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ABSTRACT

Data parallelism has become a cornerstone in scaling up
the training of deep neural networks (DNNs). However, the
communication overhead associated with synchronizing gra-
dients across multiple nodes has emerged as a significant
bottleneck, adversely affecting training efficiency and lead-
ing to a surge in large-scale distributed model training costs.
By leveraging insights into the statistical characteristics of
gradients, we present GComp, a near-lossless gradient com-
pression scheme designed to reduce the communication bur-
den during data-parallel training significantly. GComp de-
velops an optimized Huffman encoding/decoding strategy
to compress gradient exponents effectively. Additionally, it
introduces an innovative multi-level quantization method
for mantissa, complemented by a pruning strategy that elim-
inates zero-valued gradients. These integrated approaches
significantly reduce the volume of data for synchronization,
while virtually not affecting the DNN model’s training ac-
curacy. We conduct comprehensive evaluations of GComp,
demonstrating that our method can decrease the communi-
cation volume by as much as 67.1%, and enhance training
speed by up to 1.9×.
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1 INTRODUCTION

The great success of generative AI models boosts the sig-
nificant demand for distributed deep neural network (DNN)
training, which has emerged as a crucial service for ma-
jor cloud providers such as Amazon Web Services [5], Mi-
crosoft Azure [43], Google Cloud Platform [19], and Alibaba
Cloud [9]. Efficiently training DNN models requires the col-
laboration of dozens to thousands of GPUs. To make this
large-scale DNN training efficient on large datasets, data
parallelism (DP) is a fundamental approach. DP entails sub-
stantial gradient synchronization at the end of each iteration,
introducing a large amount of communication overhead.
As shown in Figure 1, as the number of DP groups ex-

pands, the training speed for extremely large-scale models
like Llama [61] (trained utilizing DeepSpeed [53] on Alibaba
Cloud PAI [10]) and GPT-3 [50] (trained utilizing Mega-
tron [57] on PAI) scales sub-linearly, which can result in
a performance degradation of up to 70%. Furthermore, this
sub-linear scalability in DP is also ubiquitous in the training
of typical DNN models (e.g., ResNet [21] and Bert [12]). Our
in-depth analysis confirms that this degradation is mainly
attributed to communication among GPUs. In cloud envi-
ronments, especially when compared to dedicated physical
clusters, the multi-tenant nature of resource sharing can lead
to performance degradation due to competition for network
resources. In this context, optimizing communication be-
comes even more critical, thus emerges as one of the main
challenges faced by cloud service providers in delivering
efficient DNN training services.
To mitigate the side-effect introduced by gradient syn-

chronization, the most straightforward optimizing approach
is to reduce the size of the transmitted message, through
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Figure 1: Training speedup of GPT-3, Llama, ResNet

and Bert with increasing DP groups (more GPUs used),

tested on Alibaba Cloud PAI.

the compression of gradients. Existing gradient compres-
sion efforts depend on either sparsification [4, 7, 14, 55, 60],
which omits a certain portion of the gradients, or quantiza-
tion [3, 37, 41, 59, 66], which reduces the size of each gradi-
ent value. Despite being effective at reducing message sizes,
these efforts are lossy compression. They compromise the
integrity of gradient information, introduce non-negligible
errors in parameter updates, and affect the overall conver-
gence of models. By surveying our engineers in charge of
training DNNmodels for crucial online recommendation ser-
vices, we found that directly employing state-of-the-art lossy
compression algorithms regresses the model’s accuracy (loss
rate) to the state it was several months prior, causing a sig-
nificant waste of training resources. On the other side of the
spectrum, lossless compression of floating-point numbers
is a classical research and engineering topic, where many
typical solutions (e.g., ZSTD [15] and Zlib [1]) are proposed.
These methods guarantee absolute precision for arbitrary
inputs. However, experiments show that they yield only a
limited compression ratio and require substantial computa-
tion resources in gradient compression.
We emphasize that, by leveraging the statistical charac-

teristics of gradients throughout DNN training, a delicate
compression mechanism can be constructed to achieve a
sweet point: efficiently compressing gradient message sizes
while preserving near-lossless parameter updates. Specifi-
cally, we identify three key observations (OB) from DNN
model training.
OB-1: During training, the gradients tend to cluster around
zero, with a notable concentration in their exponent part.
Remarkably, the 15 most frequent exponent values represent
almost 95% of all occurrences.
OB-2: There exists a substantial disparity between the mag-
nitude of gradients and their corresponding parameters. Gen-
erally, gradients are 3 to 5 orders of magnitude less than the
corresponding parameters. Moreover, this gap becomes even
larger as training progresses.
OB-3: A significant fraction of the gradients is zero, indicat-
ing that up to 50% of the gradient values do not contribute
to the parameter update process.

Based on the above observations, we propose a near-lossless
gradient compression scheme, GComp, that comprises both

exponent compression and mantissa compression. For ex-
ponent compression, inspired by OB-1, we develop an en-
hanced Huffman encoding strategy tailored to efficiently
compress the most common exponents and handle rare expo-
nents with full transmission. We also optimize the decoding
procedure by utilizing a lookup table.
In mantissa compression, guided by OB-2, we recognize

that the lower segments of mantissas in gradients have a
minimal impact on the significant digits of corresponding
parameters and, therefore, can be truncated during transmis-
sion to save bandwidth. Through a meticulous analysis of
various optimizers used in DNN training, we establish a quan-
tization metric for mantissas that ensures the compression-
induced deviation remains within an acceptable range. We
further implement the multi-level quantization to reduce the
complexity introduced by customized quantization for each
mantissa. Leveraging OB-3, our approach eliminates the
transmission of non-contributory gradients, thereby further
reducing the communication overhead.
We implement GComp and evaluate its effectiveness us-

ing widely-used representative DNN models (ResNet [21]
and Bert [12]), trained on PAI [10], a machine learning plat-
form provided by Alibaba Cloud. The results indicate that
GComp can cut the communication volume by as much as
67.1%, and improve end-to-end training efficiency by up to
1.9×. Moreover, it maintains the convergence trajectory of
the model’s loss function closely aligned with that observed
in scenarios without compression. In comparison with ex-
isting lossy compression techniques, GComp decreases the
average deviation in the model loss function’s value by 73.6%
∼ 93.1% compared to those observed with a conventional
quantization-based method, and by 77.4% ∼ 96.8% compared
to those associated with a sparsification-based method.

This paper makes the following contributions:
• We identify and outline three key observations regard-
ing gradients and parameters during data-parallel dis-
tributed DNN training, which are crucial for the opti-
mization of gradient transmission (Section 3).

• We introduce GComp, an innovative gradient compres-
sion approach that uses a losslessmethod for efficiently
compressing the exponents of gradients (Section 4) and
a near-lossless method for compressing their mantissas
(Section 5).

• Weefficiently implement GComp and integrate it within
the AllReduce operation of Gloo [16], thereby facilitat-
ing its application in distributed DNN training frame-
works (Section 6).

• Through comprehensive evaluations, we demonstrate
that GComp can offer a speed increase of up to 1.9×
for end-to-end DNN model training while maintaining
near-lossless outcome in terms of model convergence
(Section 7).
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2 BACKGROUND

In this section, we provide an overview of the background
of gradient compression in DNN training, and discuss the
limitations of existing compression techniques.

2.1 Data Parallelism in DNN Training

DNNs have become the cornerstone of modern machine
learning applications, with their ability to model complex
relationships in massive data. Nowadays, extremely large-
scale DNNs such as GPT-3 [50], which contain billions of
parameters, are being trained on large datasets to achieve
state-of-the-art performance. The scale of data and computa-
tional intensity required for training large DNNs necessitates
the use of distributed training frameworks. PyTorch [51], as
well as frameworks built on top of it such as Megatron [57]
and DeepSpeed [53], provide the necessary infrastructure to
facilitate this process effectively.
Distributed Data Parallelism [25, 32, 38, 53] is a founda-

tional and prevalent approach for distributed training, fa-
cilitating the division of workload across multiple workers.
This method has each DP group—whether it is an individ-
ual worker or a group of workers coordinated via tensor
parallelism [45, 57] or pipeline parallelism [17, 23, 33, 44,
46, 53]—holding a complete replica of the model to perform
computations on its assigned data. The central aim of this
paradigm is to harness the collective power of disparate
training data processed by various workers to accelerate the
model parameters’ updates.

2.2 Gradient Aggregation via AllReduce
AllReduce is a crucial communication operation in distributed
training frameworks that employ data parallelism. It is facili-
tated by collective communication libraries such as NCCL [48],
Gloo [16], and MPI [49]. This operation works by performing
an element-wise reduction operation (e.g., sum, prod, max,
min) across all working nodes, followed by a broadcast of
the resultant value to all workers.

For example, consider a training iteration using the Mega-
tron framework, where a global-batch of samples is processed.
This global batch is subdivided into severalmicro-batches that
are evenly distributed among various DP groups. Throughout
an iteration, each DP group is responsible for its respective
set of accumulated gradients, conducting both forward and
backward passes on the micro-batches allocated to it. Once
all backward passes are complete, the AllReduce operation is
employed to synchronize the gradients across DP groups, en-
suring consistent updates to the model parameters. However,
as the scale of the model increases, the communication over-
head associated with AllReduce grows significantly, leading
to a bottleneck in the training process. For instance, when
training the GPT-3 22Bmodel on 16 nodes with theMegatron

framework1, where each node corresponds to a single DP
group and comprising 8 GPUs cooperating through tensor
parallelism, it has been observed that the communication
overhead from AllReduce can represent up to 30.7% of total
training time.

2.3 Floating-point Numerical Formats

Within the context of this paper, we focus on the IEEE 754
standard [26] for floating-point numbers, which is the pre-
dominant format for encoding real numbers in computer
systems, and is employed by main DNN training frame-
works. This norm encompasses various precision such as
FP16, FP32, FP64, and FP128, each tailored to convey floating-
point numerals with distinct levels of accuracy and magni-
tudes. Specifically, FP32 and FP16 formats are extensively
utilized during the training of machine learning models, to
represent the parameters and gradients. Represented as a
combination of three components, these floating-point num-
bers include:

• Sign bit (𝑠𝑖𝑔𝑛): A single bit to indicate the polarity
(positive or negative) of the floating-point value.

• Exponent (𝑒𝑥𝑝): A fixed number of bits allocated to
express the numerical range of the number.

• Mantissa (𝑚𝑎𝑛𝑡 ): A fixed number of bits that represent
the precision of the value.

For example, a 32-bit FP32 floating-point number, 𝑁32, can
be represented as:

𝑁32 = (−1)𝑠𝑖𝑔𝑛 × 2(𝑒𝑥𝑝−127) × (1 + 𝑚𝑎𝑛𝑡

223 ), (1)

where the sign is represented by 1 bit, the exponent by 8 bits,
and the mantissa by 23 bits. Different formats of floating-
point numbers adhere to this structure, with variations solely
in the number of bits used for the exponent and mantissa.

2.4 Limitations of Existing Solutions

Limitations of Lossy Gradient Compression Solutions.

Compressing the volume of the gradients synchronized dur-
ing the training process is an effective strategy to alleviate
the communication overhead, and consequently, enhance the
training efficiency. Current gradient compression techniques
can be broadly categorized into two classes: quantization-
based and sparsification-based methods. Quantization-based
methods [4, 7, 14, 55, 60], reduce the precision of the gradi-
ents by quantizing them to a lower bit-width, e.g., from FP32
to FP16, thereby decreasing the volume of data that needs to
be communicated. Sparsification-based methods [3, 37, 41,
59, 66], on the other hand, reduce the communication over-
head by selectively transmitting a subset of gradients and

1Each of the 16 nodes represents a separate instance equipped with eight
NVIDIA A100 GPUs.
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Figure 2: Distribution of gradient values and gradient

exponents during the training of a ResNet-50 model

using FP32.

discarding the rest. This can be accomplished through vari-
ous strategies, such as transmitting only the gradients with
the largest magnitudes (Top-k) or choosing a random subset
of gradients (Random-k). Another approach involves sparsely
conducting the AllReduce operation to decrease the volume
of data communicated across the network. However, these
two kinds of methods have a common limitation: they are
lossy compression and lead to a degradation in the model’s
convergence rate and final accuracy, which is undesirable in
practice for training large-scale DNNs.
Limitations of Lossless Compression Solutions. On the
other hand, a large amount of lossless compression solu-
tions are proposed to compress data without sacrificing accu-
racy [1, 2, 15, 18, 31, 34, 36, 40, 42, 52]. However, experiments
show that employing existing lossless compression meth-
ods can decrease transmitted message size but introduce
unacceptable compress and decompress overhead (details in
Section 7.2). The root cause is that these existing solutions
target compressing data with the general statistical data
pattern. However, gradients generated during data-parallel
training have specific data distribution features. Without
considering these features, it is hard to achieve accurate and
efficient gradient compression simultaneously.

3 INSIGHTS AND GCOMP OVERVIEW

In this section, we present the motivation behind our work,
which is driven by the characteristics of gradients during
DNN training, and the need for efficient compression of these
gradients. We then leverage these insights to propose the
design of a near-lossless compression scheme for gradients.

3.1 Gradient Characteristics in Training

Takeaway-1: The distribution of gradient values during train-
ing is observed to be concentrating near zero.
Gradients represent the direction of updates for parame-

ters in each iteration of DNN training. As training proceeds,
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Figure 3: The change in the average ratio of gradi-

ents to parameters during the training process of

ResNet-50 and Bert-base (a). The proportion of zero-

valued gradients in the transmitted gradients during

the training process of ResNet-50 and Bert-base (b).

the model gradually converges, meaning its parameters be-
come stabilized. Consequently, the magnitudes of the gradi-
ents tend to decrease towards zero. In the context of floating-
point representation, this phenomenon indicates that the
exponent parts of gradients gradually converge to several
specific values.
We have performed a statistical analysis examining both

the distribution of gradient magnitudes and the distribu-
tion of their exponent parts during the training of a ResNet-
50 [21] model using 32-bit floating-point precision as an
example. The findings are illustrated in Figures 2. Our anal-
ysis reveals that the distribution of gradient exponents is
relatively narrow. Out of 256 possible values for an 8-bit
exponent, the 15 most frequent values encompass nearly
95% of the total occurrences. Notice that this characteristic
is ubiquitous in all DNN trainings.
Takeaway-2: As the training progresses, the relative magni-
tude of gradients diminishes significantly in comparison to the
corresponding parameters.

Gradients typically are 3 to 5 orders of magnitude smaller
than the parameters they are dedicated to updating. While
the gradients in a DNNmodel progressively migrate towards
smaller values as training progresses, the parameters main-
tain a relatively consistent magnitude. Therefore, it results
in a steadily diminishing ratio of gradient compared with
the corresponding parameter.
We also have statistically analyzed the ratio of gradients

to the corresponding model parameters’ magnitudes during
the training process of ResNet-50 and Bert-base. As shown
in Figure 3a, when the training progresses, the gradients be-
come far smaller than the corresponding parameters. During
the training, the optimizers could refine parameter values by
integrating gradients into these parameters. This integration
involves aligning the operands according to their exponent
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values, followed by the addition of their mantissa values. Par-
ticularly, when the magnitude of a gradient is significantly
smaller than that of its corresponding parameter, lower bits
in the gradient’s mantissa hardly affect the parameter.
Takeaway-3: Zero-valued gradients are widespread through-
out the training process, and they do not contribute to the
change of model parameters.
As the training advances, it is common for a certain pro-

portion of gradients to turn to zero. To illustrate this effect,
we conducted a study where we trained two different models,
ResNet-50 and Bert-base [12], and recorded the percentage
of zero-valued gradients transmitted by a single worker. The
findings, presented in Figure 3b, reveal a substantial presence
of zero gradients in the data transmitted across the commu-
nication at various training steps. Since these zero gradients
do not contribute to the updating of parameters, they can be
effectively pruned.

3.2 GComp Overview

Leveraging the insights from the characteristics of gradients
during training, we propose GComp, a near-lossless gradient
compression scheme aiming to reduce the communication
volume while maintaining the training accuracy of DNN
models. The design of GComp is outlined in Figure 4.

Takeaway-1 highlights a concentrated frequency distribu-
tion, signifying that the exponent set carries low information
entropy. If a uniform encoding length, such as the 8-bit repre-
sentation in FP32, is used for all exponent values, significant
redundancy exists in the bit representation. Thus, we propose
the enhanced Huffman coding, an entropy-based encoding
schemewhich leverages the uneven frequency distribution to
compress the exponent values. We further optimize both the
encoding and decoding processes to enhance its compression
efficacy and processing speed, as detailed in Section 4.
Takeaway-2 reveals that truncating lower bits in a gra-

dient’s mantissa does not affect the final result when the
gradient’s magnitude is considerably smaller than that of
the parameter. This observation creates a chance to quantize

mantissas without compromising the parameter update pro-
cess. Thus, we propose a multi-level quantization scheme
to compress the gradient mantissa based on an analysis of
gradients’ impact on parameters within a wide range of op-
timizers used in DNN models.
Furthermore, Takeaway-3 reveals the prevalence of zero-

valued gradients, which do not contribute to the model pa-
rameters’ updates. Therefore, directly excluding these gradi-
ents can further compress the transmitted message, to dimin-
ish the communication volume. The details of quantization
and pruning techniques are provided in Section 5.

4 EXPONENT COMPRESSION

Inspired by the observation that exponent values exhibit a
non-uniform distribution, we utilize an optimized Huffman
encoding and decoding algorithm, tailored to minimize the
number of bits necessary to represent exponent values of
gradients, without any loss of information.

4.1 Design Considerations

Considering that most exponents are within a narrow range
of values, the initial idea is to construct a hash table map-
ping 8-bit exponents to more concise (e.g., 4-bit) encodes for
compression. However, two main issues arise when turning
this straightforward idea into a tangible solution, leading us
toward the use of an optimized Huffman encoding method.
Issue 1: The hash table can be further optimized for

skewed distributions. Even when we concentrate on those
frequently occurring exponents, such as the top 15 values in
Figure 2b, the distribution remains markedly uneven. For in-
stance, around 50% of the exponents are zero, and the second
most common value, 108, occurs with a frequency that is 4.2
times greater than that of the fifteenth most common value,
101. Considering this skewed distribution, a simple hash table
that assigns fixed-size codes to each value would fall short of
achieving an optimal compression ratio. When values that
appear more frequently are represented by shorter codes,
the overall performance improves. Huffman encoding [24] is
a widely used technique that embodies this principle by allo-
cating variable-length codes to input symbols based on their
frequencies. This approach, which assigns shorter codes to
more frequent symbols, aligns with the frequency distribu-
tion of exponents, thereby improving compression efficiency.
Issue 2: Standard Huffman encoding still has limita-

tions in our specific context. While Huffman encoding
is adept at handling diverse inputs, its direct application to
exponent compression presents certain limitations. The pri-
mary concern is the generation of excessively long codes
for infrequently occurring exponents, which compromises
compression efficiency. Consequently, it has become essen-
tial to refine the Huffman encoding approach specifically for
exponent compression.
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Table 1: An example of the native and optimized Huff-

man encoding, where the 10101111 in bold stands for

the special code and the subsequent 8-bit sequence is

the raw representation of the exponents.

Source Native Huffman Optimized Huffman

0 011 011
1 0011 0011
... ... ...
32 101011110100101010 1010111100100000
... ... ...
138 110111011100110110 1010111110001010
... ... ...
255 1001 1001

4.2 Huffman Encoding

Native Huffman Encoding. The process of Huffman en-
coding involves constructing a binary tree, where each leaf
node represents an input symbol, and the path from the root
to the leaf determines the symbol’s code. This binary tree
is developed iteratively by merging the two least frequent
symbols into a single composite node until only a single root
node remains, thereby representing all symbols. The specific
code for each symbol is obtained by tracing the path from
the root to its corresponding leaf node. On the other hand,
the decoding process works by navigating the tree from the
root to the appropriate leaf node as directed by the incoming
code sequence. Given the 8-bit exponent representation in
the FP32 format, which permits exponent values to span from
0 to 255, the initial two columns of Table 1 demonstrate the
raw exponent values alongside their corresponding Huffman-
encoded representations, with the encoded values shown in
binary format.
Limitations. Three main limitations exist in the native Huff-
man encoding:
(1) In certain corner cases, the length of the generated Huff-
man codes can extend to as long as (28 − 1) bits in the worst-
case scenario of a completely skewed tree, markedly sur-
passing the original 8-bit representation. This discrepancy
inflates the average code length in compression. To address
this issue, GComp designs a truncated encoding and full
transmission method, as detailed in Section 4.3.
(2) The optimal Huffman encoding for exponents may change
as the training progresses; thus, GComp dynamically updates
the encode table (Section 4.4), ensuring that compression
efficiency is maintained.
(3) The Huffman decoding process can be inefficient; there-
fore, GComp streamlines it by utilizing a lookup-table-based
method (Section 4.5).

4.3 Full Transmission of Long Codes

During the encoding process, if the length of the code gen-
erated exceeds a predefined threshold, it will be replaced by
a special code to illustrate that the original exponent value
should be transmitted in full. The updated codebook, as illus-
trated in the third column of Table 1, with the inclusion of
the special code (10101111 in this example) and the original
value, can result in a shorter overall code length, in the case
where the actual distribution of exponent values deviates
from the initial assumptions.
Suppose the bit length of the source value is 𝑛𝑠 , and the

threshold for the code length is 𝑛𝜃 , all codes with lengths
exceeding 𝑛𝜃 will be replaced by the special code. The spe-
cial code is generated by truncating the first encountered
overly long code to 𝑛𝜃 bits, which is proven to be a legitimate
Huffman code because of its prefix-free property. Since the
full transmission of the original value is required, the actual
code length transmitted will be:

𝑛𝑓 = 𝑛𝜃 + 𝑛𝑠 . (2)

Analysis. Let 𝑐𝑖 denote the 𝑖-th value to be encoded, and 𝑛𝑖
represent its corresponding native Huffman encoding length,
we divide the set of source values 𝑆 = {𝑐𝑖 } into three subsets:

𝑆1 = {𝑐𝑖 | 1 ≤ 𝑛𝑖 ≤ 𝑛𝜃 },
𝑆2 = {𝑐𝑖 | 𝑛𝜃 < 𝑛𝑖 ≤ 𝑛𝑓 },

𝑆3 = {𝑐𝑖 | 𝑛𝑓 < 𝑛𝑖 ≤ 2𝑛𝑠 − 1}.
(3)

Among these subsets, 𝑆1 represents the range where the ex-
ponential distribution’s probability is concentrated, resulting
in shorter Huffman codes. In contrast, subsets 𝑆2 and 𝑆3 cor-
respond to the less probable values, yielding longer native
Huffman codes that necessitate full transmission. Employing
native Huffman encoding without adjustments may lead to
a misalignment between the actual and the assumed distri-
butions for code table construction, potentially causing an
increase in the occurrence probability and, consequently, a
surge in the actual encoding length for elements within 𝑆3.
Let 𝑝1, 𝑝2, and 𝑝3 represent the occurrence probabilities

of values in the three subsets, 𝑛1, 𝑛2, and 𝑛3 denote the
probability-weighted average encoding lengths of the na-
tive Huffman codes for the subsets, where 𝑛𝑖 = −𝑙𝑜𝑔𝑝𝑖 for
𝑖 ∈ {1, 2, 3}. The average encoding length is then given by:

𝑛avg = −𝑝1𝑙𝑜𝑔𝑝1 − 𝑝2𝑙𝑜𝑔𝑝2 − 𝑝3𝑙𝑜𝑔𝑝3. (4)

If there is a deviation from the source distribution used to
establish the encoding scheme, resulting in an increase in the
probability 𝑝3 of subset 𝑆3 by Δ𝑝 , and a corresponding de-
crease in 𝑝1 by Δ𝑝 , the average encoding length using native
Huffman encoding can be expressed as the cross entropy:

𝑛nat = −(𝑝1 − Δ𝑝)𝑙𝑜𝑔𝑝1 − 𝑝2𝑙𝑜𝑔𝑝2 − (𝑝3 + Δ𝑝)𝑙𝑜𝑔𝑝3 . (5)
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The average length when utilizing the modified Huffman
encoding with full transmission is as follows:

𝑛opt = −(𝑝1 − Δ𝑝)𝑙𝑜𝑔𝑝1 + (𝑝2 + 𝑝3 + Δ𝑝)𝑛f. (6)

Supposing 𝑝2 = 𝑟𝑝3, with 𝑟 being a constant, the difference
between the two average encoding lengths becomes:

𝑛opt − 𝑛nat = (𝑝2 + 𝑝3 + Δ𝑝)𝑛𝑓 + 𝑝2 log𝑝2 + (𝑝3 + Δ𝑝) log𝑝3

= [(𝑟 + 1 + Δ𝑝

𝑝3
) (𝑛𝑓 − 𝑛3) + 𝑟 log 𝑟 ]𝑝3.

(7)
Given that 𝑛𝑓 < 𝑛3, an increase in Δ𝑝 will ultimately

render 𝑛opt − 𝑛nat negative. This indicates that our full trans-
mission strategy results in a shorter average encoding length
compared to native Huffman encoding under such condi-
tions. Full transmission effectively provides a superior upper
bound for the data length during actual compression. In an
ideal scenario, where the actual distribution of source char-
acters closely aligns with the code table (Δ𝑝 = 0), employing
full transmission slightly raises the average encoding length.
However, due to the very low probability of encountering
overly long codes in this ideal case, the impact is negligible.

4.4 Dynamic Adjustment of the Huffman

Encoding Table

Within GComp, the Huffman encoding table is constructed
by leveraging prior knowledge about the distribution of ex-
ponent values before training commences. In addition, to
accommodate the changing distribution, this table is peri-
odically updated, e.g., after every 50 iterations. This regular
adjustment is essential for accurately representing the evolv-
ing distribution of exponent values in the transmitted gradi-
ents. The update of the Huffman encoding table takes extra
network bandwidth. In order to eliminate this side-effect,
we update this table with an asynchronous interaction:
GComp calculates and updates the Huffman encoding table
only during the forward and backward phases in the itera-
tion, when the network resource is idle. Experimental results
in Section 7.3 demonstrate that this dynamic adjustment
strategy significantly enhances the compression efficiency
of exponent values.

4.5 Decoding based on Lookup Table

The Huffman decoding process typically involves sequen-
tially reading bits from the encoded segment and traversing
the encoding tree from the root to the leaves, which greatly
affects the decoding efficiency. Fortunately, our optimized en-
coding algorithm imposes an upper limit on the code length,
presenting GComp an ideal opportunity to construct a lookup
table for decoding. This approach can improve the decod-
ing efficiency significantly, particularly in the case of an
unbalanced encoding tree.

a a a a a a a a101110001

a

d

b c

0

11

100 101

LengthSourceIndex
1a000~011
3b100
3c101
2d110~111

cdab

Encoding Tree Lookup Table

Decoding

Figure 5: Encoding tree and lookup table with 𝑛𝜃 = 3.

Assuming the maximum code length in our scheme is𝑛𝜃 , a
lookup table of size 2𝑛𝜃 is required. The indexes in this table
represent the codes, while the values contain two elements:
the corresponding source symbols and the actual length
of the codes. For each code, it is first extended to 𝑛𝜃 bits,
utilizing all possible codes within this range as indexes, and
assigning the corresponding source along with the code’s
original length prior to padding. For instance, if 𝑛𝜃 = 3 and
the source symbol 𝑎 is represented by the code 0, as depicted
in Figure 5, then the index range from 000 to 011 would all
point to the source symbol 𝑎 with a length of 1. Figure 5
illustrates the method of creating a lookup table with 𝑛𝜃 = 3.
Employing the lookup table allows for constant-time de-

coding of a single source symbol. Initially, a binary string
of length 𝑛𝜃 is extracted from the current position in the
encoded segment and utilized as an index to identify the cor-
responding source symbol in the lookup table. Subsequently,
the current position pointer advances by the actual length of
the code, marking the starting point for decoding the next
code. This lookup-table-driven decoding process, requiring
merely one lookup per code, is significantly more efficient
than the traditional encoding tree traversal technique.

5 MANTISSA COMPRESSION

This section presents the mantissa compression technique
employed in GComp, aimed at decreasing the number of bits
needed to represent the mantissa portion of gradients with-
out compromising the accuracy of model parameter updates.
Our approach adopts a multi-level quantization strategy, an-
chored in an analysis of the impact of gradient precision
on the updating process of various optimizers (Section 5.1).
It also incorporates a zero-value gradient pruning mech-
anism to further minimize the size of data transmissions
(Section 5.2).

5.1 Multi-Level Quantization

DNN training is inherently an iterative process. It involves
the repetitive adjustment of model parameters guided by
gradients of the loss function with respect to those parame-
ters. These gradients are obtained through backpropagation
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Figure 6: The addition step (𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡 ) for parameter updating in the SGD optimizer, utilizing FP32 format.

of the loss across the network, subsequently utilized by the
optimizer to update the model parameters.
Case Study: SGD. Taking the widely-used Stochastic Gra-
dient Descent (SGD) optimizer as an example, the parameter
update method can be encapsulated by the formula [51]:

𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡 , (8)

where 𝑔𝑡 represents the gradient at the current step 𝑡 , 𝜃𝑡
signifies the model parameters at step 𝑡 , and 𝜃𝑡−1 is the pa-
rameters’ values at the preceding step. The adjustment of
parameters follows a specific updating rule involving 𝜂, the
learning rate, and 𝜆, a regularization parameter. The value of
the learning rate 𝜂 is typically below 1. With the magnitude
of the gradient (𝑔) significantly lesser than the parameter
(𝜃 ), as analyzed in Section 3, the outcome of 𝜂𝑔𝑡 is also sub-
stantially smaller in magnitude compared to the parameters.
In operations involving floating-point arithmetic, especially
during the addition or subtraction of two numbers where one
is considerably smaller in absolute terms, the less significant
bits of the mantissa in the lesser value are discarded. Fig-
ure 6 illustrates this phenomenon (utilizing the FP32 format),
where the addition of two floating-point numbers results in
the truncation of the less significant bits of the mantissa in
the smaller number.
Specifically for the SGD optimizer, we define a quanti-

zation metric 𝛿 =
𝜃𝑡−1
𝜂𝑔𝑡

− 𝜆𝜃𝑡−1
𝑔𝑡

, which mirrors the gradient
and parameters’ relative size in the optimizer’s context. This
serves as a determination of the number of ineffective bits
in the gradient during parameter updates. If 𝛿 > 2𝑛 , it indi-
cates that in the process of updating parameters, at least 𝑛
bits in the gradient’s mantissa would naturally be discarded.
Hence, pre-quantizing and truncating 𝑛 bits from the gra-
dient’s mantissa have negligible impact on the accuracy of
parameter updates2. GComp leverages this insight to intro-
duce a parameter-aware quantization compression algorithm
specifically tailored for efficiently compressing the mantissa
components of gradients.

2When no carry-over occurs, there is no impact whatsoever. When carry-
over occurs, the impact is limited to affecting only the last bit of the mantissa.
Thus, in the context of FP32, this error is constrained to be within 2−22𝜃 .

Quantization Metric. The calculation of 𝛿 varies among
different optimizers due to their unique computational meth-
ods for updating parameters with gradients. Building on
the foundation set by SGD, we have examined the param-
eter update mechanisms of the widely-used optimizers in
DNN training, refer to the implementations provided by
PyTorch [51], as outlined in Table 2. We then derive the cor-
responding quantization metrics for them, also detailed in
Table 2. Space limitations preclude the inclusion of further
details in this section, but can be found in the Appendix.
Importantly, optimizers that use first/second-order mo-

ments require more complex operations rather than simply
integrating the gradient into the parameter. They necessitate
the ongoing management of their internal states, adjusting
to the changing gradients. Truncating the mantissa may alter
the gradient, subsequently leading to changes in the opti-
mizer’s internal state. This change, while a consequence of
the quantization, introduces limited side-effects and does not
typically pose a substantial issue in maintaining the model’s
training accuracy. For example, the maximum absolute devi-
ation in gradient value is capped at 2−5 when truncating a
23-bit mantissa (in FP32) by 18 bits, aligned with the upper-
most quantization level. This adjustment could be viewed as
a damping coefficient (𝜆 in Table 2) to the gradient, with the
restriction set to 2𝑖−23 when truncating the mantissa by 𝑖 bits
for a gradient in FP32 format. 𝜆 is a parameter that controls
the effect of prior weight updates on the current update in
momentum-based optimization algorithms during training.

Our experimental findings, detailed in Section 7.6, confirm
that our quantization approach effectively maintains training
accuracy, achieving nearly lossless fidelity and significantly
outperforming the lossy compression methods.
Multi-LevelQuantization.We introduce amulti-level quan-
tization strategy to optimize mantissa compression, tailoring
the level of compression based on the gradient’s relative sig-
nificance compared to its corresponding parameter’s magni-
tude within the optimizer. To be specific, GComp categorizes
quantization into four distinct levels. Each level is character-
ized by a particular number of truncation bits. These levels
are represented by 2-bit binary codes in the encoded segment.
Level 0 signifies no truncation, whereas higher levels corre-
spond to a progressively greater count of truncation bits. For
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Table 2: The quantization metrics for different optimizers.

Optimizer Updating Method Quantization Metric 𝛿

SGD 𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 1 ; 𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡 2 . 𝜃𝑡−1
𝜂𝑔𝑡

− 𝜆𝜃𝑡−1
𝑔𝑡

Momentum 𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 1 ; 𝑏𝑡 = 𝜇𝑏𝑡−1 + (1 − 𝜏)𝑔𝑡 2 ;
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑏𝑡 3 .

𝜃𝑡−1−𝜂𝜇𝑏𝑡−1
𝜂 (1−𝜏)𝑔𝑡 − 𝜆𝜃𝑡−1

𝑔𝑡

Nesterov Momentum 𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 1 ; 𝑏𝑡 = 𝜇𝑏𝑡−1 + 𝑔𝑡 2 ;
𝑔𝑡 = 𝑔𝑡 + 𝜇𝑏𝑡 3 ; 𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡 4 .

(1−𝜂𝜆 (1+𝜇))𝜃𝑡−1−𝜂𝜇2𝑏𝑡−1
𝜂 (1+𝜇)𝑔𝑡

AdaGrad
𝜂 = 𝜂/(1 + (𝑡 − 1)𝜆𝑙𝑟 ) 1 ; 𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 2 ;
𝑟𝑡 = 𝑟𝑡−1 + 𝑔2𝑡 3 ; 𝜃𝑡 = 𝜃𝑡−1 − 𝜂̃𝑔𝑡√

𝑟𝑡+𝜖 4 .
𝜃𝑡−1 (

√
𝑟𝑡+𝜖)

𝜂̃𝑔𝑡
− 𝜆𝜃𝑡−1

𝑔𝑡

RMSProp
𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 1 ; 𝑣𝑡 = 𝛼𝑣𝑡−1 + (1 − 𝛼)𝑔2𝑡 2 ;
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡√

𝑣𝑡+𝜖 3 .
𝜃𝑡−1 (

√
𝑣𝑡+𝜖)

𝜂𝑔𝑡
− 𝜆𝜃𝑡−1

𝑔𝑡

Adam

𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1 1 ; 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 2 ;
𝑣𝑡 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔2𝑡 3 ; 𝑚𝑡 =

𝑚𝑡

1−𝛽𝑡1
4 ;

𝑣𝑡 =
𝑣𝑡

1−𝛽𝑡2
5 ; 𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑚𝑡√

𝑣𝑡+𝜖
6 .

𝜃𝑡−1 (
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1
𝜂 (1−𝛽1)𝑔𝑡 − 𝜆𝜃𝑡−1

𝑔𝑡

AdamW
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 1 ; 𝑣𝑡 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔2𝑡 2 ;
𝑚𝑡 =

𝑚𝑡

1−𝛽𝑡1
3 ; 𝑣𝑡 =

𝑣𝑡
1−𝛽𝑡2

4 ;
𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ( 𝑚𝑡√

𝑣𝑡+𝜖
+ 𝜆𝜃𝑡−1) 5 .

𝜃𝑡−1 (
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 ) (1−𝜂𝜆)−𝜂𝛽1𝑚𝑡−1

𝜂 (1−𝛽1)𝑔𝑡

instance, considering a 23-bit mantissa from a value in FP32
format, the four levels would correspond to truncating 0, 6,
12, and 18 bits, respectively.

5.2 Pruning of Zero-valued Gradients

In Section 3, we analyze the prevalence of zero-valued gradi-
ents in training, and GComp employs a pruning technique
tailored for these gradients. Given that both the exponent
andmantissa of a zero-valued floating-point number are zero,
the mantissa can be safely discarded. To represent these zero-
valued gradients, GComp only retains the Huffman encoding
associated with the exponent part (that is, the encoding for
the source symbol of zero). Notice that the floating-point
number system includes denormalized (or subnormal) num-
bers, which possess a zero exponent alongside a non-zero
mantissa to represent extremely small non-zero numerical
values. For instance, the greatest absolute value of a denor-
malized number in the FP32 format is capped at 2−126. Within
GComp, all such denormalized numbers are treated as equiv-
alent to zero since they rarely occur within the gradient
values throughout DNN training, and this infinitesimal error
resulting from zero-gradient pruning is deemed negligible.

6 IMPLEMENTATION

In this section, we detail the implementation of the compres-
sion algorithms introduced in Section 4 and Section 5. We
start with an overview of the compression workflow, and

then proceed to elucidate the integration of GComp with the
AllReduce operation in the Gloo [16] library, which serves
as a standard communication backend in PyTorch.

6.1 Compression/Decompression Process

Encoding a Single Value. The workflow for encoding a sin-
gle value follows the procedure outlined in Figure 4. Initially,
the original floating-point number is processed through a
shifting operation that isolates the exponent and mantissa,
with the sign bit incorporated into the mantissa. Follow-
ing this, the value undergoes a transformation into its com-
pressed form through the following steps:
(1) Exponent encoding: The exponent part of a gradient value
is allocated a specific Huffman code, which is obtained from
a Huffman encoding table. This table is constructed lever-
aging prior knowledge and undergoes periodic updates, to
accommodate the distribution of exponent values in the gra-
dients. After this Huffman code is established, it is placed
into the segment allocated for it within the targeted buffer.
(2) Quantization level calculation: For the mantissa, a check
is performed to determine if the exponent value is non-zero.
If it is, the quantization metric is calculated as detailed in
Section 5.1, which aids in establishing the appropriate quanti-
zation level for the mantissa. The resulting 2-bit quantization
level is then placed into the quantization level segment of
the target buffer.
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(3) Mantissa quantization and truncation: With the quantiza-
tion level ascertained, the mantissa undergoes truncation to
align with the determined level. The truncated mantissa is
then populated into the segment reserved for it.
Decoding a Single Value. The first step of the decompres-
sion process entails accessing the Huffman coding portion of
the compressed data, followed by retrieving the original ex-
ponent value using the lookup table as described in Section 4.
If the original exponent is not zero, the process continues
with the reading of both the quantization level and the quan-
tized mantissa segments. Thereafter, the quantized mantissa
undergoes a bit-shift, determined by the quantization level,
to reconstruct the mantissa and sign bit. These elements are
then combined to form a complete floating-point number
that represents the gradient value. If the original exponent is
zero, the result is a direct output of a floating-point number
valued at zero.
Data Layout. In communication between workers triggered
by AllReduce, gradients are exchanged as data blocks, where
each block could contain multiple data chunks in GComp. A
comprehensive data block in GComp includes not only the
compressed values but also a data segment for the metadata,
which precedes the compressed values, to provide the nec-
essary information for the decoding process. This metadata
layout is illustrated in Figure 7 and encompasses two key
components: (1) The block header, which holds a magic num-
ber to verify the data block’s legitimacy, information about
the total length of the compressed values (measured in bits),
the total length of the original values (also in bits), the data
type of the original values (e.g., FP32), and the count of data
chunks within this block. (2) The data chunk headers, each
presenting essential details such as the starting offset for the
values in the particular chunk, the chunk’s total length (in
bits), and the total number of values the chunk contains.

6.2 Integration with AllReduce
We have implemented the compression and decompression
algorithms of GComp by customizing the AllReduce opera-
tionwithin Gloo [16], which serves as a standard communica-
tion backend in PyTorch andMegatron. TheAllReduce opera-
tion is a critical component whose implementation is similar
among various libraries, including NCCL [48] and MPI [49],
which suggests the potential for integrating GComp into
these libraries with minimal adjustments.

B9B8B7B6B5B4B3B2B1

A

BC

Data Partitions and Blocks 

Partition P2 Partition P3

Workers

Gloo AllReduce (Worker A)

Partition P1
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recv P2 from Crecv P1 from Crecv P3 from Crecv P2 from C

reduce  P3reduce P2

comp P3comp P2comp P1
send P1send P3send P2send P1

recv P2recv P1recv P3recv P2
decomp P2decomp P1decomp P3decomp P2
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P3P2P1
computation

P3P2P1
P3P2P1

comm.
GCOMP AllReduce (Worker A)

Figure 8: Integration of GComp into the AllReduce op-
eration (with three workers).

We integrate GComp into the ring-based AllReduce pat-
tern in Gloo. This pattern divides the entire processed tensor
into multiple partitions, with the number equating to the
count of workers. As illustrated in Figure 8, in the case where
three workers participate in the operation, each worker—for
example, worker A—first engages in a send/receive interac-
tion for a partition with its adjacent workers in the ring and
then undertakes the reduction operation on the received data.
This process is iterated (𝑁 − 1) times, where 𝑁 represents
the number of workers. Then, every worker synchronizes
an ultimately reduced partition to the following worker in
the ring, repeating this step (𝑁 − 1) times as well.

Within GComp, each tensor partition involved in theAllRe-
duce operation is split into multiple data blocks, which are
then further divided into chunks and processed in paral-
lel by multiple threads. This concurrent compression and
decompression process is integrated into the AllReduce oper-
ation, as shown in Figure 8. Although adopting this method
incurs additional computational overhead, the parallel and
pipelined execution ensures that the gains in reducing com-
munication overhead far exceed these extra computational
costs. Consequently, it results in a notable decrease in the
total execution time for the AllReduce operation, achieving
a reduction of as much as 53%, as detailed in Section 7.2.

7 EVALUATION

In this section, we first evaluate GComp’s compression effi-
ciency focusing on the compression rate and performance im-
provements of AllReduce.We then conductmicro-benchmarks
to assess the individual components of GComp. We also
present an end-to-end comparison of training performance
and analyze the impact of GComp on model convergence
against established baselines.
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7.1 Experimental Setup

Platform. All experiments are conducted on PAI (Platform
for AI) [10], a machine learning platform provided by Al-
ibaba Cloud. For the evaluation, a total of 4 instances are
utilized. Each instance is equipped with a single NVIDIA
A100 (40GB) GPU, 12 CPU cores, and 94GB of CPU mem-
ory. Each instance serves as an individual DP group in the
distributed training setup, and instances are interconnected
using 10Gbps Ethernet NICs. Except for the scalability tests,
all other experiments are conducted using all four instances.
Workloads. We have selected two classical DNN models:
ResNet-50 [22], comprising 23.6million parameters, is trained
on the ImageNet1K dataset [54], a standard benchmark for
image classification tasks; Bert-base [12], which has 110 mil-
lion parameters, is trained on the SST dataset [58], tailored
for sentiment analysis. These models were chosen due to
their wide usage in the field and their varied structures and
parameter sizes. For these models, parameters, gradients, and
the intermediate values during training are all represented
in the FP32 format.
Frameworks. Our implementation of GComp integrates
compression and decompression modules into the AllRe-
duce of the Gloo [16] library. To evaluate the efficacy of our
approach in practical settings, we benchmark the training
performance using PyTorch [51], a prominent framework for
distributed DNN training, through its data parallel architec-
ture. Gloo is recognized as one of the default communication
backends in PyTorch. It is noteworthy that other advanced
frameworks for distributed training, such as Megatron [57]
and DeepSpeed [53], which are built upon the PyTorch frame-
work, can also benefit from incorporating GComp for similar
enhancements in performance.

7.2 Compression Efficiency

Compression Rate. To evaluate the compression efficiency
of GComp, we first measure the achieved compression rate,
calculated as the ratio of the combined compressed size (in-
cluding both exponent and mantissa portions) to the original
gradient size. This evaluation is conducted using ResNet-50
and Bert-base models over 2000 and 1000 training iterations,
respectively. The findings are depicted in Figure 9, showing
that the compression methods applied to both exponent and
mantissa demonstrate effective compression, as the gradient
volume quickly decreases with ongoing training. Taken to-
gether, GComp reaches an average compression rate of 32.9%
for ResNet-50 and 36.5% for Bert-base. This translates to a
reduction of over 60% in the volume of transmitted gradients.
AllReduce Performance. Figure 10 presents the perfor-
mance improvements of theAllReduce operation achieved by
integrating GComp, depicted as normalized time, which rep-
resents the ratio of the operation’s durationwith GComp inte-
gration to its duration without any compression. The results
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Figure 9: Compression rate changes during training.
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Figure 11: Monitoring CPU load during training.

clearly demonstrate that GComp offers a substantial boost in
AllReduce’s efficiency, reducing its average execution time
to merely 61.6% for ResNet-50 and 47.0% for the Bert-base
model, in comparison with the baseline duration. This re-
duction significantly mitigates the communication overhead
during DNN training.
We also use various representative lossless compression

methods as comparisons. As shown in Figure 10, although
these lossless compression methods (ZSTD and Zlib) could
decrease the communication time, their complex encoding/de-
coding phases overwhelm the gains and result in worse end-
to-end AllReduce performance. Some lossless compression
methods may even lead to 10× increased consumed time ow-
ing to the slow compression procedure (not included in the
figure). Therefore, we do not include lossless compression
methods as alternatives in other evaluations.
CPU Load. Figure 11 illustrates the CPU load monitor-
ing during the training of Bert-base, both with and without
GComp enabled. These results indicate that while GComp im-
poses some additional load on the CPU, the CPU usage re-
mains below 21.6%. In comparison, when no compression is
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Figure 12: Compression rate of the exponent part

when using the optimized Huffman code and the na-

tive Huffman code, each subfigure using a different in-

formation source for building theHuffman codebook.

applied, the CPU load stays under 3.6%, suggesting that CPUs
are largely idle during training. Therefore, the associated
overhead from GComp is deemed acceptable.

7.3 Exponent Compression Benchmarks

Full Transmission of Long Codes. To demonstrate the ro-
bustness of the exponent compression strategy in the face of
varying data distributions, we design cross-validation experi-
ments targeting diverse gradient exponent distributions. We
first randomly sample four distinct sets of gradient data from
a training process of ResNet-50, each set corresponding to a
single data block. These samples display marked variance in
exponent value distributions and are designated as S#1 to S#4.
We then utilize each of these four datasets as the source to
establish the encoding scheme, perform cross-compression
for all four datasets using the established codes, and mea-
sure the compression rate of our optimized method (with
full transmission of long codes) against the native Huffman
encoding. Figure 12 illustrates the experimental findings. In
the majority of instances, GComp’s compression rates are
on par with those achieved using native Huffman encoding.
Notably, in scenarios characterized by significant deviations
in exponent distribution, the performance of GComp’s strat-
egy is superior to that of the native one. This underscores
GComp’s enhanced robustness, demonstrating its capability
to withstand variations and distributional shifts in gradients
throughout the training process.
Dynamic Encoding Table Adjustment. Figure 13a illus-
trates the effectiveness of dynamically adjusting the Huffman
encoding table during the training. This involves updating
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Figure 13: The compressed exponent size using differ-

ent encoding methods (a). The decoding time of Huff-

man codes using different decoding methods (b).

the encoding scheme at intervals of every 50 iterations while
training ResNet-50 for 2000 iterations. The performance is
compared with that of a static encoding table, which is prede-
termined offline prior to training. To assess the efficiency, we
measure the total compressed size of the exponent portion
for all values and express it as a ratio relative to the original
size of the gradients before compression. The results clearly
indicate that dynamic adjustment brings a reduction of the
average ratio from 14.5% down to 11.6%.
Decoding based on a Lookup Table. To validate the effi-
ciency of the lookup-table-based decoder, we conduct an ex-
periment where we implement both the lookup-table-based
decoder and the encoding-tree-based algorithm. We then
compare their decoding efficiencies across exponent seg-
ments encoded with Huffman coding. To evaluate the impact
of code length on decoding efficiency, we select test cases
with varying average code lengths from the training gradi-
ent data. The average decoding time of a single data block
for each test case is measured for both decoding algorithms,
and the results are presented in Figure 13b. These findings
indicate that the lookup-table-based method consistently
outperforms the encoding tree-based approach across all test
cases. An advantage of the lookup-table-based method is
that it requires only a single lookup operation for each code,
regardless of code length. Therefore, its decoding time re-
mains stable and does not increase as the average code length
grows. Conversely, the tree-based method involves a bit-by-
bit traversal of the code segment for decoding purposes. As
a result, any increase in code length directly translates to a
longer decoding time.

7.4 Mantissa Compression Benchmarks

Ablation Study. We conduct an ablation study to evalu-
ate the effectiveness of our optimization strategies for man-
tissa compression, as shown in Figure 14. Our baseline in-
volves the application of single-level quantization to the man-
tissa component of gradients, herein referred to as “Single-
Quant”. This approach corresponds to the highest truncation
level within the multi-level quantization scheme (denoted
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Figure 15: Iteration time with and without GComp.

as “Multi-Quant”) of GComp, specifically entails truncating
18 bits from a 23-bit mantissa. We also consider the “Zero
Prune” method, which exclusively employs a zero-valued
gradient pruning technique. A combination of the two strate-
gies, known as “Multi-Quant + Zero Prune”, represents the
full-scale mantissa compression approach of GComp. The
evaluation utilizes four distinct datasets—S#1 to S#4—each
characterized by a unique gradient distribution as observed
in the previous experiment. The resulting data indicates that
both multi-level quantization and zero-valued gradient prun-
ing significantly enhance the compression efficiency. More-
over, integrating both strategies emerges as the superior
method, achieving the most effective performance.

7.5 Training Efficiency

Iteration Time. Figure 15 showcases the training efficiency
of ResNet-50 and Bert-base models, both with and without
the integration of GComp. The metric we focus on here is
the execution time required for each training iteration. The
findings reveal that GComp significantly boosts the overall
training efficiency for both models, resulting in an aver-
age speedup of 1.5× for ResNet-50 and 1.9× for Bert-base.
This performance enhancement is due to GComp’s effec-
tive reduction in communication overhead—specifically, the
time consumed during the AllReduce operation—achieved
through its compression and decompression mechanisms.
The practical implications of these findings are substantial:
by reducing the training duration with the same computa-
tional resource demands, GComp empowers a more efficient
and cost-effective methodology for model training.
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Figure 16: Training scalability with and without

GComp (evaluation results).
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Figure 17: Training scalability with and without

GComp (simulation results).

Scalability.We further evaluate the scalability of training
these models with and without the integration of GComp.
This evaluation spans from a single worker to four work-
ers, each representing an individual instance on the cloud
platform. Figure 16 depicts the number of samples trained
per second for each model across varying worker config-
urations. This metric is commonly employed to measure
the throughput of the training process and, consequently,
its scalability. When utilizing only one worker, the training
speeds of the models with GComp are same as those without
GComp, as this scenario does not introduce any communica-
tion overhead. However, as the number of workers increases,
the training speed without GComp encounters limitations
due to escalating communication demands. In comparison,
with GComp, the throughput increases by 53.4% and 107%
under the training of ResNet and Bert, respectively.

To evaluate the scalability of GComp on larger-scale clus-
ters, we conduct simulations using four workers to replicate
the behaviors of additional workers. The maximum iteration
time across all participating workers represents the actual it-
eration time. Figure 17 illustrates the simulated results, with
the number of workers scaling from 4 to 128. The findings
indicate that GComp significantly improves training speed
for both models. Specifically, with GComp, the throughput
increases by 35.3% ∼ 53.4% for ResNet and 70.8% ∼ 127% for
Bert. These results underline GComp’s effectiveness in miti-
gating communication overhead and enhancing distributed
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Figure 18: Distribution of loss deviations compared

with the baseline training without any compression.

training efficiency. Additionally, it is important to note that,
theoretically, the compression rate of GComp remains con-
sistent across different scales. The total compression and
decompression overhead for a single worker also exhibits
consistent complexity. This is illustrated in the workflow
shown in Figure 8, where the total data size for compres-
sion remains stable, even though the data partition number
changes. This property allows GComp to be effectively uti-
lized across clusters of various sizes.

7.6 Impact on Model Convergence

The primary objective of training is to minimize a loss func-
tion. This function quantifies the discrepancy between the
network’s predicted outputs and the actual, true outputs.
To assess the effect of GComp on model convergence, we
track the values of the loss function throughout the training
period with GComp integrated. We compare these results to
those obtained without GComp, providing a conventional
benchmark for assessment. Additionally, we explore two al-
ternative compression techniques: (1) a quantization method
that reduces the precision of gradient values by truncating
18 bits from the mantissa; and (2) a sparsification approach
that performs the AllReduce operation in a sparse manner,
carrying it out once every 8 iterations. For the optimizers, we
select SGD and AdamW for comparative analysis. SGD repre-
sents the most fundamental approach, while AdamW stands
out as the most sophisticated update mechanism, among the
methods in Table 2.
Distribution of Loss Deviations. Figure 18 presents the
distribution of the training loss as compared to the baseline
without any compression, in the form of box plots. For both
SGD-based and AdamW-based trainings, the data demon-
strates that the variance in loss when GComp is employed is
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Figure 19: The value of loss function during the

ResNet-50 and Bert-base training using the AdamW

optimiizer, with different compression strategies.

considerably tighter than with alternate compression meth-
ods. Compared to the quantizationmethod, GComp decreases
73.6% ∼ 93.1% of the average loss variance. Similarly, com-
paredwith the sparsificationmethod, GComp decreases 77.4%
∼ 96.8% of the average loss variance. As a consequence, the
overall convergence trend remains largely consistent with
the integration of GComp, which notably outperforms other
compression strategies.
Evolution of Loss Values. Figure 19 shows the evolution
of the loss values during the training of ResNet-50 and Bert-
base, using different compression strategies with AdamW
as the optimizer. It reveals that convergence trend observed
with the application of GComp remarkably mirror those of
the training procedure without GComp, outperforming both
quantization-based and sparsification-based methods. This
suggests that our compression strategy does not detrimen-
tally affect model convergence.
End-to-end Training Time. To compare end-to-end train-
ing times for convergence, we gathered data on the dura-
tions required to reach specific convergence levels—defined
as maintaining a loss below an established threshold (7.05
for ResNet-50 and 1.08 for Bert-base) for over 10 iterations.
As shown in Figure 20, GComp achieves convergence more
quickly than the baseline methods. In contrast, the quan-
tization and sparsification techniques require longer time
to converge compared to scenarios without compression,
as they negatively impact training accuracy. These results
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convergence levels.

demonstrate that GComp offers significant benefits in end-
to-end DNN training.

8 DISCUSSION

Applicability and Limitations. As FP32 is the most preva-
lent format for training DNNs, the results presented in this
paper are applicable to a wide range of real-world scenar-
ios. For lower-precision floating-point formats such as FP16,
BF16 [27] and TF32 [47], where the lengths of the exponent
part or the mantissa part are much shorter than in FP32,
the effectiveness of GComp’s compression tends to decrease.
Another limitation arises when the communication of DP
is largely overlapped by computational operators [30, 38];
in such cases, the significance of communication compres-
sion is reduced since DP communication does not primarily
appear on the critical path of a training iteration.
More Efficient Quantization Metrics. Current quantiza-
tion metrics primarily focus on the relationship between the
gradient and parameter, whose efficiency could be further
improved. Actually, in many sophisticated optimizers, the
gradient firstly updates the momentum, and then the param-
eter, suggesting that we could consider these three values
as a whole to obtain more efficient quantization metrics. We
leave the exploitation of more efficient quantization metrics
as our future work.

9 RELATEDWORK

DNN Training Frameworks. PyTorch [51] is widely ac-
knowledged as a pivotal framework within the deep learn-
ing community for the training of neural networks. Several
frameworks, such as Megatron [57] and DeepSpeed [53], are
built upon PyTorch and introduce various optimizations to
enhance the training efficiency of large DNN models. These
optimizations encompass advancements in memory manage-
ment, parallelism, and scalability, among other areas. While
the current implementation of GComp is based on PyTorch
and Gloo [16], it is crucial to emphasize that GComp main-
tains its applicability across a wide range of frameworks
due to its reliance on the AllReduce operation, which is a
common communication bottleneck in training processes.

Communication Optimizations in DNN Training. To
mitigate communication overhead during DNN training,
there have been numerous studies, include advanced collec-
tive communication algorithms [8, 11, 13, 28, 56], optimized
communication architectures [20, 29, 68], and network-level
optimizations [30, 39, 67]. GComp complements these strate-
gies by focusing on gradient compression to minimize the
data volume communicated. Consequently, it can be com-
bined with these optimizations to enhance training efficiency
even further.
Gradient Compression. Some studies have focused on gra-
dient compression through methods such as quantization [4,
7, 14, 35, 55, 60], sparsification [3, 37, 41, 59, 66], low-rank
decomposition [62, 63, 69], and other techniques [6, 64, 65].
THC [35] is the latest quantization-based compressionmethod,
which introduces additional negotiations among all nodes
to optimize parameter updates. However, traditional com-
pression approaches often require trade-offs between com-
pression ratio and accuracy, which can be problematic in
practice. GComp exploits the statistical characteristics of gra-
dients throughput DNN training, minimizing the impact of
compression on the training process while still achieving
significant compression efficiency. GComp can be combined
with the lossy compression techniques to further diminish
the volume of communication.
Floating-Point Compression. Efforts directed toward gen-
eral floating-point compression [2, 36, 40, 42], albeit not ex-
plicitly designed for gradients in DNN training, have also
been made. These studies have developed strategies incorpo-
rating predictive schemes, adaptive encoding, and other tech-
niques for compressing general floating-point data. GComp sets
itself apart by leveraging the unique characteristics of DNN
training to formulate a more efficient compression algorithm.

10 CONCLUSION

In this paper, we propose GComp, a near-lossless gradient
compression scheme designed to address the significant com-
munication overhead in data-parallel distributed training of
DNNs. By exploiting the statistical characteristics of gradi-
ent distributions, GComp achieves near-lossless compres-
sion, which effectively reduces communication volume by
as much as 67.1% and improves the training efficiency by up
to 1.9×, showing it is a promising solution for accelerating
and scaling DNN training.
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APPENDIX

A OPTIMIZER QUANTIZATION METRICS

A.1 Momentum

TheMomentum optimizer updates the parameters as follows:
𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝑏𝑡 = 𝜇𝑏𝑡−1 + (1 − 𝜏)𝑔𝑡 ,
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑏𝑡 (9)

This simplifies to: 𝜃𝑡 = 𝜃𝑡−1−𝜂 (𝜇𝑏𝑡−1 + (1−𝜏) (𝑔𝑡 +𝜆𝜃𝑡−1)) =
𝜃𝑡−1−𝜂𝜇𝑏𝑡−1−𝜂 (1−𝜏)𝜆𝜃𝑡−1−𝜂 (1−𝜏)𝑔𝑡 . If 𝜃𝑡−1−𝜂𝜇𝑏𝑡−1−𝜂 (1−𝜏)𝜆𝜃𝑡−1)𝜂 (1−𝜏)𝑔𝑡
> 2𝑛 , discarding the last n bits of 𝜂 (1− 𝜏)𝑔𝑡 hardly affect the
value of 𝜃𝑡 . Therefore, we define the quantization metric as:
𝛿 =

𝜃𝑡−1−𝜂𝜇𝑏𝑡−1−𝜂 (1−𝜏)𝜆𝜃𝑡−1
𝜂 (1−𝜏)𝑔𝑡 =

𝜃𝑡−1−𝜂𝜇𝑏𝑡−1
𝜂 (1−𝜏)𝑔𝑡 − 𝜆𝜃𝑡−1

𝑔𝑡
.

A.2 Nesterov Momentum

For the Nesterov Momentum optimizer, we have:
𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝑏𝑡 = 𝜇𝑏𝑡−1 + 𝑔𝑡 ,
𝑔𝑡 = 𝑔𝑡 + 𝜇𝑏𝑡 ,

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑔𝑡 (10)
As a result, 𝜃𝑡 = 𝜃𝑡−1−𝜂 (𝑔𝑡 +𝜆𝜃𝑡−1+𝜇 (𝜇𝑏𝑡−1+(𝑔𝑡 +𝜆𝜃𝑡−1))) =
𝜃𝑡−1 − 𝜂𝜆𝜃𝑡−1 − 𝜂𝜇2𝑏𝑡−1 − 𝜂𝜇𝜆𝜃𝑡−1 − 𝜂 (1 + 𝜇)𝑔𝑡 .
Similarly, if 𝜃𝑡−1−𝜂𝜆𝜃𝑡−1−𝜂𝜇2𝑏𝑡−1−𝜂𝜇𝜆𝜃𝑡−1

𝜂 (1+𝜇)𝑔𝑡 > 2𝑛 , discarding the
last n bits of 𝜂 (1 + 𝜇)𝑔𝑡 has a negligible effect on the value
of 𝜃𝑡 . Therefore, we define the quantization metric as:
𝛿 =

𝜃𝑡−1−𝜂𝜆𝜃𝑡−1−𝜂𝜇2𝑏𝑡−1−𝜂𝜇𝜆𝜃𝑡−1
𝜂 (1+𝜇)𝑔𝑡 =

(1−𝜂𝜆 (1+𝜇))𝜃𝑡−1−𝜂𝜇2𝑏𝑡−1
𝜂 (1+𝜇)𝑔𝑡 .

A.3 AdaGrad

The AdaGrad optimizer is defined by:

𝜂 =
𝜂

(1 + (𝑡 − 1)𝜆𝑙𝑟 )
,

𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝑟𝑡 = 𝑟𝑡−1 + 𝑔2𝑡 ,

𝜃𝑡 = 𝜃𝑡−1 −
𝜂𝑔𝑡√
𝑟𝑡 + 𝜖

(11)

This leads to the expression: 𝜃𝑡 = 𝜃𝑡−1 − 𝜂̃ (𝑔𝑡+𝜆𝜃𝑡−1)√
𝑟𝑡+𝜖 = 𝜃𝑡−1 −

𝜂̃𝑔𝑡√
𝑟𝑡+𝜖 − 𝜂̃𝜆𝜃𝑡−1√

𝑟𝑡+𝜖 . If the condition
𝜃𝑡−1 (

√
𝑟𝑡+𝜖)−𝜂̃𝜆𝜃𝑡−1
𝜂̃𝑔𝑡

> 2𝑛 holds,
then discarding the last n bits of 𝜂𝑔𝑡 has a negligible effect on
the value of 𝜃𝑡 . To quantify this, we define the quantization
metric: 𝛿 =

𝜃𝑡−1 (
√
𝑟𝑡+𝜖)−𝜂̃𝜆𝜃𝑡−1
𝜂̃𝑔𝑡

=
𝜃𝑡−1 (

√
𝑟𝑡+𝜖)

𝜂̃𝑔𝑡
− 𝜆𝜃𝑡−1

𝑔𝑡
.

A.4 RMSProp

The update equations for RMSProp are given by:
𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝑣𝑡 = 𝛼𝑣𝑡−1 + (1 − 𝛼)𝑔2𝑡 ,

𝜃𝑡 = 𝜃𝑡−1 −
𝜂𝑔𝑡√
𝑣𝑡 + 𝜖

(12)

This leads to: 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 (𝑔𝑡+𝜆𝜃𝑡−1)√
𝑣𝑡+𝜖 = 𝜃𝑡−1 − 𝜂𝑔𝑡√

𝑣𝑡+𝜖 − 𝜂𝜆𝜃𝑡−1√
𝑣𝑡+𝜖 .

Similarly, if 𝜃𝑡−1 (
√
𝑣𝑡+𝜖)−𝜂𝜆𝜃𝑡−1
𝜂𝑔𝑡

> 2𝑛 , we could discard the last
n bits of 𝜂𝑔𝑡 . Thus, we define the quantization metric as:
𝛿 =

𝜃𝑡−1 (
√
𝑣𝑡+𝜖)−𝜂𝜆𝜃𝑡−1
𝜂𝑔𝑡

=
𝜃𝑡−1 (

√
𝑣𝑡+𝜖)

𝜂𝑔𝑡
− 𝜆𝜃𝑡−1

𝑔𝑡
.

A.5 Adam

The Adam optimizer updates its parameters as follows:
𝑔𝑡 = 𝑔𝑡 + 𝜆𝜃𝑡−1,

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 ,
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 ,

𝑚𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
,

𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
,

𝜃𝑡 = 𝜃𝑡−1 −
𝜂𝑚𝑡√
𝑣𝑡 + 𝜖

(13)

Consequently, we can express𝜃𝑡 as𝜃𝑡 = 𝜃𝑡−1− 𝜂𝑚𝑡

(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

=

𝜃𝑡−1 − 𝜂𝛽1𝑚𝑡−1

(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

− 𝜂 (1−𝛽1)𝑔𝑡
(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

− 𝜂 (1−𝛽1)𝜆𝜃𝑡−1
(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

.

If 𝜃𝑡−1 (
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1−𝜂 (1−𝛽1)𝜆𝜃𝑡−1

𝜂 (1−𝛽1)𝑔𝑡 > 2𝑛 , the last n bits of
𝜂 (1 − 𝛽1)𝑔𝑡 could be discarded, thus the metric is defined as:

𝛿 =
𝜃𝑡−1 (

√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1−𝜂 (1−𝛽1)𝜆𝜃𝑡−1

𝜂 (1−𝛽1)𝑔𝑡

=
𝜃𝑡−1 (

√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1
𝜂 (1−𝛽1)𝑔𝑡 − 𝜆𝜃𝑡−1

𝑔𝑡
.

A.6 AdamW

For the AdamW optimizer, we have:
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝜆𝜃𝑡−1,

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 ,
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 ,

𝑚𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
,

𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
,

𝜃𝑡 = 𝜃𝑡 −
𝜂𝑚𝑡√
𝑣𝑡 + 𝜖

(14)

This results in: 𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝜆𝜃𝑡−1 − 𝜂𝑚𝑡

(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

= 𝜃𝑡−1 −

𝜂𝜆𝜃𝑡−1 − 𝜂𝛽1𝑚𝑡−1

(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

− 𝜂 (1−𝛽1)𝑔𝑡
(
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )

−.

Similarly, if 𝜃𝑡−1 (1−𝜂𝜆) (
√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1

𝜂 (1−𝛽1)𝑔𝑡 > 2𝑛 , the last n
bits of 𝜂 (1 − 𝛽1)𝑔𝑡 can be discarded safely. To quantify this,

we define the metric: 𝛿 =
𝜃𝑡−1 (1−𝜂𝜆) (

√
𝑣𝑡+𝜖) (1−𝛽𝑡1 )−𝜂𝛽1𝑚𝑡−1

𝜂 (1−𝛽1)𝑔𝑡 .
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