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ABSTRACT

Large-scale GPU clusters have been widely used for effec-
tively training both online and offline deep learning (DL)
jobs. However, elastic scheduling in most cases of resource
schedulers is dedicated for offline model training where re-
source adjustment is planned ahead of time. The native au-
toscaling policy is on the basis of pre-defined threshold and,
if applied directly in online model training, often suffers
from belated resource adjustment, leading to diminished
model accuracy. In this paper, we present Kale, a novel
elastic GPU scheduling system to improve the performance
of online DL model training. Through traffic forecasting
and resource-throughput modeling, Kale automatically pin-
points the number of required GPUs that best accommodate
the on-the-fly data samples before performing stabilized au-
toscaling. An advanced data shuffling strategy is further
employed for balancing uneven samples among different
training workers, thereby improving the runtime efficacy.
Experiments show that Kale substantially outperforms the
state-of-the-art solutions. Compared with the default HPA
autoscaling strategy, Kale reduces the accumulated lag and
downtime by 69.2% and 33.1%, respectively, whilst lowering
the SLO violation rate from 19.57% to just 2.6%. Kale has
been deployed at Kuaishou’s production-level GPU clusters
and successfully underpins real-time video recommendation
and advertisement at scale.
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1 INTRODUCTION

Currently, online deep learning (DL) training is becoming of
great importance for many service vendors in provisioning
Internet-scale businesses such as searching, recommenda-
tion, and advertisement [4, 6, 7, 15, 20, 40, 47, 49, 51]. As
opposed to conventional offline model training that solely
relies on offline dataset and executes in a batch mode, online
model training usually consumes on-the-fly data samples in
a streaming mode and can continuously enable up-to-date
model parameters that reflect the ever-changing user behav-
iors and preferences [14, 34]. Many deep models, such as
Deep Learning Recommendation Models (DLRMs) [27] and
Large Scale Ranking System [51], are adopted and tailored
for timely content recommendation tasks in many business
organizations such as Facebook, Youtube, Tiktok[6, 9, 27]
that deliver relevant and personalized content to users.
DL jobs are resource-intensive and time-consuming [29,

35, 50]. Schedulers [10, 29, 41, 46] in the existingmulti-tenant
DL clusters are accountable for allocating a proper amount
of resource to each job as per the job-specific submission
information and resource requirements. In particular, these
schedulers usually decide how to allocate GPU resources to
many jobs, achieving cluster-wide scheduling objectives such
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as reducing the overall job makespan whilst maintaining
fairness among users.

To maximize the GPU utilization and improve training ef-
ficiency, many state-of-the-art schedulers [13, 29, 31, 42, 43]
support elastic scheduling mechanism for model training,
with the capability of dynamically adjusting the resource
allocation. However, they are inherently devised for opti-
mizing job or cluster throughput in offline training scenar-
ios, through precise measure of training throughput and
ahead-of-time planning for resource adjustment. They are
not well-suited for online model training that requires strin-
gent timeliness of adjustment. In reality, most of the current
elastic schedulers achieve horizontal or vertical autoscaling
based on builtin reactive autoscaling strategies, such as HPA
and VPA [18, 19], offered by the underlying infrastructures
such as YARN and Kubernetes. They are based on indicators
such as CPU and memory utilization, and are normally mani-
fested after aggregation operators on a collection of data over
time, resulting in belated awareness of data traffic. Moreover,
it takes time for an autoscaling plan to come into effect. For
example, for an online model training with 1B parameters,
the default time consumption of autoscaling is roughly 10
minutes (container launching 30s, image pulling 30s, model
loading 6 minutes, data streaming rebuilding 2 minutes), and,
during this period, there will be 120 million backlogged sam-
ples (given 200k samples/s), missed by the online model. The
responsiveness of resource adjustment in the conventional
reactive approaches cannot be always guaranteed, making
the model training out-of-date and inaccurate [1, 3, 8, 25, 28].
To address these issues, we present Kale, a new elastic

GPU scheduling system to improve the performance of on-
line DL model training. The key insights are to leverage
historical data traffic to proactively estimate the volume of
upcoming data samples to be consumed by the online train-
ing job and to ascertain the minimal number of workers
that are capable of delivering large enough training through-
put to cope with the on-the-fly streaming samples. To do
so, Kale establishes a time-series prediction model to fore-
see the incoming traffic and employs a novel approach to
capture the relationship between GPU resources (equiva-
lently the number of workers) and the outcome throughput
for online training of large-scale sparse DL models. There-
after, a autoscaling plan will be enforced, calibrated through
a delicate stabilization mechanism, to adjust the allocated
GPUs for best-fitting the incoming data samples in a timely
manner. Furthermore, a global data shuffling mechanism is
introduced to ensure on-demand and balanced data samples
among training workers. The key techniques in Kale have
been integrated with Kubernetes and experimental results
show that Kale substantially outperform the state-of-the-
art solutions. Compared with the default HPA autoscaling
strategy, Kale significantly reduces accumulated lag and

downtime by 69.2% and 33.1%, respectively, whilst lower-
ing the SLO violation rate from 19.57% to just 2.6%. We also
deployed Kale in real production clusters in Kuaishou and
effectively underpin real-time video recommendation and
advertisement.

The key contribution of this paper are as follows.

• A new elastic training framework that can auto-scale
the required GPUs on demand, through traffic predic-
tion and throughput-resource modeling, to accommo-
date streaming samples in distributed model training
(§3.1).
• A generic methodology to determine the most suitable
number of workers in the autoscaling plan for sparse
DLmodel training and to avoid over-frequent or unnec-
essary autoscaling through a stabilization mechanism
(§3.2 – §3.4).
• A new data shuffling mechanism to timely re-balance
uneven data samples among all training workers with
a threshold-based data forwarding policy (§3.5).

2 BACKGROUND AND MOTIVATION

2.1 Online DL Model Training

Online Model Training. The training procedure usually
consists of numerous iterations, each of which reads and
processes a given number of samples, aka. mini-batch. As
opposed to offline training that obtains samples from offline
datasets, online DL training is typically pipelined with real-
time streaming data empowered by messaging platforms,
e.g., Apache Kafka, and thus can keep models evolved with
new data arrivals. Online data streams are organized and
stored in topics. For scalability, topics are partitioned, i.e.,
placed in different nodes within a distributed system. Once a
new data sample is published to a topic, it will be appended
to one of the topic’s partitions. An online training job sub-
scribes to and consumes these data topics in a distributed
manner through parallelized workers – each GPU is typically
assigned to a worker that consumes a subset of the whole
data and all workers execute in parallel either synchronously
or asynchronously. For multi-tenant large-scale model train-
ing, DL jobs are submitted to a GPU cluster that schedules
the available GPUs and resources among the submitted jobs.
Sparse DL Models. As deep neural networks become in-
creasingly large and complex, models are getting inherently
sparse in Internet-scale scenarios such as searching, recom-
mendation and advertising systems [4, 6, 7, 20, 27, 49, 51].
While dense parameters with few zero values are widely-
used in fully-connected layers and convolutional layers, sparse
parameters become the norm rather than the exception for
word embeddings and feature embeddings. Sparse matrix or
hash table is adopted for storing the parameters.
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Figure 1: Variation of model AUC with lag time.

2.2 Online Training Performance

Performance Indicators.We primarily use throughput of
data arrivals to indicate the rate of upstream ingress data
flows. This can be practically measured by the record count
per second (CPS). We also employ lag, i.e., the sojourn time of
incoming samples in the queue, to indicate the degree of data
accumulation over time. Technically, it measures the interval
from the time when a data sample enters the message queue
and the time when it is consumed by a worker for model
training. Apparently, it is a shorter-is-better metric – a large
lag implies a non-negligible discrepancy between the fresh
data and the data used for model parameter updates.
Impact of Streaming Lag on Online Training. We show-
case how streaming lag affects the accuracy of sparse model
training. In the context of deep recommendation and adver-
tising systems [6, 7, 20, 27, 49, 51], the coarse ranking model,
as one of the key steps, filters and ranks a large number of
candidates to form a smaller set of relevant items before being
fed into a precise ranking model. Click-Through Rate (CTR)
and Conversion Rate (CVR) prediction are two indispens-
able tasks and their performance has a direct impact on the
revenue [52]. Area Under Curve (AUC) is a higher-is-better
metric to depict how well user preferences or user-click pat-
terns are predicted, i.e., the ranking quality of relevant items.
We vary the degree of lagging and examine the AUC of both
CTR and CVR. As shown in Fig. 1, the AUC values exhibit a
consistently falling trend when the streaming lag ramps up.
Particularly, AUC slowly descends when the lag is no more
than 10 minutes and an extended lag duration can cause
noticeable severe performance degradation.

2.3 Characteristics of Streaming Samples

Temporally Uneven Distribution. The sample arrival rate
in large-scale production environments usually exhibits pe-
riodic fluctuation and noticeable peak and off-peak patterns
in user behaviors (e.g. user clicks, app usage, transaction
volume, etc.). Fig. 2a shows the sample count per second into
message queues in a Kuaishou’s cluster over a 7-day time
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Figure 2: Uneven spatio-temporal distribution of streaming samples

during online learning: a) sample fluctuation over 7 days b) data

processing lag of different streaming partitions over time

period. Observably, a working day normally climbs up from
early morning (roughly 34k) to the maximum value (roughly
260k) in the evening. The data throughput goes even higher
and maintains at high level for the rest of the day on week-
ends or on holidays. The 7.65x max-min difference motivates
us to devise dynamic autoscaling for improving the entire
model training throughput.
Spatially Uneven Distribution. Fig. 2b shows the spa-
tial distribution of lagging among streaming data partitions
alongside the training procedure. We can observe some hot
partitions (red lines) where samples pile up and the cor-
responding training workers fail to consume data rapidly
enough, resulting in residual sample backlogging. On the
contrary, there are cold partitions (blue lines) and the cor-
responding workers are underutilized. We use a surface to
explicitly show the processing lag at the time of 50 minutes
after the training starts. The phenomenonmainly stems from
the uneven data partitioning at pre-processing stage accord-
ing to use-wise data attributes, e.g., locations, ages, etc. User
behaviors hugely differ among different categories.

2.4 Research Requirements

Designing and implementing an elastic GPU scheduling sys-
tem for real-world large-scale online model training has the
following research and engineering requirements.
• Prediction-based Proactive autoscaling.Traditional
reactive autoscaling suffers from belated resource ad-
justment issue – due to the mismatch between the
aggregated metrics and the up-to-date streaming sta-
tus – and data staleness issue due to the job downtime
when enforcing the autoscaling. In addition, without
an elaborate stabilization, native reactive policies tend
to cause frequent allocation resizing, which inevitably
lead to non-negligible system overheads for task pre-
emption and rescheduling. The observed spatio-temporal
patterns of streaming data showcased in § 2.2 un-
leashes the potential of adopting a prediction-based
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approach tomake the best use of historical information
for navigating proactive and stabilized autoscaling.
• Timely and accurate resource estimation.While
some existing work [25, 29, 36] uses an analytical
performance-resource model to identify an optimal
resource amount for optimizing cluster-wide training
throughput, they either merely focused on CPU/mem-
ory amount, or demonstrated effective on generic DNN
models in an offline training models. It is imperative to
figure out the just-enough number of GPUs, in a timely
manner, to accommodate the time-varying size of data
samples. The goal is to ascertain the minimal number
of workers that are capable of delivering large enough
throughput to cope with the on-the-fly streaming data
samples. To reduce the communication and compu-
tational costs, it is also pivotal to take into account
the sparsity nature of DL models, possibly through
only saving non-zero values and updating non-zero
parameters in a cost-effective way.
• On-demanddata forwarding among trainingwork-

ers. We noticed from our production systems that
there exist some overloaded workers while other work-
ers remain idle. As demonstrated in § 2.3, the unbal-
anced data distribution has non-negligible negative
impacts on model training, particularly with task strag-
glers. For synchronizedmodel training, the entire train-
ing job has to wait for the last worker to finish before
moving into the next round of training. To avoid strag-
glers among workers and improve the overall train-
ing throughput, it is therefore desirable to dynami-
cally underpin the most proper resource allocation to
each worker and balance the ingress data traffic among
workers.

3 OUR APPROACH

3.1 Overview of Kale

Fig. 3 gives the overview of Kale’s architecture and the
basic workflow among components. A user first submits de-
tailed configuration and preferences of a DL job to the cluster
resource manager (e.g., Kubernetes). Such information typi-
cally includes model algorithms and initial parameters, data
access points, and model export points, etc. The resource
manager then negotiates and approves the submitted con-
figurations (Step ① and ②). Elastic Scheduler is a manager
dedicated for predicting the incoming data traffic and dy-
namically allocating the most suitable resources within the
whole life-cycle of online model training (Step ③).

Three core components underpin the design of Kale.
Workload Forecaster establishes a time-series predictionmodel
using historical data to foresee the incoming traffic that the
submitted online training job needs to tackle in the upcoming

Figure 3: Overview of Kale.

period (Step ④, detailed in § 3.2 ). Worker Estimator deter-
mines the most suitable number of workers, on the basis of
the predicted traffic and the elaborate resource-throughput
model, such that the upcoming data streams can be best
utilized for achieving a competitive online models (Step ⑤,
detailed in § 3.3). The inferred number of workers will be then
exploited by Online Learning Autoscaler that allocates addi-
tional GPUs to the workers or revokes unused GPUs to the
resource pool (Step ⑥). This involves resource requests from
Autoscaler and the follow-up approval from the resource
manager (Step ⑦ and ⑧). The auto-scaling strategy is also
optimized with an elaborate stabilization procedure to avoid
over-frequent resource adjustment. The technical details will
be discussed in § 3.4. At the runtime of a distributed training,
given a fixed number of GPUs, an optimized data shuffling
mechanism is introduced for balancing data samples among
different workers to diminish training long-tailed stragglers
(Step ⑨, detailed in § 3.5).

3.2 Data Traffic Forecasting

Time-series analysis is the common and effective means of
timing behavioral prediction. Conventional approaches focus
on parametric models (auto-regression (AR) [17] and expo-
nential smoothing [11]) enabled and enhanced by domain
knowledge. Recent advancements in DL-based approaches
boost the accuracy and effectiveness of learning the numer-
ical representation. They mainly encompass LSTM-based
methods [37, 44, 48] and Transformer-based methods [5, 24,
53, 54]. Transformer models use a self-attentive mechanism
for encoding and representation learning of the input se-
quence, and can capture dependencies between different loca-
tions in the sequence and thus enable the context-awareness.

Inspired by these works, we employ a Transformer-based
time series prediction model to learn the periodic temporal
characteristics of streaming data samples. Technically, we
follow and extend Fedformer [54] to decompose the temporal
data into components such as trend, seasonality, periodicity,
and noise. An encoder transforms the input time-series into
attention vectors and incorporates positional encoding to
capture temporal sequence information. Meanwhile, a de-
coder is devised to predict the upcoming traffic. During the
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model training, we reuse the default parameter settings of
Fedformer, but set the attention factor to be 3 instead of 1,
the input size of decoder and encoder to be 1. The forecasting
module is pluggable and can be easily customized by any
time-series analysis counterparts.

3.3 Resource-Throughput Modeling

It is imperative to ensure that, given the number of allocated
GPUs, the training throughput (i.e., samples per second) of a
job should be larger than the incoming traffic rate. Knowing
how many resources (workers) are needed to reach a given
throughput therefore becomes a must-have for an effective
and competitive online learning. To do such inference, Kale
proposes a generic modeling methodology for capturing
the relationship between GPU resources and the outcome
throughput (can be calculated by batch size and training time
per iteration) for sparse deep models.

3.3.1 Parameter Server Architecture. As shown in Fig. 4a,
we adopt the parameter server (PS) architecture for online
learning. Data parallelism is used and each worker will inde-
pendently calculate a different output and gradients based
on different data pieces. The worker obtains the latest model
parameters before each computation step and separately
sends back the individual gradient to parameter servers. All
gradients are aggregated in the parameter servers for calcu-
lating the up-to-date gradient, which will be then dispatched
to each worker. In the PS setting, the time consumption of
one training step (i.e., iteration) for each worker node is as
follows:

𝑇 = 𝑇𝐷 +𝑇𝐹 +𝑇𝐵 +𝑇𝑈 +𝑇𝑂 +𝑇𝐶 , (1)
where𝑇𝐷 denotes the time of pulling parameters;𝑇𝐹 denotes
the time of forward propagation; 𝑇𝐵 denotes the time of
backward propagation; 𝑇𝑈 denotes the time of pushing pa-
rameters;𝑇𝑂 denotes the time of updating the parameters by
the optimizer; and 𝑇𝐶 denotes all extra time overhead.

Let the number of parameter servers be 𝑝 , the number of
worker nodes be 𝑤 , the batch size trained by each worker
node be𝑚, the size of the dense parameter be 𝐷 , and the size
of the sparse parameter be𝑚 × 𝑆 . Assuming that the param-
eters on the parameter servers are uniformly distributed, the
number of dense parameters sent by the worker nodes to
the parameter servers is then 𝐷/𝑝 , and the number of sparse
parameters can be calculated by𝑚 × 𝑆/𝑝 .

3.3.2 Elaboration on Sparse DL Models. Preliminary work
[29] focused on throughputmodeling for offline training only
and failed to distinguish sparse from dense parameters. Kale
builds up and customizes a new approach to accommodating
DL models with sparse features. The key idea is optimizing
the parameter storage and update strategy through sepa-
rately storing and processing sparse and dense parameters

(a) (b)

Figure 4: (a) Parameter-server architecture; (b) Pipelines and overlaps

of operations for processing sparse and dense parameters

at the architectural level. Doing so can not only reduce the
storage space, but also affect the throughput analysis and
modeling of the entire system. Technically, we elaborate
parameter update policies separately – Dense parameters
are completely updated according to the calculated gradient.
Sparse parameters are updated with the corresponding key
values. The number of sparse parameter updates in each
training iteration is positively correlated with the batch size.

3.3.3 Calculating Training Time. The next task is to instan-
tiate and calculate each item in Eq. 1.
Let the time for forward propagation to train a mini-

batch be 𝑇𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 and the time for backward propagation be
𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 . As in each training step, the time for forward prop-
agation is linearly related to the batch size while the time for
backward propagation is independent of the batch size, the
propagation times are 𝑇𝐹 =𝑚 ×𝑇𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 , 𝑇𝐵 = 𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 .
As shown in Fig. 4b, the sparse and dense features are

transmitted separately, and their transmission can be there-
fore overlapped for improving the training efficiency. Mean-
while, as the transmission time of sparse features is usually
long enough, the pulling time of dense features can be fully
overlapped with the updating time of sparse features. This
means that sparse features can exclusively occupy the band-
width during the pulling time, thereby accelerating themodel
training.
Specifically, in this case, the parameter pulling time of a

worker is𝑇𝐷 = (𝑚×𝑆)/(𝐵×𝑝) time and the time of pushing
gradient of a worker is𝑇𝑈 = (𝑚 × 𝑆 +𝐷)/(𝐵 × 𝑝). If the time
to update the parameters for training a minibatch is denoted
as𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ,𝑇𝑂 =𝑚×𝑆×𝑇𝑢𝑝𝑑𝑎𝑡𝑒/𝑝 . Presumably, the additional
overheads (e.g., control commands, etc.) are linearly related
to 𝑝 and𝑤 . Hence, 𝑇𝐶 = 𝜆 × 𝑝 + 𝜆′ ×𝑤 . Putting all together,
the entire training time can be approximated as below:

𝑇 =𝑚 ·𝑇forward +𝑇backward +
2 ·𝑚 · 𝑆 + 𝐷

𝐵 · 𝑝

+ 𝑚 · 𝑆
𝑝
·𝑇update + 𝜆 · 𝑝 + 𝜆′ ·𝑤

(2)

We can then generalize and breakdown the calculation in
two distinct scenarios – synchronous training and asynchro-
nous training.
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Synchronous Training. To conduct synchronous training,
all workers get access to the parameter servers simultane-
ously. Only when all workers complete computing gradients,
they start aggregating the gradients. In each training step,
the time consumption depends on the slowest worker (aka.
straggler) to finish. In a generic cluster circumstance, as-
sume that parameter servers and workers have the same
bandwidth 𝐵0. As model parameters are distributed across
multiple parameter servers, each worker communicates with
𝑝 servers, sharing total bandwidth 𝐵0, i.e., the bandwidth
of each connection can reach at most 𝐵0/𝑝 . Similarly, when
a parameter server connects with 𝑤 workers at the same
time, the effective bandwidth per worker is 𝐵0/𝑤 . Hence,
the bandwidth between a parameter server and a worker,
denoted as 𝐵, is constrained by the minimal of 𝐵0/𝑤 and
𝐵0/𝑝

𝐵 = min{𝐵0
𝑤
,
𝐵0
𝑝
} (3)

Inherently, the throughput is equal to the total batch size
divided by the training time of one step. If the total batch
size is𝑀 , the throughput of synchronized training is:

𝑓𝑠𝑦𝑛𝑐 (𝑤, 𝑝) = 𝑀 · (𝑀
𝑤
·𝑇forward +𝑇backward

+
2 · 𝑀

𝑤
· 𝑆 + 𝐷

min{ 𝐵0
𝑤
,
𝐵0
𝑝
} · 𝑝
+

𝑀
𝑤
· 𝑆
𝑝
·𝑇update

+ 𝜆 · 𝑝 + 𝜆′ ·𝑤)−1

(4)

For a simplified expression, we treat𝑤 and 𝑝 as primary
variables. We combine like terms: (𝑀/𝑤)𝑇𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 yields 1/𝑤 ,
𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 a constant. As min(1/𝑤, 1/𝑝) is either 1/𝑤 or 1/𝑝 ,
we can perform a linear approximation to fulfill the operation
of min, the overall model turns out to be:

𝑓𝑠𝑦𝑛𝑐 (𝑤, 𝑝) = (𝜃0 +
𝜃1
𝑤
+ 𝜃2

𝑝
+ 𝜃3 ·𝑤

𝑝

+ 𝜃4
𝑤 · 𝑝 + 𝜃5 · 𝑝 + 𝜃6 ·𝑤)

−1,

(5)

where𝜃 is non-negative coefficients. If there exists an optimal
ratio of performance for𝑤/𝑝 in the production environment,
Eq. 5 can be further transformed into:

𝑓𝑠𝑦𝑛𝑐 (𝑤) = (𝜃0 +
𝜃1
𝑤
+ 𝜃2
𝑤2 + 𝜃3 ·𝑤)

−1 (6)

In reality, setting the ratio as a constant is a common
practice in industrial settings, and one may want to learn
and optimize the ratio through engineering-wise empirical
study or reinforcement learning based approaches.
Asynchronous Training.As opposed to synchronous train-
ing, workers in the asynchronous training are supposed to

have staggered access to parameter servers. The bandwidth
between the worker and the parameter server is 𝐵0/𝑝 . Each
worker can conduct the training by using each mini-batch
without a need for waiting for other nodes, thus the over-
all throughput can be calculated by simply gathering each
worker’s throughput, i.e.,𝑤 times individual throughput of
a worker.

𝑓𝑎𝑠𝑦𝑛𝑐 (𝑤, 𝑝) = 𝑤 · (𝑇forward +𝑇backward +
2 · 𝑆 + 𝐷

𝐵0

+ 𝑆

𝑝
·𝑇update + 𝜆 · 𝑝 + 𝜆′ ·𝑤)−1

(7)

For simplicity, we can similarly use non-negative coeffi-
cients 𝜃 to substitute some steps of throughput calculation.

𝑓𝑎𝑠𝑦𝑛𝑐 (𝑤, 𝑝) = 𝑤 · (𝜃0 +
𝜃1
𝑝
+ 𝜃2 · 𝑝 + 𝜃2 ·𝑤)−1 (8)

Similarly, by setting the optimal ratio of𝑤/𝑝 , we can get:

𝑓𝑎𝑠𝑦𝑛𝑐 (𝑤) = 𝑤 · (𝜃0 +
𝜃1
𝑤
+ 𝜃2 ·𝑤)−1 (9)

3.4 Autoscaling

3.4.1 Basic Planning. We aim to ascertain the minimal num-
ber of workers that are capable of delivering large enough
throughput to cope with the streaming data samples.
This goal can be simply formulated as an optimization

procedure that can be conducted at the time point 𝑡 :

min
𝑤 (𝑡 ) ∈Z+

𝑤 (𝑡)

s.t. F (𝑤 (𝑡)) > L(𝑡),
(10)

where𝑤 (𝑡) denotes the number of allocated workers, while
F represents the fitting functions aforementioned in §3.3.3
and F (𝑤) is the achievable throughput given 𝑤 workers.
L(𝑡) denotes the predicted traffic at time point 𝑡 by exploit-
ing the forecasting model discussed in §3.2.
Other Considerations. We keep the batch size unchanged
during the model training to ensure a stable and effective
model training. We follow the simple yet working pause-
and-restart policy for the running workers to auto-scale,
which is currently adopted by most mainstream deep learn-
ing frameworks. To lower the complexity of the proposed
fitting model, the ratio of 𝑤/𝑝 is kept constant during the
scaling process. We prioritize real-time performance, e.g.,
training throughput, over GPU efficiency in current design.
We use round-up strategy on the inferred GPU number to
guarantee training performance and, for the time being, do
not consider co-location/multi-instance GPU for improving
GPU efficiency. Heterogeneity is also currently beyond the
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Algorithm 1 Calibrate the Autoscaling Plan
1: Input: Initial series of resource allocation 𝑅 =

{𝑟0, 𝑟1, . . . , 𝑟𝑛}
2: Parameters: 𝜌 and 𝜏
3: 𝑖 ← 0
4: while 𝑖 < 𝑛 − 1 do
5: if |𝑟𝑖 − 𝑟𝑖+1 | ≥ 𝜌 then

6: duration, start, end← CalcDuration(𝑅, 𝑖)
7: if duration < 𝜏 then

8: smooth_value← max(𝑟start, 𝑟end)
9: Calibrate(𝑅, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑠𝑚𝑜𝑜𝑡ℎ_𝑣𝑎𝑙𝑢𝑒)
10: end if

11: end if

12: 𝑖 ← 𝑖 + 1
13: end while

14: Output: Calibrated series of resource allocation 𝑅

scope of Kale. Due to the growing heterogeneity regard-
ing GPU types and topology, we are planning to investigate
heterogeneity-aware optimization scheduling in the future.
Example.We use an example to showcase the methodology
of modeling resource-throughput relationship and working
out the basic autoscaling plan. Assume we have a synchro-
nized online training job with a batch size (𝑀 = 16,384).
The fitting model 𝑓𝑠𝑦𝑛𝑐 (𝑤) is with the following parameters:
𝜃0 = 0.00035, 𝜃1 = 2.5726, 𝜃2 = 0.9824, 𝜃3 = 0.02786. If
Workload Forecaster sees 30,000 samples on their way, then
L(𝑡) is set to be 30,000. Given that 𝑓𝑠𝑦𝑛𝑐 (10) = 30, 007.3, the
solution to the optimization problem in Eq. 10 is given, and
the most suitable number of workers that are just enough
for handling the incoming data samples will be 10. The au-
toscaler can then adjust the allocated GPUs to fulfill the
elastic training.

3.4.2 Stabilization. During the online learning and autoscal-
ing, due to the dynamic nature of spiking data and metric
collection, there might be fluctuation of traffic throughput.
Simply enforcing the basic plan without intervention would
lead to rapid and frequent resource scaling without a time
gap, leading to system jitters. Given that Kale is able to
foresee the upcoming throughput of data samples based on
historical data, we propose a stabilization mechanism for a
better autoscaling plan without over-frequent autoscaling,
by calibrating unnecessary resource re-allocation.
Core Idea. To achieve this, we firstly work out an initial
resource allocation plan at a given time interval, in the form
of a series of worker numbers, so that the predicted data
samples can be properly handled by just enough workers
in the model trainer. To lower unnecessary autoscaling, the
key insight is to pinpoint the short periods during which
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Figure 5: Resource allocation: initial plan vs. stabilized plan

the worker number can keep the same value. We can then
calibrate the planned number of workers for these periods
with the same value of the nearby periods (e.g., the former
or latter period). The intuition is that the short period of
resource adjustment usually indicates unwanted autoscaling
derived from workload jitters or transient data bursting.
Algorithm. As illustrated in Algorithm 1, the stabilization
procedure will go through the initial resource allocation
plan and once the reallocation amount between two suc-
cessive time points surpasses a threshold 𝜌 (Line 5), Kale
will then check if the autoscaling is necessary. In practice,
CalcDuration() calculates the time length that the same
resource requirement lasts for. Once detected below a thresh-
old 𝜏 (Line 7), a calibration procedure will be triggered – the
resource allocation will be assimilated with the former or
latter allocation (Lines 8-9).
Parameter Setting. 𝜌 and 𝜏 are tunable parameters that
can be customized according to domain expertise, and by
default are set to be 1 and 10 minutes, respectively. Arguably,
a larger 𝜏 will trigger less autoscaling, with lower system
overheads, and certainly lead to lower model precision due
to untimely resource adjustment, and vice versa. A larger 𝜌
means decreased system sensitivity to the autoscaling, and
similarly will lead to a fewer number of autoscaling.
Case Study. To help understanding, here is a toy example.
If the numbers of required resources are predicted to be
[4, 4, 5, 6, 6, 6] where the prediction is conducted every 10
minutes. If 𝜏 is set to be 15 minutes, the third required re-
source 5will be calibratedwith 6, the largest number between
its neighboring resource plans. There is another realistic ex-
ample. We collected historical data for a continuous 24 hours
and stabilized the autoscaling plan. Fig. 5 visualizes the effec-
tiveness of planning calibration when varying the threshold
𝜏 from 10 minutes to 30 minutes. The initial plan before the
calibration is depicted with the blue line. Noticeably, some
resource adjustment due to jitters are omitted and hence the
robustness of the system can be guaranteed.
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3.4.3 Fallback Mechanism. We adopt threshold-based au-
toscaling, as per GPU utilization or measured streaming lags,
as a fallback mechanism for handling transient yet unex-
pected load fluctuation or errors such as incorrect prediction
by the workload forecaster or GPU power degradation due
to power capping constraints. To do so, we monitor and
collect utilization-wise metrics and other performance coun-
ters such as throughput and streaming lag during the model
training. Once the resource utilization surpasses a threshold
giving rise to performance degradation, a default cluster-
level autoscaling will be triggered, primarily navigated by the
cluster resource manager. In addition, under/over-estimation
would only cause additional rounds of calculation of required
GPUs and follow-up autoscaling. Such fallback mechanism
is proved to have negligible overheads to the overall training
performance.

3.5 Global Data Shuffling

3.5.1 Basic Idea. Typically, the streaming data partitions
are dispatched to workers according to a pre-defined policy
(e.g., round robin). However, as discussed in § 2.2, due to
the unbalanced nature of data distribution, the data streams
going into the workers might be hugely different. To timely
re-balance data samples among all training workers, we de-
velop a global shuffling mechanism in Kale. As shown in
Fig. 6, we equip each worker with Shuffle Unit, a pertaining
component responsible for redirecting overflowed data sam-
ples to other idle workers whilst controlling, as a throttle, if
the worker can accept data samples from other Shuffle Units.
To better manage the arrived data stream, Shuffle Unit will
emit the data samples into a local queue for local training
or instantly forward the over-sized data samples via a stan-
dalone process Forwarding Unit for inter-worker shuffling.
The redirected data samples will be written into the local
queue in the destination worker, and cascading or cyclic
forwarding will not occur.

3.5.2 Threshold-based Forwarding Policy. At the core of Shuf-
fle Unit functionalities is to determine when and how many
samples to redirect to otherworkers. This procedure ismainly
navigated by a simple yet working threshold-based policy.
From the perspective of data receivers, a worker with a long
local queue (i.e., the queue length surpasses a given upper
bound) is sensible to refuse any additional samples sent from
other workers, and restart to receive outer samples only
when the queue length drops below a certain lower bound.
We entitle each worker a state to signify if it could be an ideal
data receiver. From the perspective of data sender, if the local
queue is full, all follow-up data samples will be appended to
a local data buffer, which will be fetched by Shuffle Unit for
redirection.

Figure 6: Overview of Global Shuffling

Kale collects all workers’ states at run time and use them
to generate a global view of available workers that are re-
garded as good destinations for hosting overflowed data
samples. Instead of using a centralized coordinator to up-
date the global list to all workers, Kale adopts an event-
driven broadcast approach to fulfill notification. Specifically,
when a worker experiences a state transition, a notification
of worker adding or worker removal will be sent to other
workers. When performing data redirection, Shuffle Unit
randomly chooses a worker from the locally maintained
available list as the receiver, and pipelines the data into the
builtin Forwarding Unit to send data to the remote worker.

3.5.3 Implementation. We briefly introduce how to imple-
ment the global shufflingmechanism in Kale. Usually, stream-
ing data transmission comprises several key steps – data seri-
alization, network transmission, data reception and data pro-
cessing. First, the original data is serialized into a byte stream,
in the form of ProtoBuf, and then transmitted using network
communication framework bRPC, which sends the serialized
data to the target node via a network transmission protocol.
The target node receives and parses the arrived stream to
resume the original format. Finally, a streaming data process-
ing framework, e.g., streaming RPC, is used for conduct a
series of data operations including data analysis, conversion,
aggregation, etc. These frameworks are selected mainly for
the sake of communication efficiency and reliability. In real-
ity, bRPC is a high-performance and reliable communication
framework, capable of transmitting data through multiple
nodes with ACK mechanism. Streaming RPC supports the
delivery of streaming data, and allows data to be processed
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uninterruptedly during transmission without waiting for all
data to arrive. The threshold-based policy can avoid com-
munication flooding. Only when the local queue surpasses a
threshold, the data will be forwarded to other workers.

4 EXPERIMENTS

4.1 Experiment Setup

Hardware and Software. All experiments are performed
in a cluster with 32 NVIDIA A10 GPUs with Intel Xeon
Platinum 8352Y CPUs @ 2.20GHz, and 1TB RAM. Online
learning jobs are written by using Tensorflow 1.15.5, and
workload prediction models are trained based on Pytorch
1.13.1. The real-time data streams are managed by Kafka.
Each Kafka topic encompasses 800 partitions, facilitating the
transmission and reception of gigabytes of traffic per second.
Methodology and Baselines.We comprehensively evalu-
ate the performance of Kale. To conduct micro-level eval-
uation, we first show how the resource-throughput model
works in Kale (§4.2), and illustrate the performance benefit
from Kale’s global shuffling mechanism (§4.3). To conduct
macro-level evaluation, we compare Kale with other base-
lines of autoscaling systems or strategies (§4.4). Details of
the comparable baselines are described in each subsection.
Workloads. To conduct a fair comparison, we implement
and run different autoscaling baselines in the same DL clus-
ter, which underpins the submitted online model training
jobs. We implement a series of ranking models as bench-
marking workloads to consume the streaming data samples.
The ranking models have roughly one billion parameters
and follow a sophisticated architecture designed for complex
recommendation or adverting tasks. The input features are
high-dimensional sparse vectors transformed into dense vec-
tors through embedding layers with dimensions 64*2, 8*18,
64*2, 8*12, and 8*3, respectively. These dense vectors are pro-
cessed by a Mixture of Experts (MMoE) layer consisting of 4
experts, each of which modeled as a simple dense network
with 64 hidden units, with task-specific gates determining
the expert contributions. The MMoE outputs pass through a
series of dense layers (e.g., [512, 256, 256, 64]) with Swish ac-
tivation, followed by a final dense layer with 64 units. Then it
applies sigmoid activation for probability predictions, and is
optimized using a loss function like binary cross-entropy loss.
Alternatively, task-specific embeddings can be directly pro-
cessed by individual tower networks, consisting of multiple
dense layers, and further aggregated by an inner layer using
a reduce_sum operation, followed by a sigmoid activation.
Evaluation Metrics. To effectively assess the performance
of Kale, we consider the following metrics:

• SLO violation rate. As shown in Fig. 1, AUC drop
can be regarded as the SLO indicator and it is linear to
streaming lag. According to the industrial best prac-
tice, we regard lags over 20 minutes as as sign of SLO
violation. We measure the proportion of the time dura-
tion that experience such SLO violation over the entire
experiment time frame.
• Accumulated lag. The accumulated lag metric is used
for showing the degree of accumulation of streaming
data samples over a period of time in training. It can
be practically calculated as the sum of lag per minute,
i.e.,

Accumulated_Lag =

∫ 𝑡1

𝑡0

Lag(𝑥) 𝑑𝑥 (11)

• Downtime. The downtime describes the relevant time
frame to scale the resource in and out. Since online
learning expansion and contraction involves work-
flows such as saving the model, starting a new con-
tainer of workers, pulling mirrors, loading the model,
and rebuilding the consumer group, the expansion and
contraction overhead cannot be ignored. Less but pre-
cise tuning is the direction we pursue.
• GPU hours. The GPU hours represent the cumula-
tive duration of GPU usage in the context of online
learning. This metric is calculated by multiplying the
total number of GPUs by the amount of time that each
GPU is actively engaged in the task execution. This is
a lower-is-better metric.

Performance Report. To minimize the noise, we repeat
each experiment 20 times independently and compute the
average running time or accuracy. The error bar indicates
deviations, with 95% Confidence-Interval. For a fair com-
parison, we vary the hyper-parameters for each competing
method for each task, and use the best-performing settings.

4.2 Effectiveness of Throughput Modeling

Settings. To validate the generalization of our modeling
approach and adaptability to a diverse range of scenarios,
we investigate the results on two hardware configurations
– NVIDIA A10 and the NVIDIA T4 are selected as repre-
sentatives of a broad spectrum of computation capabilities.
We collected multiple sets of data pairs (𝑤, 𝑓 (𝑤)), where
𝑤 represents the number of workers and 𝑓 (𝑤) denotes the
model throughput. Training and testing data are split by
using Non-Negative Least Squares (NNLS) method. We em-
ployed a ranking model (details in §4.1), which has been
massively validated and used in Kuaishou, and set the global
batch size as𝑀 = 16, 384. We set the worker-to-parameter-
server ratio as 1, to ensure efficient and balanced parameter
updates across the system.
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Table 1: Fitting Parameters for Synchronous and Asynchronous Training on T4 and A10 GPUs

Method Parameter

Synchronous Training Asynchronous Training

T4 A10 T4 A10

Kale

𝜃1 11.1614 2.5726 0.0002297 0.000224
𝜃2 0.00253 0.00035 0.001421 0.000566
𝜃3 11.6335 0.9824 1.12 × 10−18 1.41 × 10−21
𝜃4 1.88 × 10−14 0.02786 - -
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Figure 7: MAE, RMSE and MAPE under different methods.

Comparable Methods. we compare Kale with two other
state-of-the-art (SOTA)methods that focus on training through-
put modeling. Ernest [36] and Optimus [29]. Compared with
Kale, Ernest lacks exhaustive quantitative analysis in the
selection of data items, while Optimus [29] assumes param-
eters follow the uniform distribution in its PS architecture
design, without a special focus on tackling the growing needs
of sparse parameters for online DL training.
Results. The fitting parameters are detailed in Table 1, and
the resultant prediction effectiveness is presented in Fig. 7.
It is observable that Kale consistently outperforms Optimus
and Ernest across various metrics on both T4 and A10 GPUs
setting. Kale can achieve over 30% reduction in both MAE
and RMSE in both synchronous and asynchronous training
scenarios. Specifically, MAE can be improved by 78.53% and
RMSE by up to 77.71% when compared with the other meth-
ods. Kale can achieve merely 2.43% MAPE, approximately
10 times lower than Optimus and Ernest, which have 20.18%
MAPE. The deviation of Kale can be controlled within 7.4%,
comparedwith 20% that the counterpartmethods can achieve.
The results indicate the robustness and efficiency of current
throughput modeling mechanism for tackling fluctuating
data streams in Kale.

4.3 Effectiveness of Global Shuffling

To evaluate the effectiveness of global shuffling strategy, we
conducted comprehensive experiments by measuring the
lag per partition, resource consumption including network
bandwidth and CPU utilization, and AUC.
Comparative Methods. We implemented three different
data shuffling strategies.
• No Shuffling: This is the native way of worker to
consume streaming data. Each worker reads data only
from its pertaining partitions, without any data ex-
change from other workers.
• Basic Shuffling: Each worker forwards the data that
it consumes evenly to all other workers, regardless of
the real need of other workers.
• Advanced Shuffling: The current threshold-based
policy that Kale uses for data shuffling. Compared
with the basic shuffling policy, the advanced policy
forwards data sample on-demand, according to the
worker’s states.

Results. Fig. 8 shows how streaming lags vary across dif-
ferent partitions over the entire course of an online training
procedure. The x-axis, y-axis, and z-axis represent the elapse
training time, the Kafka partition ID, and the streaming lag.
The lag can reflect the sample retention time and the de-
gree of sample accumulation. When enforcing no shuffling
policy, a number of data partitions observably experience
long streaming lags and some partitions even have a trend of
growing lags, indicating an increase situation of sample ac-
cumulation and untimely online training. In comparison, the
basic shuffling and advanced shuffling policies can effectively
mitigate this issue. Advanced shuffling can consume samples
more evenly and rapidly than basic shuffling – the lag of all
partitions goes down to zero more quickly. This is owing to
the on-demand data forwarding and the decentralized state
notification mechanism.

Table 2 presents the performance metrics of different shuf-
fling strategies. While data shuffling mechanism introduces
additional network overhead due to data transfer, the ad-
vanced shuffling mechanism in Kale can diminish the net-
work overhead by 13.6% compared with basic shuffling. In
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(a) No Shuffling (b) Basic Shuffling (c) Advanced Shuffling

Figure 8: The accumulation of partition samples under different shuffle strategies: (a) No Shuffling; (b) Basic Shuffling; (c) Advanced Shuffling.

The vertical axis represents the time from when the samples enter the message queue to when they are read, reflecting the time they are

accumulated.

Table 2: Comparison of network traffic, CPU utilization, and model

AUC under different shuffling strategies.

Shuffling Strategy Traffic

(MB)

CPU

Util. (%)

Model

AUC (%)

No Shuffling 905 ± 15 75.5± 2.0 95.7± 0.5
Basic Shuffling 1097± 20 80.0± 2.5 96.4± 0.3
Advanced Shuffling 948 ± 18 77.0± 1.8 96.5± 0.4

terms of CPU overhead, the advanced shuffling can reach
comparable results, with only 2% addition CPU increase com-
pared with the case that no shuffling is enabled, and 3% lower
than basic shuffling due to the on-demand forwarding feature.
Unsurprisingly, the increased traffic throughput stemming
from the sensible data forward lead to an increased model
AUC, compared with the scheme without data shuffling.

4.4 Overall Performance of Kale

This subsection presents an end-to-end performance evalua-
tion of Kale.
ComparableMethods.We choose four representative sched-
uling schemes for comparison.
• Adequate Resources: The scheduler always allocates
adequate resources without resource auto-scaling.
• Kubernetes default horizon pod auto-scaler (HPA)

[18]: A widely-used responsive auto-scaling method
that automatically adjusts the number of pods by mon-
itoring resource usage and following pre-defined rules.
• Autopilot [33]: Google’s auto-scaling scheme uses a
sliding window to collect recent resource usage statis-
tics (e.g., average CPU and memory utilization) and
elastically adjust resources thereafter.
• Madu [25]: A proactive scaling scheme empowered
by workload (e.g., microservices) prediction.

Results. Table 3 and Fig. 9 describe how different autoscaling
mechanisms work in different aspects. Overall, Kale can
constantly outperform other baselines on all metrics.
Compared with those reactive autoscaling methods such

as Autopilot and HPA, Kale’s violation rate and the accu-
mulated lag are significantly reduced, simply owing to the
proactive traffic forecasting. Numerically, compared with
HPA, Kale significantly reduces accumulated lag and the
downtime by 69.2% and 33.1%, respectively, and lower the
SLO violation rate from 19.57% to just 2.6%.

We then make a specific comparison with a proactive au-
toscaling method used in Madu. Overall, Kale can achieve
comparable violation rate when compared against Madu and
remarkably shorter accumulated lag. Specifically, Kale ex-
hibits a violation rate of 2.60% and an accumulated lag of
2,204 minutes, while Madu shows a violation rate of 2.57%
and an accumulated lag of 2,303 minutes. The improvement
can be largely attributed to the global data shuffling mecha-
nism that can effectively mitigates unbalanced data distribu-
tion and stragglers.
Considering GPU hours, the efficiency of Kale is much

higher than Madu – Kale diminish the consumed GPU hours
by 46.8% - from Madu’s 455 GPU hours to 242 GPU hours.
This is because the resource-throughput modeling mecha-
nism in Kale matches Madu’s performance, and the calibra-
tion mechanism to stabilize the autoscaling can massively
reduce unnecessary scaling actions thereby substantially
lowering the resource overhead. While Madu is able to pre-
dict the upcoming system loads, the simple linear fitting
model for GPU throughput is insufficient and thus leads to
excessive resource allocation. Due to the similar reason, the
downtime can be tremendously reduced by 42.6% against
Madu, from 190 minutes with Madu to 109 minutes. By com-
parison, the conventional reactive approaches do not take
into account the historical traffic, and thus are inherently
prone to allocation oscillations.
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Table 3: Comparison of key performance metrics under different scaling schemes.

Scheme Violation Rate Accumulated Lag (min) Downtime (min) GPU Hours (h) AUC
Adequate Resources 0 0 0 672 95.3% ± 0.1%
HPA 19.57% ± 1.50% 7, 151 ± 150 163 ± 8 268 ± 15 95.1% ± 0.3%
Autopilot 5.49% ± 1.05% 4, 420 ± 100 269 ± 10 303 ± 10 95.2% ± 0.4%
Madu 2.57% ± 0.41% 2, 303 ± 50 190 ± 10 455 ± 20 95.3% ± 0.3%
Kale (proposed) 2.60% ± 0.32% 2, 204 ± 30 109 ± 7 242 ± 8 95.8% ± 0.2%
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Figure 9: Comparison of key performance metrics: (a) Violations Distribution; (b) Lag Distribution; (c) Downtime Distribution; (d) GPU Hours

Distribution by adopting different autoscaling schemes.

Figure 10: The number of allocated workers by adopting different

autoscaling schemes.

Fig. 10 also illustrates the change of the worker number
over a continuous 24-hour period using different methods.
As depicted in the upper middle portion, during the period
of workload spikes, there is a delayed autoscaling, i.e., the
GPU allocation for the workers is belated due to their reac-
tive scaling nature. Specifically, Autopilot’s GPU allocation
curve is slightly misaligned with the workload peak, which
could lead to further sample accumulation and result in in-
creased streaming lags. This issue is even more severe with
HPA – the number of workers are increased 20 minutes after
the workload goes up. Scaling up during the peak period
means that the downtime will accumulate more data sam-
ples, making the existing lags even longer. Hence, HPA has
the highest violation rate and accumulated lag. Kale has a

smoother procedure of autoscaling, without over-frequent
autoscaling. By comparison, Madu experiences excessive and
prolonged allocation at the peak periods, resulting in higher
GPU hours.

5 KALE AT SCALE

5.1 Cluster-Wide Experiment

Kale has been deployed on the production clusters of Kuaishou
to serve tens of thousands of online recommendation model
training jobs. To validate the design and implementation of
Kale in a real-world production environment, whilst ensur-
ing the cluster can work without interference, we collected
the traces of some jobs and analyzed the pertaining statistics.
The information is obtained from a GPU/CPU mixed cluster
with over 8,000 GPUs and over 500,000 CPU cores. Given
that 90% of our recommendation models at Kuaishou are
trained in an online manner with real-time model updates,
the main performance indicators at the cluster level are GPU
utilization and the peak throughput. These metrics are cru-
cial for ensuring that online training can efficiently leverage
GPU resources while meeting the Service Level Agreements
(SLAs) for model updates.

To evaluate the impact of key techniques proposed in
Kale on the production systems, we collected a-week trace
data and metrics, spanning from 8th June to 15th June 2024,
after deploying Kale, and compared it against the trace data
from the week of 8th April to 15th April 2024, in the same
cluster. The average GPU utilization at the cluster level can
be increased by 40%, and, owing to the elastic scheduling
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Figure 11: GPU utilization comparison with and without Kale in the

production environment. The light transparent lines indicates the

task-level GPU utilization and the bold red line depicts the cluster’s

average GPU utilization.

mechanism with a precise estimate of the required GPUs,
the system throughput can be consistently maintained at a
high level, without noticeable utilization drops and spikes.
Meanwhile, this indicates more training jobs can be allowed
and executed in the cluster. The cluster is now used for
hosting Kuaishou’s largest fine-ranking models, which have
several dozen terabytes model size. The proposed elastic
scheduling strategy can achieveminute-level elasticitywhilst
still catering to the peak throughput demands.
Switching on the global shuffling mechanism in produc-

tion systems can effectively mitigate the backlogging of
streaming data. The data processing rate is observed 10 times
faster than that when the mechanism is disabled. This indi-
cates a substantial improvement in handling the fluctuated
data and the enhanced responsiveness of an online model in
response to changed data samples.

5.2 Engineering Experience

Implementing a large-scale scheduling system for multi-
tenant online training jobs is a non-trivial task. Herein, we
generally discussed the lessons learned from engineering ex-
periences and provides our insights in the following aspects.
Coping with streaming data imbalances and computa-

tional stragglers. Kafka data partitions often exhibit un-
even distribution and result in different processing speeds
among different training workers. As a result, unsurprisingly
we observed a huge number of stragglers – the throughput
and utilization of a training job is largely determined by the
progress of the slowest worker. Enforcing global shuffle on
all data partitions ensures a more robust training process by
mitigating the impact of any inherent order or grouping in
the data. The model is therefore less likely to learn biases
and is more capable of generalizing from the training data
to unseen scenarios. Nevertheless, ascertaining the optimal
configurations in the global shuffling functionality needs

additional empirical studies and multiple iterations of re-
finement so that network bandwidth utilization and CPU
consumption can be further minimized.
Copingwith embedding tables at scale. Embedding tables
for large-scale recommendation training tasks are typically
massive and distributed across various machines running pa-
rameter servers. The proposed autoscaling mechanism will
inevitably lead to the reconstruction of embedding tables.
Hence, apart from the efficacy of the scheduling algorithm,
designing a robust and effective elastic scheduling should
also take into account the intrinsic nature of reconstruct-
ing embedding tables. We also devised a novel embedding
table scheme that can selectively re-adjust the distribution
of embeddings solely based on the dynamic node changes
(adding/removing). This approach can minimize the initial-
ization time, ensuring the table construction within a minute.
Consequently, this advancement has rendered large-scale,
production-grade deployments of elastic scheduling feasible
and practical, marking a significant milestone in optimiz-
ing resource utilization and enhancing the efficiency of our
recommendation systems.
Fault Tolerance at Scale. To enhance the training reliabil-
ity whilst maintaining the robustness and efficiency of the
overall system, we employ a combination of failure recov-
ery mechanisms at worker level, including checkpointing,
redundancy, and, inherently, the elastic resource allocation
offered by Kale. Specifically, each worker typically saves
its state (model parameters, gradients, etc.) at regular in-
tervals (e.g., every 10 minutes) to a distributed storage sys-
tem. Upon failure, the worker retrieves the latest checkpoint
from storage and resumes the training. The parameter server
can also provide the latest model parameters to accelerate
the worker reconstruction. The proposed global shuffling
method can flexible redirect the data stream coming into
the faulty worker to other workers. For any workers that
are detected slowing-down, backup worker instances will be
launched to avoid the potential stragglers and worker failure,
with minimal disruption in a online training procedure.

6 RELATEDWORK

Elastic Cluster Management. Rule-based autoscaling sche-
mes [2, 12, 18, 26] expand service resources in response to
specific events. These schemes typically operate by deter-
mining an appropriate threshold to trigger scaling mecha-
nisms, which is often based on fixed CPU utilization rates.
However, setting these thresholds requires considerable ex-
perience and can be challenging in practice. Several studies
[1, 3, 8, 22, 25, 28, 32, 33, 38, 39] incorporate proactive predic-
tion into autoscaling, considering resource usage and work-
load of online services to achieve automatic scaling. Google’s

48



SoCC ’24, November 20–22, 2024, Redmond, WA, USA Z. Liu, R. Yang, J. Ouyang, et. al

AutoPilot [33] applies exponential smoothing to historical
resource usage data within a sliding window to forecast task
resource requirements. Some works employ DL techniques
for elastic resource management. MADU[25] accounts for
workload uncertainty to handle highly dynamic inter-service
dependencies. DeepScaling [39] leverages spatial-temporal
graph neural networks for workload forecasting. However,
these methods are mainly designed for microservice loads,
and their resource estimation methods usually assume a lin-
ear relationship. In the online learning domain, on the other
hand, the relationship between resources and throughput is
not necessarily linear.
Resource Scheduling for DL Jobs. Existing works [16, 23,
29–31, 42, 45, 55]mainly investigate how to determine the op-
timal computing power allocation adjustment plan based on
the execution progress or runtime performance of the train-
ing job. Optimus [29] builds a resource performance model
for each job during operation. It dynamically schedules clus-
ter resources according to the job progress and cluster load
to minimize the average job completion time. Pollux [31] de-
termines resource adjustment plans and job hyperparameter
(batch size and learning rate, etc.) reconfiguration plans by
studying the impact of different resource allocation plans on
throughput and model statistical efficiency. Toposcaling [55]
uses resource elastic expansion as a means to ensure con-
tainer service quality (access latency, throughput, etc.), and
infers the minimum amount of resources required to restore
performance degradation based on the resource-performance
model obtained through online learning. DL2 [30] further
uses reinforcement learning to optimize the elastic training
strategy to determine the optimal GPU adjustment amount.
Existing elastic allocation strategies for training resources
are all aimed at offline training clusters. This paper fills the
gap in dynamic resource allocation for online learning.
Throughput Modeling for Distributed DL Jobs. Ernest
[36] fits a throughput model on small clusters with small
batch sizes to predict large cluster and large batch through-
put, but its model construction is largely qualitative and does
not consider framework specifics or training methods. Li et
al. [21] propose coarse-grained and fine-grained analysis for
distributed SGD throughput estimation, though it requires
detailed system and runtime metrics. Optimus [29] builds a
model based on parameter server architecture, without mea-
suring individual stage running times, by parameterizing
them for fitting. However, Optimus’ model is tailored for
offline training scenarios and struggles with online training
sparsity. Inspired by Optimus, this work considers online
training sparsity and framework characteristics to develop a
throughput model for online training scenarios.

7 CONCLUSIONS

Online deep learning training is becoming of great impor-
tance for many service vendors in provisioning Internet-
scale businesses such as searching, recommendation, and
advertisement. Nevertheless, autoscaling methods for elastic
resource scheduling often suffer from belated adjustment of
GPU resources and can lead to reduced accuracy and slow-
down of online model training.

In this paper, we present Kale, a new elastic GPU schedul-
ing system to improve the performance of online deep learn-
ing model training. It automatically determines the number
of required GPUs that can best accommodate the fluctuating
data samples, and, after autoscaling, employs an advanced
data shuffling strategy for re-balancing data samples among
different training workers, without delivering long-tailed
training tasks, thereby improving the runtime training ef-
ficacy. Kale has been deployed at Kuaishou’s large-scale
production cluster systems and successfully underpins real-
time video recommendation and advertisement at scale. To
help a general audience, we discuss several engineering-wise
considerations and lessons learned from our experience in
implementing large-scale resource scheduling systems for
online model training at scale.

In the future, we plan to exploit fine-grained GPU sharing
mechanism, at both GPU hardware and software level, to
enable multi-partitioning of a large GPU device and allocate
a smaller GPU instance to training workers, thereby further
improving the cluster utilization whilst guaranteeing the
performance. In addition, we plan to leverage user-defined
SLAs to better outline the performance requirement of on-
line training. Benchmark tools for online training of models
with sparse features will also be released for a wider repro-
ducibility in the community.
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