
F���FE: Accelerating ML-based Tra�ic Analysis
with Programmable Switches

Jiasong Bai�, Menghao Zhang�, Guanyu Li�, Chang Liu�, Mingwei Xu�, Hongxin Hu†
�Tsinghua University †Clemson University

ABSTRACT
Modern tra�c analysis applications are usually designed to identify
malicious behaviors by inferring sensitive information with ma-
chine learning (ML) techniques from network tra�c, and they are
of great importance to security with the growing use of encryption
and other evasion techniques that make classic content-based anal-
ysis infeasible. However, with the soaring throughput of networks
reaching hundreds of Gbps, it becomes more and more challenging
for tra�c analysis applications to keep up with today’s high-speed
large-volume network tra�c. In particular, existing feature extrac-
tor components in tra�c analysis are su�ering from undesirable
communications, storage, and computation bottleneck. To this end,
this paper presents F���FE, a high-speed feature extractor that
leverages the capability of new-generation programmable switches
to generate desired tra�c features �exibly and e�ciently. We pro-
vide a set of general, easy-to-use, and expressive interfaces for
operators to express which tra�c features they desire, and a policy
enforcement engine that can e�ectively translate these policies into
underlying primitives in programmable switches and commodity
servers. Our case study on a state-of-the-art ML-based tra�c analy-
sis application, Kitsune, demonstrates the signi�cant advancement
of F���FE and its low overheads. As an ongoing work, we are
working on a full prototype design and implementation, and hope
F���FE can serve as a crucial build block for future ML-based tra�c
analysis applications.
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1 INTRODUCTION
Tra�c analysis [23] refers to the class of applications that infer

sensitive information to identify malicious behaviors from network
communication patterns, and they are transitioning to use machine
learning (ML), especially deep learning, to achieve a better accu-
racy [18, 22]. These applications are becoming more and more im-
portant to network security with the prevalence of encryption and
other evasion techniques that make traditional payload-based analy-
sis of network tra�c infeasible. By using tra�c analysis techniques,
network operators can identify cybercriminals (e.g., botmasters)
that proxy their attack tra�c via compromised machines or public
relays in order to conceal their identities [13, 28, 31, 34, 36], pinpoint
individuals engaged in illegal activities within privacy technologies
such as ToR [11, 27, 32], detect covert channel attacks that ex�ltrate
con�dential information from compromised machines [4, 9], and
prevent malicious activities that intrude the network [18].

In a common tra�c analysis application [23], there are usually
two typical components: a feature extractor component that ex-
tracts necessary tra�c features (in the form of feature vectors) from
raw network tra�c, a behavior detector component that leverages
machine learning algorithms to detect the desired network behav-
iors. For instance, in Kitsune [18], a neural network based network
intrusion detection system, there is �rst a feature extraction frame-
work, which extracts 115-dimension tra�c feature vectors with
incremental statistics over a damped window, followed by an online
detection algorithm, an ensemble of autoencoders, which takes fea-
ture vectors as input to detect abnormal packets that have high root
mean squared error (RMSE) values. As another example, a website
�ngerprinting approach on ToR [22], extracts a set of features from
raw network tra�c, and uses a k-NN classi�er to identify which
website an individual accesses.

One major challenge for tra�c analysis applications is to scale
to today’s high-speed large-volume network tra�c. With the dra-
matic increase of the network tra�c and network bandwidth (e.g.,
from multi-10s of Gbps to multi-100s of Gbps), there is a growing
performance gap for existing tra�c analysis applications. While
we have seen various solutions (e.g., via GPUs [6], TPUs [15]) to
accelerate ML-based behavior detectors in these applications, the
performance of feature extractors has not caught up. Existing fea-
ture extractors [13, 18, 32] usually use port mirroring to duplicate
the collected network tra�c, and leverage a large set of servers to
store these large volumes of network tra�c and extract the desired
tra�c features, which inevitably impose enormous communication,
storage and computation overheads. For instance, a data center with
100,000 servers may require another 40,000⇠50,000 servers just to
keep up with the �ood of network tra�c, let alone the extra band-
width to steer these packets [25]. Latest proposal [23] alleviates this
by compressing tra�c features with compression algorithm, i.e.,
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Figure 1: F���FE architecture.

linear projection algorithms, and demonstrates that it is possible to
achieve the same accuracy by performing tra�c analysis operations
only on such compressed features, instead of on raw tra�c features.
Nevertheless, the performance gain still lags behind changes in the
volume of network tra�c.

To address these problems, in this paper, we present F���FE, a
high-speed feature extractor that enables the generation of desired
tra�c features �exibly and e�ciently, which allowsML-based tra�c
analysis applications to use feature extraction as a service. By lever-
aging the capability of new-generation programmable switches,
F���FE is able to achieve substantial saving in communications,
storage and computation. F���FE also enables unprecedented op-
portunities to conduct tra�c analysis in an online and performant
manner, which is important to mitigate malicious network activities
timely. Besides, by taking advantage of low unit packet processing
cost of programmable switches, F���FE provides network operators
a strong incentive to deploy such a defense mechanism.

Figure 1 shows the design of F���FE: it provides a set of high-
level interfaces that can help network operators express which traf-
�c features they desire, without reasoning about where and how
to execute the feature extractor. It also has a policy enforcement
engine that can e�ciently translate these policies into underly-
ing primitives that run on programmable switches and commodity
servers. We port our F���FE to a state-of-the-art ML-based tra�c
analysis application, Kitsune, and preliminary evaluations demon-
strate F���FE can accelerate the procedure of feature extraction
signi�cantly, with only minor overheads. We hope F���FE can
become a basic build block for future ML-based tra�c analysis
applications.

In summary, this paper makes the following contributions:

• We show the scalability issue of ML-based tra�c analysis
applications in dealingwith today’s high-speed large-volume
network tra�c, and identify the bottleneck existing in these
applications (§2).

• We propose F���FE, a high-speed feature extractor that en-
ables operators to generate tra�c features as they desire.
F���FE provides a set of policy interfaces for operators to
express the tra�c features �exibly, and a policy enforce-
ment engine that enforces these policies in programmable
switches and servers e�ciently (§3).

• We apply our approach to a state-of-the-art ML-based traf-
�c analysis application, Kitsune, and conduct preliminary

evaluations to show the advantages of F���FE in addressing
this scalability problem (§4).

Finally, we discuss some related works in §5, and conclude this
paper with our ongoing explorations in §6.

2 BACKGROUND AND MOTIVATION
In this section, we �rst give more background on ML-based

tra�c analysis applications, then discuss existing systems and their
limitations in detail.

2.1 Background on Tra�c Analysis
Modern tra�c analysis applications usually use machine learn-

ing techniques to infer sensitive information from network traf-
�c characteristics, and they are becoming especially useful in the
emerging scenarios where encryption and other content evasion
techniques do not allow one to inspect packet payload. There are
already explicit de�nitions and comprehensive surveys for tra�c
analysis [23], and we supplement a few more below.
Botnet detection. Botnets are a severe threat to organization net-
works, and they are becoming more di�cult to be taken down
with the emergence of decentralized P2P and stealthy communica-
tions. To mitigate this, researches have proposed to identify bots
through analysis of packet sizes and packet time intervals [20].
These techniques can help network administrators prevent and
mitigate stealthy botnet threats e�ectively.
Website�ngerprint. Privacy enhancing technologies such as VPNs
and ToR enable attackers to hide their source/destination IP ad-
dresses and the content of the visited websites via encryption,
which brings authorities much more di�culty for accountability.
Fortunately, website �ngerprinting technologies make it possible
to identify which websites attackers access by collecting neces-
sary tra�c features and feeding them to machine learning algo-
rithms [11, 27, 32]. This may help authorities to pinpoint individuals
engaged in illegal activities.
Covert channel detection. Attackers can ex�ltrate con�dential
information from compromised machines in organizations through
timing covert channels, without being detected by classic �rewalls
and intrusion detection systems. Nevertheless, operators can un-
cover stealthy communication patterns by capturing packet time in-
tervals and analyzing them with machine learning techniques [4, 9].
This is invaluable to protect the property of assets in organizations.
Intrusion detection. Network intrusion detection systems are of
great importance to monitor tra�c for malicious activities. State-
of-the-art intrusion detection systems extract contextual features
from network tra�c, and use machine learning algorithms to dif-
ferentiate between normal and abnormal tra�c patterns [18]. This
is crucial to guarantee the security of the protected networks.

2.2 Problem Statement
As we can see above, tra�c analysis applications are widespread

in the security community and they are playing a more and more
crucial role in identifying a wide variety of cybercriminals. How-
ever, existing tra�c analysis applications su�er from a severe scal-
ability issue, and cannot catch up with the dramatic increase of
network bandwidth and network tra�c, which incurs considerable
communication, computation and storage overheads.
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Figure 2: Resource consumption of di�erent components
in Kitsune.

To illustrate this, we conduct an experiment on Kitsune [18],
a neural network based network intrusion detection system, and
show the resource consumption of di�erent components. We mod-
ify the original code of Kitsune and divide it into a feature extractor
component and a behavior detector component accordingly, where
each runs on a separate CPU core as a process. In our experiment,
we gradually increase the packet reading rate of Kitsune, and mea-
sure the CPU utilization of the two components to pinpoint the
system bottleneck. The experimental results are shown in Figure 2,
where Kitsune fetches packets from three di�erent ways. As we can
see from this �gure, no matter which input mode is selected, the
CPU utilization of the behavior detector is only about 60%when that
of the feature extractor reaches 100%. This indicates that the feature
extractor is the bottleneck component of Kitsune. Furthermore, this
phenomenon will become much worse when the machine learning
algorithms in the behavior detector are accelerated with GPUs/T-
PUs. All these results illustrate that the current feature extractor is
the bottleneck component in tra�c analysis applications.

3 FASTFE DESIGN
In this section, we give the detailed design of F���FE: a policy

interface that can help operators express which tra�c features they
desire, without reasoning about where and how to execute the fea-
ture extractor (§3.1); a policy enforcement engine that can e�ciently
translate these high-level policies into the underlying primitives
that run in programmable switches and commodity servers (§3.2).

3.1 Expressing F���FE Policy
F���FE provides a series of interfaces to help operators write

their own feature extraction programs, which explains how the
required feature vectors are generated from raw packets. At �rst
glance, di�erent tra�c analysis applications seem to adopt di�erent
ways to generate their feature vectors, as they require di�erent
protocol semantics and tra�c characteristics, and also apply to
di�erent application scenarios. However, we observe that these
di�erent tra�c analysis applications share a common feature ex-
traction procedure: selecting interested tra�c, grouping tra�c into
multiple sets, generating and updating intermediate variables, pro-
ducing and composing the �nal feature vectors. This commonality
indicates that an opportunity exists to design such a set of general,
easy-to-use and expressive interfaces: filter, groupby, update, and
produce. Such a sequence of interfaces are de�ned as a process for
feature extraction. In some cases, one application may need several

Table 1: Summary of F���FE interfaces.

Construct Description
pktstream Raw packet stream
filter(R, pred) Filter stream R with predicate pred
groupby(R, [fields]) Partition stream R into several

groups by fields
update(R, func) Call function func to update vari-

ables with tuples in R
produce(R, func) Call function func to calculate sev-

eral dimensions of feature vectors
from variables and tuples

di�erent ways to compose a complete feature vectors, thus oper-
ator can also specify multiple processes to achieve their intents.
In a typical process, these interfaces are usually organized in this
sequential order, and each interface takes streams as inputs and
produces streams as outputs. The tuples in the stream only contain
packet header �elds and some required metadata (e.g., packet arriv-
ing timestamp) initially (represented as pktstream), and operators
can append new �elds into stream in the program subsequently. A
brief description of these interface is summarized in Table 1.
Variable declaration. Stateful information is required in most fea-
ture extractors, therefore we provide stateful variables in F���FE.
There are two kinds of variables supported by F���FE, i.e., numeri-
cal variables and list variables, and the declarations should be placed
at the beginning of the program. The former is used to record a
one-dimension packet statistic, where the arriving packet metadata
can be calculated by the current variable with a given expression.
The latter is used to store multiple numerical variables, responsible
for recording packet metadata which cannot be merged (e.g., a set
of arrival timestamps). Besides, F���FE variables have a strict bit
width, de�ned upon initialization. In particular, list variables can
only contain numerical variables with the same width. For example,
numeric<16> count = 0 de�nes a 16-bit width numeric variable
count, and list<32> timestamps = [] describes a list variable where
the width of each element is 32 bits.

F���FE sets an explicit scope restriction on variables that each
variable can be only used in a single F���FE process. Inside a pro-
cess, the packet stream is partitioned into multiple groups, and each
group possesses a separate replica of variables. Take the program in
Figure 3 as an example, the program only de�nes a single process
which partitions packets according to their source IP addresses, so
packets with di�erent IP addresses are going to modify di�erent
replicas of three variables de�ned in the beginning. Whenever a
new group is created in a process, all the corresponding variables
are initialized simultaneously.
Tra�c �ltering. Since not all packets are required to construct
the feature vectors, F���FE provides the filter interface to prevent
unrelated packets from further processing. Its parameter pred is
a predicate expressing the �ltering conditions. This interface can
be omitted if no packet should be �ltered. For example, following
statement only allows TCP tra�c to pass.
R1 = filter(pktstream, ip.proto == TCP)
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1 numeric<16> w = 0
2 numeric<32> ls = 0
3 numeric<32> ss = 0
4 R1 = groupby(packetstream, [packet.SrcIP])
5 R2 = update(R1, func_update)
6 R3 = produce(R2, func_produce)
7 def func_update([w, ls, ss], [packet.size]):
8 w = (w + 1) * LAMBDA
9 ls = (ls + size) * LAMBDA
10 ss = (ss + size*size) * LAMBDA
11 def func_produce([], [w, ls, ss]):
12 emit([w, ls/w, sqrt(|ss/w-(ls/w)^2|)])

Figure 3: Expressing a portion of Kitsune feature extractor
in F���FE.

Tra�c aggregation. Features are usually extracted upon grouped
packets (e.g., 5-tuple), and the groupby interface is designed to de-
�ne such a granularity to partition packet stream. The argument
of this interface is a set S 2 P(T ), where P(T) stands for power set
of the packet tuple. When S is empty, no aggregation is conducted
upon tra�c. For example, the following statement aggregates pack-
ets in R1 stream by 5-tuple.
R2 = groupby(R1, [5tuple])
Variables update. The update interface de�nes how to update
stateful variables using packet tuples, which usually works behind
filter and groupby in one process. Parameter func of this interface
is a function pointer, pointing to a function implementing the con-
crete updating logic. The function has two arguments, a list of
modi�ed state variables and a list of needed incoming tuple �elds.
Operators can �exibly express their variables update logic with
various calculative operators. Take the following statement as an
example, it updates variable count for each incoming tuples in R2
stream. Combining with filter and groupby statements listed above,
the following statement records the length of each TCP �ow.
R3 = update(R2, func_update)
def func_update([count], []) :

count = count + 1

Specially, if operators want to use some variables as the original
tuples in packet stream, they should use the append command to
add variables to the packet tuples.
Feature production. The produce interface locates at the tail of
one process, which is responsible for building the �nal features
vectors from incoming tuple and state variables. Similar to update,
produce also has a function pointer argument, which refers to the
function implementing computational logic, and the function also
takes two lists as arguments. Since a process only builds a sub-
vector of features, produced values need to be transmitted to and
recorded on the global vector. F���FE supplies an emit command
to send the values. For processes which do not produce features,
this interface can be omitted. We take the following statement as an
example to illustrate the usage of produce. The statement transmits
variable count every minute.
R4 = produce(R3, func_produce)
def func_produce([last_transmit], [count, packet.ts]) :

if packet.ts � last_transmit � 60 :
last_transmit = packet.ts
emit([count])

1 numeric<16> flow_length = 0
2 numeric<16> num = 0
3 numeric<32> last_time = 0
4 R1 = groupby(packetstream, [5-tuple])
5 R2 = update(R1, update_length)
6 def update_length([flow_length], []):
7 flow_length = flow_length + 1
8 append(flow_length)
9 R3 = filter(R2, proto == TCP)
10 R4 = groupby(R3, [srcIP])
11 R5 = update(R4, update_num)
12 R6 = produce(R5, func_produce)
13 def update_num([num], [flow_length]):
14 if flow_length == 1:
15 num = num + 1
16 if flow_length == 4:
17 num = num - 1
18 def func_produce([last_time], [num, ts]):
19 if ts - last_time >= 60:
20 emit(num)
21 last_time = ts

Figure 4: Expressing TCP �ow number querying in F���FE.

All processes in the program together build the complete feature
vectors. F���FE maintains a global vector to store features, sends
the vector to backend system when it is complete, and clears the
global vector to build next feature vectors.
Example. We take two examples to illustrate the F���FE program
format. Figure 3 shows a F���FE program expressing a part of
Kitsune feature extraction [18], which has only one process to ex-
tract mean value and standard deviation of packet size from SrcIP-
aggregated network tra�c. The program de�nes three numerical
variables (lines 1-3), updates them with packet count and size (lines
7-10, LAMBDA is a constant), and builds features from these vari-
ables (lines 11-12). Since Kitsune does not �lter any packet, filter is
omitted in this program.

The program shown in Figure 4 counts the number of TCP �ows
whose packet number is less than 4 for each source IP address, and
emits the count every minute as a dimension of feature vector [8].
The program de�nes three numeric variables (lines 1-3) at �rst to
store the packet number of each �ow (flow_length), the number of
�ows satisfying the condition (num) and the last sending time of
the feature (last_time). Since the �ow length cannot be obtained
directly, the program uses a process to compute the length of each
�ow (lines 4-5), and adds the length to packet tuples in the function
for the following process (line 8). In the second process, the program
updates the number of required �ows according to �ow lengths
(lines 9-11), and sends the number every minute (line 12).

3.2 Policy Enforcement Engine
In this part, we describe how to translate a F���FE program into

concrete codes deployed in programmable switches and commod-
ity servers. To achieve higher scalability, our principle here is to
let high-speed programmable switches serve as �rst-class citizens
to deploy the program. In other words, if primitives in a F���FE
program can be expressed within the capability of programmable
switches, these primitives are o�oaded to the switches. Sometimes
if the resources of switches are insu�cient for all the deployment,
we choose to conduct tra�c aggregation in switches prior to the
other computations. This is because hash table computation is ex-
tremely computation-intensive in software [30]. Since software on
servers has enough �exibility to execute the computational tasks
of F���FE program, here we mainly focus on how to orchestrate
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Figure 5: F���FE policy enforcement example.

the F���FE program into underlying programmable switches, how
to achieve multi-switch scalability, and how to guarantee order-
preserving within switches.
Orchestration. Similar to previous works [10, 21], we translate
groupby into a match-action table, by taking argument fields as
matching �elds of the table, and computing a group index for every
packet with the corresponding hash action. filter can be trans-
lated in a similar way, in which the predicate pred is converted to
matching �elds and values, which are installed immediately when
translation is �nished.

Interface update and produce are more complicated since they
involve functions to express logic, which may contain operations
and statements unsupported by programmable switches, e.g., divi-
sion operation and loop statement. Therefore, we need to take their
computational complexities into account when deploying these two
interfaces on switches. When the function contains computation
unsupported by switches, we put the previous operations on the
switch and put the remaining operations on the server. If the oper-
ation at the beginning is unsupported, we only collect raw data on
the switch, and leave the whole computation to the server.

Taking the program in Figure 3 as an example, to update vari-
ables, the program needs to conduct multiplication between raw
data and �oat number, which cannot be precisely expressed by cur-
rent programmable switches. Therefore, the programmable switch
only records packet sizes to ensure the detection accuracy, and
the recorded data will be sent to servers periodically. Besides, the
switch also aggregates packet sizes by source IP addresses to save
servers from hash table computation. In contrast, all the operations
of the program in Figure 4 can be �tted to programmable switches,
so the whole program can be placed at the switch.

When an interface gets deployed on the server, the following
interfaces which depend on this interface should also be put on the
server. We use the example in Figure 5 to illustrate this scenario,
the �rst update interface is partly deployed on the server and the
following F���FE process requires state variables updated by this
interface, therefore, the following interfaces are put on the server.
In order to accelerate the execution of these interfaces, some pre-
processing can be conducted on the programmable switch, and
the results are transmitted to the server along with aggregation
data. As shown in Figure 5, besides packet arriving time (ts) and
some variables (ts) acquired by the server part of the �rst update
interface, we execute hash table computation of second groupby
on the switch and append the result to the aggregation item (idx),
as well as packet sizes needed by second update interface (size). In
this way, we explore the potential of programmable switches to
improve the system performance as much as possible.

The primitives on servers can be easily implemented in DPDK-
based C program, which takes messages sent by the switch as input,

and conducts operations including possible aggregation, calculation
and feature production. The complete feature vector will be sent to
the back-end behavior detection component.
Multi-switch Scalability. Codes generated by the policy enforce-
ment engine are executed serially. If operators want to support a
higher bandwidth, they can employ multiple switches or servers in
a parallel way and distribute the incoming tra�c evenly to them.
Similarly, when a single switch cannot provide su�cient storage/-
computation resources and operators want to have more switch
stages to conduct the feature extraction, they can employ multiple
switches in a pipeline to achieve such a goal.
Order Preserving. Although F���FE can signi�cantly improve
the system performance, it also causes potential packet disorder,
which further brings challenges to the soundness of target systems.
During packet aggregation, packets will be divided into di�erent
groups. As a result, later-arrived packets on switches could be sent
to the servers earlier, resulting in inconsistent feature vectors. One
way to address this issue is to set a timestamp for each packet group
on switches. Then the servers restore the packet order according
to these timestamps. To avoid some packets staying on switches
too long, the servers can track the last arrival time of each memory
slot on switch. If a slot has not sent a packet for a long period, the
servers can invoke the switch control plane to send a forged packet
to evict the content at this slot. In this way, we can preserve packet
order in a given time window.

4 CASE STUDY
We use Kitsune as a concrete case study to evaluate how e�cient

F���FE is for feature extracting. We employ the same modi�ed Kit-
sune mentioned in §2.2 as the native Kitsune. In order to accelerate
Kitsune, the intention of Kitsune’s feature extraction can be ex-
pressed through the policy interface of F���FE, as shown in §3.1.
The policy is inputed into F���FE and then translated into the P4
program running on To�no ASIC (FE-ASIC) and the Python pro-
gram running on the server (FE-Server). FE-Server is responsible for
receiving the processed and aggregated tra�c data from FE-ASIC,
and computing the �nal feature vectors, which are transferred to
the behavior detector of the application.
Implementation. Since the full implementation of F���FE is still
under development, we conduct the initial validation using a pre-
liminary prototype. Without the policy enforcement engine fully
implemented, we manually generate FE-ASIC and FE-Server. FE-
ASIC is implemented with ⇠3K lines of P4 [3] code for the Barefoot
To�no ASIC [24], while the corresponding controller program is
written in Python using⇠1K lines of code. FE-Server is implemented
with ⇠200 lines of Python code to be compatible with the native
Kitsune.
Experimental setup. Our testbed consists of one 3.3Tb/s Barefoot
To�no switch and two Dell R730 servers. Both servers are equipped
with Intel(R) Xeon(R) E5-2698 v4 CPUs, 15360K L3 cache, 64GB
RAM, and the 40Gbps Intel XL710 NICs to be connected to the
switch. Particularly, one server acts as the tra�c generator, running
pktgen or tcpreplay to send tra�c to the switch, and the other
one is used as the back-end server of F���FE to receive aggregated
packet data from the switch. In our case study of Kitsune, we choose
the SYN-DoS trace provided in its paper as the target of tra�c
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Figure 6: Communication reduction by F���FE. Figure 7: CPU alleviation by F���FE.

Table 2: Resource utilization of Kitsune-F���FE.

Computing
Tables sALUs VLIWs Stages
27.08% 40.63% 13.54% 50.0%

Memory
SRAM TCAM
18.33% 14.58%

analysis. This trace contains both normal background tra�c and
abnormal tra�c of SYN-DoS.
Soundness. In order not to a�ect the output of tra�c analysis,
e.g., the RMSE values that the neural network produces in Kitsune,
F���FE needs guarantee to generate the consistent feature vector
for each packet with the native one. To validate this property of
F���FE, we compare the 115-dimensional feature vectors generated
by Kitsune with F���FE and the native Kitsune, and compute their
cosine similarity as the metric. Our experiments show that the
average cosine similarity for all packets in the trace is as high as
0.989, which indicates the soundness of F���FE. The little di�erence
is due to the rare out-of-order packets in the network.
Scalability. To demonstrate the scalability bene�t of F���FE, we
measure the bandwidth and CPU utilization of the back-end server
as the test stream increases. As shown in Figure 6, with F���FE,
the tra�c received by the back-end server is only the quarter of the
native Kitsune. And Figure 7 indicates employing F���FE reduces
the CPU utilization of feature extractor on the server to nearly half
of the native Kitsune. These all bene�t from the preliminary pro-
cessing and aggregation for original packets on the programmable
switch in F���FE. Both experiments prove the potential of F���FE
to scale tra�c analysis to large-volume network tra�c.
Overhead. Table 2 displays the resource usage of Kitsune with
F���FE in our To�no switch. As we can see, F���FE occupies less
than half of computational resources, and uses about 20% of the
SRAM and 15% of the TCAM. This result manifests F���FE still
leaves enough space for traditional network processing, and it can
even be further optimized with more tuning.

5 RELATEDWORK
Besides the most relevant tra�c analysis applications in §2.1,

our work is also inspired by the following topics.

High-level interface. There are many di�erent domain-speci�c
languages and interfaces for di�erent tasks, including packet pro-
cessing in SDN [1, 7, 19], network monitor [10, 21], network intru-
sion detection systems [2], DDoS defense [35] and etc. The goal
of F���FE is to enable operators to use feature extraction as a ser-
vice, as a result, F���FE interfaces are specially customized for the
feature extracting procedures in tra�c analysis applications.
Programmable switch. F���FE builds on the recent trend of lever-
aging programmable switches to accelerate various application in
networking [10, 12, 17, 21, 26, 29, 30, 33], security [5, 16, 35] and dis-
tributed systems [14], but focuses on a very di�erent problem: the
procedure of tra�c feature extraction. We design customized high-
level interfaces to express feature extraction procedures for tra�c
features applications and resolves unique challenges in translating
these interfaces into underlying primitives.

6 CONCLUSION AND FUTUREWORK
In this paper, we identify the bottleneck component of today’s

tra�c analysis applications in dealingwith high-speed large-volume
network tra�c, and sketch the vision of F���FE, a high-speed fea-
ture extractor that is designed to alleviate the scalability issue in
these applications. The core of F���FE is a set of general and expres-
sive interfaces that allow operators to express their desired tra�c
features �exibly, and a policy enforcement engine that can enforce
these policies in programmable switches and servers e�ciently.
Our initial prototype and case study demonstrate that F���FE can
accelerate the procedure of feature extracting signi�cantly.

Nevertheless, our current design, prototype and evaluations are
still very preliminary, which leaves a lot of future works to continue.
In our ongoing explorations, we are planning to customize our
interfaces to make it �tter for tra�c analysis tasks, build a full
prototype of the policy enforcement engine, apply our approach to
more tra�c analysis applications, conduct larger-scale real-world
experiments, and consider more complex scenarios.
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