aggregation. This combo se-

lection criterion balances cost and performance trade-offs, ranging

from cost-efficient high-CE options to high-performance configu-

rations. It maintains deployment flexibility by preserving different

GPU Combos for various SLO requirements, especially in GPU clus-

ters with fluctuating saturation levels.

3.3.2 Combo Deployment Optimization. We formalize the deploy-

ment as an optimization problem to determine the specific GPU
Combo allocation for each submitted LLM workload, aiming for

maximizing holistic cost-efficiency while adhering to resource con-

straints and ensuring LLM QoS.

Problem Formulation. Cauchy takes the candidate information

(§3.3.1) and the user requirements as inputs. User requirements are

specified as follows: i) the workload type (as categorized in §2.2),

and ii) the target goodput, defined as the SLO-satisfying throughput

that inherently accounts for latency requirements.

The optimization aims to minimize deployment costs while max-

imizing cost-efficiency. Since the most cost-efficient GPU Combos
are often more expensive to deploy, Cauchy manages this trade-off

by selecting combos that meet goodput requirements at the low-

est cost, even if they have marginally lower cost-efficiency. For

instance, to satisfy a residual goodput of 0.80, it chooses an A800

Combo (goodput=0.82 req/s, price=1.09 $/h, CE=1.07M token/$)

over an H20 Combo (goodput=1.23 req/s, price=1.50 $/h, CE=1.15M

token/$), as the former fulfills the requirement at lower cost.

The system must satisfy the goodput requirements for each

model to maintain system performance and user expectations. Ad-

ditionally, the total GPU resources consumed across all deployments

cannot exceed the available cluster capacity. These constraints are

critical to ensure that the optimization process is practical and

feasible within the given resource limitations.

Specifically, the multi-objective optimization problem can be

formulated with the workload input 𝐷𝑚 :

min

x∈Z+

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑃𝑛

𝐶𝑛

· 𝑥𝑚𝑛

s.t. T𝑚 (x𝑚) ≥ D𝑚, ∀𝑚 ∈ 1, . . . , 𝑀
𝑀∑︁

𝑚=1

R𝑔 (x𝑚) ≤ 𝐺𝑔, ∀𝑔 ∈ G

(16)

where the primary decision variable 𝑥𝑚𝑛 represents the number

of GPU Combo type 𝑛 allocated to model 𝑚. The objective func-

tion combines both cost minimization and efficiency maximization

through the composite term 𝑃𝑛/𝐶𝑛 , where 𝑃𝑛 denotes the hourly

price of GPU Combo 𝑛 and 𝐶𝑛 represents its cost-efficiency (Token-

s/USD). The constraints ensure that the goodput demand D𝑚 is

satisfied for each model𝑚 by the goodput function T𝑚 (x𝑚), and
that the total GPU allocation across all deployments remains within

the cluster capacity 𝐺𝑔 for each GPU type 𝑔.
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Figure 4: An example of CE modeling and combo-based allocation.

Problem Solver. Cauchy solves the problem by using the PuLP[8]

package in Python. The GPU Combo search space grows as 𝑂 (𝐺2)
for 𝐺 GPU types, encompassing both homogeneous and heteroge-

neous combinations with different prefill-decode counts (from 1:1 to

2:6). In our experimental setup with 3 GPU types, this yields up to 12

candidate combos, and the solver typically converges within 20-50

milliseconds. When the optimal solution cannot be obtained within

the specified constraints, Cauchy resorts to a fallback strategy –

relaxing the optimization objective of maximizing cost-efficiency.

This prioritizes the satisfaction of user QoS requirements over the

strict optimization of cost-efficiency.

3.3.3 Working Example. Fig. 4 illustrates the evaluation and al-

location of different GPU Combos using cost-efficiency modeling

and goodput profiling. We consider a cluster with 24 heteroge-

neous GPUs (8 H800s, 8 A800s, 8 H20s), on which we evaluate

Llama-3.1-8B [13] and Qwen1.5-14B [6] using three datasets (CNN

DailyMail [15, 30], ShareGPT [18], LongWriter-6K [7]) that cover

all workload types.

For each model–dataset pair, Cauchy derives the phase-specific

coefficients 𝐴1 and 𝐴2 from workload statistics and model configu-

rations, enumerates all feasible GPU Combos among H800, A800,

and H20, and computes their theoretical CE via Eq. 15. Offline pro-

filing under SLOs (TTFT ≤ 10/5/1 s; TBT ≤ 50/30/30 ms) populates

an allocation lookup table with CE-goodput pairs. When a user

submits a requirement for Llama-3.1-8B on a short input-long out-

put workload with goodput ≥ 6.4 req/s, the Combo Selector filters

unsuitable options and ranks the remainder by CE. The top four

GPU Combo candidates – <1×H800, 1×A800>, <1×A800, 1×H20>,

<2×A800>, and <1×H800, 1×H20> – are passed to the ILP solver. Un-

der the cluster’s resource constraints, the solver produces the final

deployment plan: two <1×H800, 1×A800> combos, one <1×A800,

1×H20> combo, and one <2×A800> combo.

3.4 Hierarchical Request Scheduler

Cauchy employs a hierarchical LLM serving architecture to op-

timize request distribution across the allocated GPU devices. To

ensure efficient resource utilization while maintaining stringent la-

tency SLOs, the serving framework consists of the following compo-

nents: i) serving components such as API Gateway for service-level

routing and request classification, and QPS Monitor for autoscaling

triggers; ii) scheduling components including Combo Scheduler for

inter-combo load balancing and Instance Scheduler for intra-combo

optimization. The key techniques are as follows:

3.4.1 Combo Scheduler for Inter-Combo Balancing. As shown in

Fig. 5a, Combo Scheduler employs aGoodput-Weighted Round Robin
policy to distribute requests across GPU Combos in proportion to

their profiled goodput capacities (§3.2). Each GPU Combo’s weight
is dynamically calculated using its goodput divided by the ser-

vice’s total goodput, ensuring performance-proportional allocation

while respecting SLO constraints. This can automatically adapt

to runtime changes in GPU Combos configurations and workload

characteristics, thereby maintaining optimal load balancing across

heterogeneous hardware. By using goodput as the weighting met-

ric, the scheduler intrinsically prevents over-subscription of any

single GPU Combo, enabling Cauchy to maximize the utilization of

compute and memory capacity across different GPU combinations.

The goodput-weighted distribution provides inherent fairness:

high-performance GPU Combos handle proportionally more re-

quests without being overwhelmed, while lower-performance ones

contribute available goodput without becoming bottlenecks. This

balancing mechanism is particularly effective for heterogeneous de-

ploymentswhere differentGPUCombos can span order-of-magnitude

capability differences. The scheduler continuously maintains this

balance by adjusting the weights in real time as new GPU Combos
are added or removed during autoscaling (§3.5).

3.4.2 Instance Scheduler for Intra-Combo Optimization. Ideally,
with unlimited GPU resources, Cauchy could always select the op-

timal GPU Combo with perfectly balanced prefill-decode instances

ratio to match various workloads’ characteristics. However, real-

world constraints including dynamic variations in input-output

distributions and limited GPU availability oftern force suboptimal

deployments, preventing prefill and decode instances from main-

taining a balanced KVCache production and consumption. More-

over, traditional round-robin scheduling compounds this problem

by rigidly assigning requests to prefill-then-decode paths. This

leaves prefill GPUs underutilized while making decode instances

the performance bottleneck. Cauchy resolves this through Op-

portunistic Scheduling, a strategy designed to be fully compatible

with the continuous batching[35]. In particular, it employs three

collaborative techniques.

• Continuous telemetry collection via lightweight ping probes that

monitor per-instance metrics—including remaining tokens and

pending request queues—across all instances;
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(a) Combo Scheduler: Goodput-Weighted Round

Robin between different GPU Combos (b) Instance Scheduler: Opportunistic Scheduling in a 1P2D GPU Combo

Figure 5: Hierarchical request scheduling example

• Dynamic workload redistribution that redirects incoming re-

quests to currently underutilized instances (either prefill or de-

code) when telemetry detects idle capacity. These requests are

immediately incorporated into the target instance’s continuous

batch for processing, avoiding any synchronization overhead;

• Runtime path rewriting that replaces default forwarding rules

(e.g., modifying prefill-to-decode mappings from "0→0" to flexi-

ble "0→null" markers), enabling full in-place execution without

cross-instance transfers.

This metadata-driven approach routes and executes disaggre-

gated workflows locally through microsecond-level path switching.

This eliminates GPU idle time without costly context switches or

physical data movement, while preserving isolation guarantees.

Fig. 5b illustrates how Opportunistic Scheduling strategy works in

a 1P2D GPU Combo. Initially, Prefill 0 processes the first batch while
Decode 0 and 1 remain idle. The scheduler then routes the second

and third micro-batches to the idle decode instances for in-place

processing. Upon completing prefill, the first batch is assigned to

Decode 0, while Prefill 0 begins to process the fourth batch. This

scheduling scheme provides request load balancing and can effec-

tively reuse underutilized instances by eliminating GPU idle cycles,

thereby maintaining goodput under fluctuating workloads.

3.5 Adaptive Combo-Level Autoscaler

3.5.1 Reactive Combo-Level Scaling. To maintain QoS while avoid-

ing resource over-provisioning, Cauchy initiates fine-grained scal-

ing operations at the granularity of GPU Combos. When real-time

request goodput deviates from the provisioned GPU Combo capac-
ity, Cauchy initiates scaling operations based on a sliding-window

mechanism to handle short-term traffic fluctuations.

Core Idea. The key insight is to implement responsive yet stable

scaling through a sliding-window mechanism. This window con-

tinuously tracks the current system load, measured in Queries Per

Second (QPS), which serves as the trigger for autoscaling decisions.

When a throughput mismatch persists beyond the monitoring win-

dow (default 2 minutes), autoscaling is triggered only if: i) the

relative throughput deviation exceeds the threshold (default 20%),

and ii) cluster resources permit safe adjustment. For scaling-out,

it selects the most cost-efficient GPU Combo covering the deficit

by invoking the ILP solver (§ 3.3.2). For scaling-in, it removes GPU

Combos with closest excess capacity after a graceful period (default

30s). This approach prevents over-reaction to transient fluctuations

while ensuring sub-minute response to actual workload changes.

Algorithm. As shown in Algorithm 1, the autoscaler maintains

a circular buffer of recent QPS measurements. When the window

duration elapses (Line 7), it compares the window-average QPS

with current deployment capacity (Line 10) and checks against the

ratio threshold (Line 11). Scaling-out occurs when the QPS deficit

exceeds the ratio threshold and cluster resources permit additional

GPU Combo deployment (Line 12). In contrast, scale-in requires the

excess throughput to surpass the same ratio threshold (Line 15),

ensuring minimal adjustment impact.

Hyperparameter Setting.Window (2min): This duration is care-

fully calibrated to the infrastructure’s instance lifecycle character-

istics, accounting for two key time periods: 90 seconds is required

for new inference instances to become operational (including re-

source provisioning, container initialization, model loading and net-

work connection); 30 seconds are needed for graceful termination

of released instances (completing in-flight requests and resource

cleanup). The 2-minute window ensures scaling operations com-

plete within one monitoring cycle, preventing overlapping scaling

commands while maintaining responsiveness. For latency-sensitive

services, this can be reduced to several seconds when using pre-

warmed instance pools. A threshold of 0.2 is used for triggering

scaling operations. Higher values decrease sensitivity to workload

fluctuations while lower values increase responsiveness.

3.5.2 Procative Global Combo Refinement. Tomaintain cost-efficient

operation in the long run, the periodic global combo refinement

(Lines 22-27) with a global_window (30 mins) is employed. The opti-

mization is triggered if QPS remains stable throughout the window

after the last scaling. Upon activation, the controller computes a

theoretically optimal cluster-wide allocation (Line 24), then updates

GPU Combos by reconciling the optimal and current states (Line

25). The adjustments follow a safe two-phase process: provisioning

new combos before decommissioning redundant resources to avoid

service interruption. This window-based approach provides sta-

bility against transient workload fluctuations while progressively

optimizing global resource efficiency, balancing responsiveness and

computational overhead.
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Algorithm 1 Dynamic Combo-Level Scaling

Input:

• Initial ⟨𝑊,𝑄 ⟩ pair (Workload, QPS)

• Total resources 𝑅

• Params: ratio = 0.2, local_win = 2min, global_win = 30min

1: 𝑃 ← best_combo(𝑊,𝑄 )
2: 𝑡𝑙𝑎𝑠𝑡 ← now( )
3: 𝑄ℎ𝑖𝑠𝑡 ← ring_buffer(𝑙𝑜𝑐𝑎𝑙_𝑤𝑖𝑛)
4: while True do

5: 𝑞 ← current_qps( )
6: 𝑄ℎ𝑖𝑠𝑡 .push(𝑞)
7: if now( ) − 𝑡𝑙𝑎𝑠𝑡 ≥ 𝑙𝑜𝑐𝑎𝑙_𝑤𝑖𝑛 then

8: 𝑄𝑎𝑣𝑔 ← 𝑄ℎ𝑖𝑠𝑡 .avg( )
9: 𝑄𝑡𝑜𝑡𝑎𝑙 ←

∑
𝑝∈𝑃 𝑝.𝑄

10: Δ← 𝑄𝑎𝑣𝑔 − 𝑄𝑡𝑜𝑡𝑎𝑙

11: if |Δ | > ratio · 𝑄𝑡𝑜𝑡𝑎𝑙 then

12: if Δ > 0 and avail_resources(𝑅) ≥ Δ then

13: // Scale-out
14: 𝑃 ← 𝑃 ∪ best_combo(𝑊,Δ)
15: else if Δ < 0 then

16: // Scale-in
17: 𝑃 ← remove_combos(𝑃, |Δ | )
18: end if

19: 𝑡𝑙𝑎𝑠𝑡 ← now( )
20: continue

21: end if

22: if now( ) − 𝑡𝑙𝑎𝑠𝑡 ≥ 𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑖𝑛 then

23: // Stable-period optimization
24: 𝑃𝑜𝑝𝑡 ← best_combo(𝑊,𝑄ℎ𝑖𝑠𝑡 .global_avg( ) )
25: 𝑃 ← optimize(𝑃, 𝑃𝑜𝑝𝑡 )
26: 𝑡𝑙𝑎𝑠𝑡 ← now( )
27: end if

28: end if

29: end while

3.6 Other Engineering Considerations

KVCache Migration Optimization. To minimize the latency

of transmitting KVCache over TCP/IP networks, we introduce a

parallelized pipeline for KVCache transmission between prefill

and decode instances. The prefill instance proactively pushes each

layer’s KVCache through dedicated pipelines, overlapping com-

putation with communication to hide migration overhead. The

decode instance buffers received key-value pairs in CPU memory

before flushing them to GPU. The buffer persists until the request’s

first forward pass completes, avoiding redundant migrations for

repeated prefixes and reducing access overhead.

Instance Role Switching. The system implements role switching

for inference instances via RESTful APIs to enable dynamic resource

allocation and fault tolerance. Using endpoints like init, activate,

show, and stop, running instances can be reconfigured as prefill

instances, decode instances, or restored to default standalone aggre-

gated state by disconnecting the prefill-decode connections. This

allows seamless integration within GPU Combos with automatic

connection handling. The design minimizes transition downtime,

supports traffic spike load balancing, and simplifies hardware failure

recovery through role redistribution.

Fault Tolerance. The system transmits layers independently with

CPU buffering to avoid GPU memory contention during peak loads.

The CPU buffer mitigates transmission rate fluctuations between

instances. The parallel pipeline design provides redundancy where

failed pipelines do not affect others, ensuring system reliability.

This approach maintains low latency and KVCache consistency

across instances.

4 EXPERIMENTS

4.1 Experiment Setup

Hardware and Software. All experiments are performed in a

cluster with 8 NVIDIA H800-SXMGPUs, 8 NVIDIA H20-NVL GPUs

and 8 NVIDIA A800-PCIe GPUs. Each server is equipped with 2

GPU devices, which allows a tensor parallelism degree of 2, Intel

Xeon Platinum 8352Y CPUs @ 2.20GHz, and 1TB RAM. KVCache

migration is implemented via Gloo’s TCP backend. The inference

engine is based on vLLM[19] v0.6.5, and Cauchy serving framework

is implemented on Kubernetes v1.16.0. We use the Llama-3.1-8B[13]

model for all experiments to ensure a consistent evaluation baseline.

Methodology and Baselines.We conduct a comprehensive eval-

uation of Cauchy at both macro and micro levels. We first conduct

an end-to-end study to evaluate the overall performance against the

state-of-the-art deployment strategy named Mélange[14] (§4.2). Af-

terwards, we examine the performance improvements contributed

by individual system components. Specifically, we analyze the GPU
Combo deployment strategy’s operation (§4.3), before quantifying

performance gains from intra-combo instance scheduling (§4.5)

and inter-combo scheduling (§4.4). We further investigate the per-

formance contributions of autoscaling and KVCache optimization

(§4.6 and §4.7). As fine-grained comparisons have different specific

goals, we detail the related baselines in each subsection.

Workloads. We select three distinct workload datasets that repre-

sent the spectrum of real-world LLM serving scenarios:

• CNN DailyMail [15, 30]: This workload features extended input

sequences followed by concise outputs, representing document

processing tasks. (mean input/output=702/42 tokens)

• ShareGPT [18]: This workload features balanced input-output

ratios, typical of chatbot interactions. (mean input/output=290/207

tokens)

• LongWriter-6K [7]: This workload exhibits short prompts that

trigger lengthy generations, common in creative writing applica-

tions. (mean input/output=337/1330 tokens)

Evaluation Metrics. To effectively assess the performance of

Cauchy, we consider the following metrics:

• Cost-Efficiency: The number of tokens processed per dollar

spent, calculated by dividing the total tokens by the total cost of

all GPU Combos.
• E2E Request Latency: The total duration from request submis-

sion to final token delivery, covering queuing, inference, and

network overhead.

• Time-to-First-Token (TTFT): The delay before the first gener-

ated token is received.

• Time-Between-Tokens (TBT): The interval between consecu-

tive tokens during streaming.
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Figure 6: E2E performance comparison between Cauchy and Mélange frameworks across heterogeneous datasets.

Performance Report. To mitigate random fluctuations, we repeat

each experiment 20 times and report the average of the collected

metrics.We generate requests for eachworkload using twomethods:

sampling from the Azure LLM Inference Trace[5, 31] or generating

requests following a Poisson distribution, with the same target QPS

values (54 for DailyMail, 50 for ShareGPT, and 6 for LongWriter) in

both cases. To ensure a fair comparison, the same hyperparameters

are used across all competing methods for any given task.

4.2 Overall Performance of Cauchy

Settings.We evaluate Cauchy’s performance using Azure LLM

Inference Trace[5, 31] across all three workloads.

Comparative Methods. We primarily compare Cauchy with

Mélange[14], the most recent work in heterogeneity-aware GPU

scheduling, serving as primary baseline. It uses mixed GPUs as

aggregated deployments with static allocation. Mélange shares a

similar goal of cost optimization, while Cauchy introduces novel

innovations in phase-aware GPU combo allocation and dynamic

scheduling. We omit homogeneous baselines [37] due to the notice-

able superiority of heterogeneous deployment over homogeneous

approaches shown in §2.3. Baselines are detailed as follows:

• Mélange: The state-of-the-art heterogeneity-aware GPU allo-

cation framework, which employs mixed GPUs in aggregated

deployments with static allocation.

• Cauchy *: A variant of Cauchy that only supports aggregated

GPU Combos. Compared to Mélange, its primary advantage lies

in dynamic resource adjustment.

Results.As shown in Fig. 7, Cauchy * achieves 7.8%-17.1% improve-

ment in cost-efficiency over Mélange, and Cauchy’s performance

promotes to 16.4%- 38.3% by introducing phase-aware GPU Com-
bos. This demonstrates the advantage of matching relative high-

compute GPUs to prefill and high-bandwidth GPUs to decode in-

stances, overcoming Mélange’s coarse-grained GPU heterogeneity

exploitation. As shown in Fig. 6, Cauchy significantly outperforms

Mélange, achieving 21.2%-59.1% lower end-to-end latency, 28.5%-

95.1% lower TTFT, and 18.9%-61.5% lower TBT. Such consistent

improvements reassure Cauchy’s ability to maintain QoS across

different workload patterns through adaptive scheduling.

4.3 Effectiveness of Allocation Strategy

Settings.To evaluate the effectiveness of Cauchy’s GPU Combo
allocation strategy, we conducted experiments comparing differ-

ent LP algorithms for deploying GPU Combo to handle all three

workloads. All allocator methods were evaluated under identical

goodput requirements and request arrival patterns.

Comparative Methods.We implemented three linear program-

ming strategies within the Cauchy framework:

• Maximum Cost-Efficiency LP (MCE-LP): This algorithm en-

forces minimum goodput constraints while maximizing overall

cost-efficiency.

• Minimum Cost LP (MC-LP): This algorithm minimizes GPU

deployment costs while meeting goodput requirements.

• Cauchy’s Optimized LP (CO-LP): This algorithm simultane-

ously minimizes costs while maximizing cost-efficiency.
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Figure 7: Cost-Efficiency comparison between Cauchy and Mélange.
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DailyMail ShareGPT LongWriter0.00

0.20

0.40

0.60

0.80

1.00

No
rm

al
ize

d 
M

ea
n 

E2
E 

La
te

nc
y

-20.9%

-0.3%

-19.5%
-24.0%

-0.6%

-25.4%

Basic RR Token-Weighted RR Goodput-Weighted RR

Figure 9: Comparison of GPU Combo scheduling strategies with mean E2E

request latency metrics. Each scheduling strategy was evaluated under the

same QPS across different workloads.

Results. As shown in Fig. 8, CO-LP consistently achieves the high-

est cost-efficiency across all datasets. On DailyMail, it outperforms

MCE-LP by 46.9% by avoiding over-provisioning of high-end GPUs,

and maintains a 28.9% cost advantage over MC-LP. While MC-LP’s

cost-minimization leads to allocations that barely meet goodput

thresholds, CO-LP identifies better cost-efficiency trade-offs among

similarly-priced options, ensuring optimal GPU Combos allocations.

4.4 Effectiveness of Combo Scheduler

Settings. We evaluate inter-GPU Combo scheduling using three

benchmark datasets deployed on multiple identically configured

GPU Combos. Workloads follow Poisson arrival processes with

request rates matching each dataset’s goodput requirements.

Comparative Methods.We implemented three different request

scheduling strategies for inter-combo scheduling:

• Basic Round Robin: This strategy schedules requests among

GPU Combos in a cyclic manner.

• Token-Weighted Round Robin: This strategy prioritizes sched-

uling requests to the GPU Combo with the highest remaining

token count at any given time.

• Goodput-Weighted Round Robin: This strategy schedules

requests among GPU Combos based on the maximum goodput

value associated with each GPU Combo.

Results. As shown in Fig. 9, Goodput-Weighted RR achieves the

lowest latency across all workloads, notably reducing mean latency

by 25.4% on LongWriter compared to Basic RR. This gain comes

from dynamically balancing load based on each GPU Combo’s ca-
pacity, unlike Basic RR which ignores its capabilities. While Token-

Weighted RR performs similarly on ShareGPT (within 1%), Goodput-

Weighted RR consistently outperforms it by 3–6% on DailyMail and

LongWriter, showing that token-based scheduling alone cannot

fully model combo performance. These results confirm the uni-

versal effectiveness of goodput-aware scheduling under diverse

workload patterns.

4.5 Effectiveness of Instance Scheduler

Settings. To evaluate the effectiveness of the instance scheduler

within disaggregated GPU Combos, we conducted experiments on

various 1PxD GPU Combo configurations (where x = 1, 2, and 3)

using the ShareGPT dataset. These configurations used NVIDIA

H800 GPUs for the prefill instance and NVIDIA H20 GPUs for the

decode instance.

Comparative Methods. We implemented two different request

scheduling strategies:

• Basic Round Robin: This policy routes requests uniformly

across x decode instances in a 1PxD Combo, strictly following

the prefill-then-decode paths.

• Opportunistic Scheduling: This policy dynamically routes re-

quests to the least-loaded decode instance, while also retaining

the option to perform full-phase, in-place inference on any idle

instance (prefill or decode).

Results. As shown in Table 3, Opportunistic Scheduling consis-

tently outperforms Basic Round Robin across all configurations. In

1P1D setups, it improves computational efficiency by 8.7% and re-

duces latency by 8.5% by eliminating prefill GPU idle time through

dynamic in-place execution. While the performance gap narrows

in multi-decode configurations (1P2D/1P3D) due to improved load

balancing, our method maintains a 6-13% advantage across metrics.

These results confirm the scheduler’s effectiveness in optimizing

both balanced and unbalanced workload scenarios.

4.6 Effectiveness of Combo Autoscaler

Settings. To evaluate the benefits of combo-level autoscaling, we

initialized all deployments using the same initial allocation plan

generated by Cauchy’s combo allocator. We used all three datasets

and traffic patterns scaled from Azure LLM Inference Trace [5, 31].

We generated dynamic request arrivals while ensuring equal total

requests across methods for fair comparison. This setup cleanly

isolates the effectiveness of autoscaler’s resource adaptation.
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Table 3: Performance comparison under different request scheduling strategies

GPU Combo Strategy

Max CE

(K Tokens/USD)

Max Goodput (req/s) Mean E2E Latency (s) Mean TTFT (ms) Mean TBT (ms)

1P1D Basic RR 1505.23 2.14 22.03 237.03 15.92

Opportunistic 1636.24 ↑8.7% 2.32 ↑8.4% 20.16 ↓8.5% 219.09 ↓7.6% 14.74 ↓7.4%

1P2D Basic RR 1525.31 2.90 17.75 230.35 12.84

Opportunistic 1630.15 ↑6.9% 3.14 ↑8.3% 16.38 ↓7.7% 200.83 ↓12.8% 12.00 ↓6.5%

1P3D Basic RR 1231.35 2.96 14.56 221.55 10.51

Opportunistic 1329.15 ↑7.9% 3.22 ↑8.8% 14.47 221.10 10.50

DailyMail E2E Latency (s)

CD
F

ShareGPT E2E Latency (s) LongWriter E2E Latency (s)

Cauchy w/ autoscaling Cauchy w/o autoscaling

Figure 10: End-to-end (E2E) performance comparison of Cauchy algorithm with autoscale vs. without autoscale across three datasets
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Figure 11: KVCache migration latency between different methods.

Comparative Methods.We compare our combo-level autoscaling

against static deployment as the baseline:

• Cauchy w/o Autoscaling: This method maintains fixed GPU
Combo allocation configured for average historical QPS through-

out the experiment.

• Cauchy’s Combo-Level Autoscaling: Cauchy’s autoscaler

adjusts GPU Combo allocations through a dual-phase strategy

combining reactive scaling with periodic global optimization.

Results. As shown in Fig. 10, Cauchy’s combo-level autoscaling

improves end-to-end latency compared to static deployment across

all datasets. P90 latency is consistently reduced across all datasets:

from 25.57s to 21.88s on DailyMail, 11.16s to 10.68s on ShareGPT,

and 36.77s to 32.83s on LongWriter. These improvements are attrib-

uted to the autoscaler’s dynamic resource adaptation, which avoids

both over-provisioning during low utilization and performance

degradation during traffic spikes.

4.7 Effectiveness of KVCache Migration

Settings.Weevaluate our parallelized KVCache pipelines onNVIDIA

H800 and H20 GPUs under cross-rack configurations. Latency

L(𝑑, 𝑡) is measured across pipeline degrees 𝑑=1–16 and token sizes

𝑡=256–2048 at QPS=1. Comparisons include: (1) vLLM’s synchro-

nous bulk transfer; (2) Cauchy’s serial (degree=1) and parallel (de-

gree=2–16) modes with layer-wise migration.

Results. As shown in Fig. 11, our parallelized KVCache pipeline

significantly reduces migration latency compared to synchronous

transfer. For 2048-token inputs, latency drops from 625ms to 85ms—a

7.4× improvement—achieved through layer-wise pipelining that

overlaps computation and communication. The design maintains

3.4–5.5× speedups across 256–2048 token lengths via dynamic load

balancing across pipelines, with optimal performance at pipeline

degree=8. Further increasing the degree to 16 shows limited im-

provement because the cost of managing more threads starts to

outweigh the benefits of faster data transfer. This gains stem from

three key optimizations: 1) proactive layer pushing through dedi-

cated channels, 2) parallel tranasmission queues for bandwidth max-

imization, and 3) lightweight synchronization to minimize pipeline

coordination overhead.

5 DISCUSSION

Inter-node Networking. Efficient KVCache migration is essential

in Cauchy’s disaggregated architecture. To hide migration latency

by overlapping it with prefill computation, the inter-node band-

width must meet the constraint:

𝑁𝑒𝑡 ≥
𝐾𝑉𝐶𝑎𝑐ℎ𝑒𝑡𝑜𝑘𝑒𝑛 × 𝑅𝑖𝑛 ×𝐺𝑃𝑈𝑓𝑝𝑟𝑒𝑓 𝑖𝑙𝑙

𝐹𝐿𝑂𝑃𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙
(17)
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Substituting Eq. 3 and Eq. 7 yields:

𝑁𝑒𝑡 ≥
𝐶4 ×𝐺𝑃𝑈𝑓𝑝𝑟𝑒𝑓 𝑖𝑙𝑙

𝐵(𝐶1𝑅𝑖𝑛 +𝐶2)
(18)

This requirement is modest: prefilling 2048 tokens for Llama-3.1-8B

on an A100 merely requires 10GB/s, and the number is reduced to

5GB/s for the 70B model. Lower Model FLOPS Utilization (MFU), of-

ten caused by small batch sizes and inter-operator synchronization,

further reduces the bandwidth requirement. This relaxed bandwidth

demand makes Cauchy practical in typical data center networks.

Compatibility and Scalability. Cauchy exhibits strong compat-

ibility across diverse hardware and model architectures. Its cost-

efficiency optimization is hardware-agnostic, readily incorporating

new GPU series from various vendors (e.g., the prefilling-optimized

NVIDIA Rubin CPX [24]) to enhance service economics. Cauchy

can seamlessly integrate with standard model parallelism tech-

niques to accommodate large-scale models (e.g., 70B or 405B pa-

rameters). Similarly, Cauchy can effectively cooperate with expert

parallelism and other distributed strategies to support Mixture-of-

Experts (MoE) model [20] serving. This indicates the flexibility and

generic capability of serving framework for the evolving landscape

of LLMs and accelerators.

Performance inHomogeneousClusters.While Cauchy achieves

optimal cost-efficiency in heterogeneous environments, it remains

functional in homogeneous clusters withmore limited gains. The ab-

sence of hardware diversity restricts the system’s ability to strategi-

callymatch GPU capabilities to phase-specific requirements, though

scheduling and resource management optimizations still apply.

Limitation. Cauchy’s current implementation employs TCP-based

transmission for KVCache migration. Several systems like Split-

wise [26] have demonstrated the effectiveness of RDMA for re-

ducing latency in disaggregated architectures. Integrating RDMA

support represents a key direction for future work. We plan to

extend Cauchy to: (1) prioritize forming GPU Combos between

RDMA-equipped servers, and (2) implement intelligent request

scheduling that routes long-context requests to RDMA-enabled

combos to minimize KVCache migration overhead.

6 RELATEDWORK

Semi-Disaggregated Architecture. Recent works [9, 17, 29] have

explored semi-disaggregated architectures to balance resource uti-

lization and latency. DynaServe [29] introduces a Tandem Serving

model that splits requests into virtual sub-requests processed by

GPU pairs, enabling elastic load balancing and hybrid execution

without rigid disaggregation. semi-PD [17] uses phase-wise dis-

aggregated computation with unified storage and SM-level parti-

tioning to reduce interference and KVCache migration overhead.

EcoServe [9] proposes a partially disaggregated strategy that tempo-

rally separates phases within instances while coordinating macro-

instances for cost-effective scaling. While these systems demon-

strate the effectiveness of semi-disaggregation on homogeneous

GPUs, Cauchy is orthogonal to them and maintains compatibility,

allowing semi-disaggregated instances to be integrated as supple-

mentary GPU Combos.

Resource Management. Recent research [14, 28, 32] have ex-

plored various strategies to improve LLM serving efficiency. VTC

(Virtual Token Counter) [32] ensures fair resource allocation across

clients through token-level service tracking. BCA (Batching Con-

figuration Advisor) [28] identifies DRAM bandwidth saturation

as the fundamental bottleneck in large-batch LLM inference, and

proposes memory-aware batch sizing. Closely related to our work

is Mélange [14], which introduces a cost-aware GPU allocation

framework that formulates resource assignment as a bin-packing

problem. While Mélange effectively leverages GPU heterogeneity,

it treats LLM inference monolithically without distinguishing the

distinct resource demands of prefill and decode phases, nor does it

provide autoscaling mechanisms for dynamic workloads. Cauchy

addresses these limitations through phase-aware GPU Combos and
combo-level autoscaling, enabling more efficient and adaptive re-

source utilization.

Request Scheduling for LLM Service. Traditional scheduling

strategies like First-Come-First-Served suffer from Head-of-Line

blocking, limiting throughput and service quality. Advanced sched-

uling techniques [10, 33, 36] address this through various approaches.

Learning-to-rank [10] approach predicts the relative order of LLM

request lengths, enabling near-optimal Shortest-Job-First schedul-

ing. Llumnix [33] exploys dynamic request rescheduling and live

migration to handle workload heterogeneity. Tempo [36] incor-

porates SLO awareness through a hybrid approach of conserva-

tive estimation and online refinement. These works demonstrate

ongoing efforts to enhance LLM service efficiency, fairness, and

responsiveness through innovative request scheduling.

7 CONCLUSION

This paper introduces Cauchy, a cost-efficient LLM serving sys-

tem that fundamentally rethinks GPU resource allocation through

adaptive heterogeneous deployment. Our system combines three

key innovations: (1) the GPU Combo, a novel abstraction that strate-

gically matches hardware capabilities to phase-specific compu-

tational demands, (2) a hierarchical scheduling architecture that

maximizes resource utilization while maintaining QoS, and (3) an

autoscaling mechanism that dynamically adjusts to workload fluc-

tuations. These components work collaboratively to deliver supe-

rior cost-efficiency without sacrificing service reliability. We will

open-source Cauchy and investigate fine-grained GPU sharing,

promoting further advances in cost-efficient LLM serving.
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