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ABSTRACT
In distributed storage systems, erasure coding (EC) is a crucial tech-
nology to enable high fault tolerance with lower storage overheads
than data replication. EC can reconstruct missing data by download-
ing parity data from survived machines. However, downloading
streams of EC multiplex the available network I/O on the receiving
end, leading to a substantially low data reconstruction speed. In this
paper, we present NetEC, a novel in-network accelerating system
that fully offloads EC to programmable switching ASICs. NetEC
prevents multiplexing network I/O through on-switch downloading
stream aggregation, thus significantly improving reconstruction
speed. NetEC addresses three key challenges: computation offload-
ing of complex EC operations, rate synchronization of multiple
downloading streams, and deep payload inspection/assembly. We
implement NetEC on hardware programmable switches. Evaluation
shows that compared to HDFS-EC, NetEC significantly improves
reconstruction rate by 2.7x-9.0x and eliminates CPU overheads,
with low switch memory usage.
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1 INTRODUCTION
Many large-scale distributed storage systems are transitioning to
erasure coding (EC) [1, 10, 11] to provide high availability with much
lower storage overheads than data replication. Reed-Solomon (RS)
code [23] is one of the most popular choices of EC. An RS(k, r ) code
encodes k units of data into r units of parities. RS(k, r ) reconstructs
the original k units from any k out of (k + r ) units of data, thus
tolerating any r failures. For example, RS(10,4) can tolerate any

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’20, March 3, 2020, San Jose, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7101-8/20/03. . . $15.00
https://doi.org/10.1145/3373360.3380833

Aggregation Switch

𝑨 𝑩𝟏 𝑩𝟐 𝑩𝒌

ToR ToR ToR ToR

NetEC

Aggregation Switch

𝑨 𝑩𝟏 𝑩𝟐 𝑩𝒌

ToR ToR ToR ToR

Forward

Forward

DISK

CPU

Multiplexed

NIC

DISK

CPU

NIC

(a) Traditional EC: Three downloading streams multiplex the receiver NIC ca-
pacity (red). CPU aggregates them and can achieve only one-third disk write
speed.
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(b) NetEC: Three downloading streams get aggregated on switch (grey). The
disk write speed can be equal to NIC capacity (3x compared to traditional EC).

Figure 1: NetEC Overview and Comparisons with Tradi-
tional EC. (Colored lines represent downloading stream, and
black lines represent reconstructed stream. The line width
represents throughput.)

4 failures with 1.4x storage cost, while replication-based systems
requires 3x storage cost to achieve the similar degree of availability.
However, as revealed by many previous literature [11, 24, 30], EC
trades storage cost with extra performance overheads. In particular,
low reconstruction rate is one of the most significant problems,
receiving great attention from both academia and industry [11, 21,
24, 30].

The fundamental problem behind low reconstruction rate is the
proportionate goodput, which is unavoidable in all current systems
based on end-hosts. Reconstructing one block of data in RS(k, r )
requires downloading k blocks from other nodes. The available
network I/O (typically the NIC capacity) on the receiver side is
multiplexed by k downloading data streams so that the effective
reconstruction goodput is no larger than 1/k of the available net-
work I/O. As shown in Figure 1a, the three colored data streams
share the available NIC bandwidth, and the actual reconstruction
goodput (disk write speed) is only one-third of the network I/O.
The proportionate goodput problem cannot be completely resolved
as long as processing is done on end-hosts, including FPGAs or
SmartNICs, because they need NICs to connect to networks.

Therefore, we resort to the in-network computation paradigm
to resolve the proportionate goodput problem. On a programmable
switch, data streams arrive at different interfaces, get aggregated
and forwarded to yet another interface. There is no sharing of
bandwidth. In Figure 1b, where computation (gray box) is moved
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from CPU to the network, the reconstructed data (black) is able to
make full use of the entire bandwidth available on NIC, so that we
can acheive higher disk write rate. The wider black line compared
to Figure 1a indicates the improvement of reconstruction rate.

Another benefit of in-network computation is to relieve heavy
CPU utilization of EC. During reconstruction, CPU has to inspect
every single byte from all k downloading streams. Storage devices
waste many CPU cores for reconstruction, leading to high capital
expenditure [12]. In-network computation completely removes
extra CPU usage (see §6.3).

In this paper, we present NetEC, an in-network acceleration
framework that fully offloads EC to programmable switching ASICs.
Nevertheless, offloading EC is non-trivial, andNetEC should address
three new challenges:
Computation offloading. RS code relies on Galois Field (GF)
arithmetics (see §2 and §4.1). To fully offload GF computation to
less expressive switching ASICs, we design an RS codec engine that
transforms GF vector dot-product to table lookups and partial XOR
sum updates. All arriving packets perform GF multiplication on ex-
tracted payloads and update the buffered partial XOR sums. When
reconstruction completes, the last arrived packet is sent with the
decoding result encapsulated as its payload.
Rate synchronization. If packets from different sources arrive at
different rates, the switch memory consumption would increase
drastically, because NetEC needs to buffer partial decoding results
temporarily. We build a one-to-many TCP proxy to synchronize
arriving rates of different TCP downloading streams. NetEC only
needs to buffer partial XOR sums whose size is equal to in-flight
packets, which is upper bounded by TCP receive window size (see
§4.2).
Deep payload inspection/assembly. Limited number of bytes
can be parsed and processed on switch because of current hard-
ware resource constraints. However, small-sized packets lead to
performance penalties. To support larger packet size with current
parser constraints, we design a packet recirculator to not only in-
spect deep packet payloads [12], but also assemble a completely new
packet with correct header checksums. We discuss the recirculation
penalties in §4.3.

In summary, we make the following contributions:
• We propose NetEC that offloads EC to switching ASICs,
which fundamentally resolves the proportionate goodput
problem and relieves CPU overheads (§3).

• We design the RS codec engine, the one-to-many TCP proxy
and the packet recirculator to address three challenges (§4).

• We implement NetEC on programmable switches and inte-
grate it with Hadoop Distributed File System (HDFS). Evalua-
tion shows that reconstruction rate is improved by 2.7x-9.0x
with low switch memory consumption, and the CPU over-
head is completely removed (§6).

We discuss incast and scalability issues in §5. NetEC will not face
incast risks and has the potential to scale. Finally, §7 shows related
works, and §8 concludes the paper.

2 BACKGROUND
We introduce Reed-Solomon (RS) code in this part and show that en-
coding and decoding can both be modelled with vector dot-products

over Galois Fields (GF). For simplicity, the readers may comprehend
GF arithmetics as usual integer arithmetics. We refer to the smallest
granularity of data as symbol, which we choose to be 16-bit word.
Encoding. We describe the RS(k, r ) coding system using a matrix-
vector product[19]. The RS(k, r ) code encodes k symbols into r
parity symbols with a (k + r ) × r generating matrix R (Equation (1)),
composed of an identitymatrix and a redundancymatrix. We use col-
umn vector D to denote a set of original data symbols d1,d2, ...,dk ,
and C to denote data and parity symbols d1, ...,dk ,p1, ...,pr . Multi-
plication of the generating matrix R and D yields C . More specifi-
cally, each parity symbol can be computed with pi =

∑k
j=1 ai , jdi ,

where ai , j are elements of the redundancy matrix.

RD =



1
. . .
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 =
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...

dk
p1
...

pr


= C (1)

Decoding. RS(k, r ) tolerates at most r lost data words through
reconstruction using (any) k of the survived symbols. To recon-
struct, we build a k × k reconstruction matrix R′ by deleting r rows
corresponding to lost data symbols from generating matrix D. Ap-
plying the same row-deletions on C , we obtain C ′, which contains
k survived symbols. R′D = C ′, and with matrix inversion, we get
D = (R′)−1C ′. This means that we can retrieve the original D by
multiplying (R′)−1 with the survived symbolsC ′. More specifically,
each data symbol can be computed with di =

∑k
j=1 ri , jc

′
i , where

ri , j are elements of the inverted reconstruction matrix.
To conclude, the encoding and decoding process can both be

modelled with GF vector dot-products. In later sections, we will
discuss how it can be transformed to operations that are offloadable
to switching ASICs .

3 OVERVIEW
Terms. we refer to the node on which a data symbolm is recon-
structed as the reconstructing node (termed A, 8 ). m is recon-
structed from the symbol-stripe x1, x2, ..., xk downloaded from sur-
vived nodes B1,B2, ...,Bk ( 1 ). To simplify, we term all survived
nodes as Bs . The set of packets that contains the same set of symbol-
stripes are termed the packet-stripe. A packet-stripe contains multi-
ple symbol-stripes ( 2 ).
Dataplaneworkflow. For every incoming packet ( 2 ), the switch
extracts symbols and perform GF multiplication on them ( 3 , de-
tailed in §4.1). The results are written back in the extracted header
fields ( 4 ). The switch selects a slot in the partial XOR sum buffers,
implemented with registers, and XOR the symbols with buffer con-
tents. Slot indexing is shown in §4.2 in detail. The switch also
updates the progress tracker, whose i-th bit is flipped if the packet
comes from the i-th survived node. As other packets of the packet-
stripe arrive, the buffer content changes as shown in Figure 2b.
The switch drops all packets except the last arrived packet in a
packet-stripe ( 6 ). When the progress tracker becomes all ones,
the switch knows the whole packet stripe is received. It overwrites
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Figure 2: NetEC Data Plane.

the whole payload of the last arrived packet with the finished XOR
sums ( 7 ), and forwards it to A ( 8 ).

4 DESIGN
In this section, we present detailed design for three NetEC modules,
each corresponding to a challenge described in §1.

4.1 In-Network RS Codec Engine
GF vector dot products. As is shown in §2, the encoding and
decoding process are both modelled with GF vector dot products,
which can be transformed to table lookups and partial XOR sum
updates.

To illustrate how to perform GF vector dot products, suppose a
data symbolm is to be reconstructed as follows:m =

∑k
i=1mi =∑k

i=1 aixi , where xi are data symbols from a survived nodes Bs
and ai are pre-computed coefficients. Packets containing xi are
sent from corresponding nodes and arrive in arbitrary order at the
RS codec engine, and each xi is extracted as a metadata field. To
multiply xi with ai , we have to lookup logxi in a pre-installed
logarithm table and add logxi with a pre-known logai : logxi +
logai = logxiai = logmi . Note that the addition here is integer
addition. Then we getmi by looking upmi in an exponent table.
mi is then XOR-ed with the partial XOR sum of already arrived
symbols. Commutativity and associativity of XOR ensures that the
arrival order is irrelevant andm is computed after all k symbols
arrive. Finally,m is contained as payload of the last arrived packet
and forwarded to the reconstructing node.
Logarithm and exponent tables. The logarithm table and expo-
nent table record mappings between an element and its logarithm
or exponent in Galois field. The total size of the logarithm table
isw × 2w bit, because there are 2w entries and values havew-bit
width. In NetEC, we choose w = 16 to be the word size, so the
logarithm table takes up 131072 bytes. The exponent table takes
up twice as much as logarithm table because the integer sum of
two 16-bit integers ranges from 0 to 131070. However, this can be
optimized to be the same as logarithm table because the exponent
table has repeated contents [19].
SRAM consumption for lookup tables. In current switching
ASICs, each match table can only be accessed in the same stage
once per packet. NetEC requires table reads for every symbol in a
packet, so we have to install multiple copies of lookup tables to the
data plane. Suppose we allocate n stages and each stage contains
M SRAM. We denote N as the number of processed symbols in one
pass, then we have N ·lookup_table_size ≤ n ·M . Therefore, we can

either allocate more SRAM for NetEC to acheive more processed
symbols, or allocate less SRAM, yet affecting end-to-end throughput
due to small-sized packets.

In reality, our choice of N = 160B1 can be affected by other
constraints. Each stage has limited number of sALUs (stateful ALUs)
to access registers [27], resulting in limited decoding buffers, thus
less N . Also, multiplication of a symbol must be done prior to XOR
calculation, so the multiplication lookup tables reside in stages
before the stages that hold XOR decoding buffers. .

Note that recent works discuss possible methods to relieve the
memory access constraint. dRMT [8] builds a memory pool ac-
cessible through a crossbar, and GEM [25] proposes RDMA-based
external memory. Also, we can choose to conduct multiplication on
end-hosts. In this way, NetEC can still resolve the "proportionate
goodput" problem (§1), thus increasing reconstruction speed and
removing receiver-side CPU usage. However, the senders will have
extra CPU usage for multiplication.

4.2 One-to-many TCP Proxy
Asynchronized packet arrival leads to unpredictable buffer size.
Since the first packet of the stripe arrives, the RS codec engine
starts to buffer the partial XOR sums in switch memory until the
whole stripe is received. Ideally, if packets of the same stripe arrive
at the same time, the aggregation is performed almost instantly and
no buffer is used. However, if packets arrive unpaced, the memory
consumption will increase drastically.

Our insight here is to leverage the rate control mechanisms of
TCP. TCP already handles rate control with very mature mecha-
nisms. More importantly, TCP ensures that in-flight packets does
not exceed receive window size. This provides an upper bound for
switch memory consumption.
One-to-many TCP proxy. In NetEC, the survived node Bs shares
a virtual IP (VIP) and the reconstructing node A connects with
this VIP. Packets from A are multicast to several end-hosts. Except
hand-shake packets, packets from A only have pure ACKs (ACK
without payload). The one-to-many TCP proxy changes the destina-
tion address of these packets and multicast them to corresponding
outbound interfaces. Packets from Bs are data packets containing
NetEC payloads. These packets are processed and aggregated by the
RS codec engine. The produced packet gets its network addresses
modified and checksum calculated, and is forwarded to A.

1The major constraint is actually the limited number of sALUs per stage. It limits the
number of registers that decoding buffers can use, and thus limits N .
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Translation of TCP SEQ/ACK and IP ID. TCP handshake is per-
formed in the sameway. SYN is multicast to Bs and SYN-ACK is sent
to A after receiving all SYN-ACKs from Bs . However, different Bs
provide different Initial Sequence Numbers (ISN) [6] during hand-
shake and the switch chooses its own ISN to interact with A. These
ISNs should be recorded to translate sequence and acknowledge
numbers when relaying subsequent packets. After translation (sim-
ple addition and subtraction), the SEQ/ACK number is correct from
each end-host’s perspective. If TCP SACK (Selective Acknowledge-
ment) [5] is employed, NetEC will have to apply similar translation
to SACK option fields. IP identification translation is also needed to
support end-host TCP segmentation offload for better throughput.
Rate control and Packet Loss RecoveryNetEC prevents senders
from overwhelming the receiver and maintains synchronicity of
sending rates. FromA’s perspective, it receives packet as if from the
slowest one of the k senders, and replies ACKwith the slowest rates.
Bs behave equally in response to receive buffer changes and will
never send faster than A can receive. NetEC also tolerates packet
losses. Lost packets on path from A to S and S to Bs have negli-
gible effects as long as any following ACK packet is successfully
transmitted. Lost packets on path from S to A would result in ei-
ther duplicate ACKs or timeouts, triggering (fast) re-transmissions.
Packet loss on path from Bs and S can be equivalent to the last
scenario, because S would not send packets to A until all k packets
have arrived.
SRAM consumption for decoding buffers. Switch memory
holds all unfinished partial XOR sums. This is equal to all in-flight
(sent yet not acknowledged) packets of the fastest sender. TCP
ensures that in-flight packets will not exceed TCP receive win-
dow size. Therefore, the maximum memory consumption is upper
bounded by the receiver window size. The receive window size can
be manually configured, and will not affect performance as long
as it exceeds the bandwidth-delay product (BDP) of the link. In a
high throughput, low latency data center cluster, BDP is usually
below 100KB, which is manageable with on-chip memory (0.1% in
a switch with 100MB total SRAMs).
Buffer slot indexing. In every packet, Bs explicitly include a slot
index, indicating which slot to hold partial decoding result for the
packet-stripe. Packets of a packet-stripe share the slot index, so that
the extracted symbols are XOR-ed altogether in the same buffer.
The allocated SRAM is used as a ring buffer. Suppose the total slot
size isM (total allocated SRAM size divided by packet size), then
the i-th packet sent by Bs has the slot index i (modM). As long as
the total SRAM size is configured larger than TCP receive window
size, the buffer will never be full, and there will not be collisions of
slot usage.

4.3 Packet Recirculator
Current switch hardware can parse limited number of bytes, while
NetEC requires processing the entire payload. We design a packet
recirculator to not only inspect deeper payloads but also assemble
a packet with completely new payloads under the parser limit. We
configure end-host Maximum Transmission Unit (MTU) to be B+H ,
where H stands for TCP header size (including TCP options), so
that each packet has B size payloads. For each incoming packet, we
parse and process the N bytes of packets in the ingress pipeline
and truncate these bytes by not emitting them. Then the packet is

loop-backed to the ingress pipeline again to parse the next N bytes.
After B

N passes, we can inspect the whole payload of the packet.
Most incoming packets will be dropped except the last packet in
a stripe. The last packet, however, has to go through the pipeline
again to retrieve and emit finished XOR sums from corresponding
slots. After another B

N passes, the packet is assembled and leaves
the switch.
Recalculating L4 checksums. The outgoing packets have com-
pletely re-written payloads. Although the switch provides a prim-
itive CSUM for IP checksum recalculation and L4 checksum up-
date, we cannot directly use it because we assemble packets by
recirculations. In NetEC, we first calculate L4 pseudo header with
checksum = CSUM(l4_pseudo_hdr ) . Then in every new pass when
N bytes Fields are emitted, the checksum is updated with the for-
mula: checksum = CSUM(∼ checksum, Fields), where "~" refers to
bit-wise negation. This is because CSUM calculates the negation
of the 16-bit ones’ complement sum of a specified list of fields.
∼ checksum is the ones’ complement sum of already emitted fields.
Feeding it with new fields to CSUM again yields the checksum of
all considered fields.
Recirculation penalty.More recirculations lower the switch over-
all throughput, but support larger packet size, thus better end-
to-end throughput. To trade off between overall and end-to-end
throughput, we choose B = 320 and N = 160, so that packet recircu-
lates once. On the one hand, with 320B packet size, the end-to-end
throughput can at least saturate SSD write speed (1-2 GB/s). On
the other hand, recirculating once does not greatly impact switch
throughput [12, 29]. Suppose the end-to-end throughput is 1GB/s,
which is typical for SSD sequential write, the throughput consump-
tion is 16Gb/s, taking up only a small portion of the switch overall
throughput (0.25% for 6.4Tb/s capacity).

5 DISCUSSION
Incast issue. Some may worry that simultaneous arrival of packets
will incur incast by overloading the output buffer. The reality is
that NetEC does not face this issue. Note that most arriving packets
only update the partial XOR sums stored in ingress pipeline and get
dropped without even entering the switch forwarding engine. Only
after a whole packet stripe arrives, a packet is emitted to the output
interface. The pps (packet per second) of the output interface is
approximately equal to pps of the inbound interfaces, so there will
not be incast risks.
Potential to scale. In this short paper, we do not explicitly address
scalability issue, which we leave as a major focus in future work.
Here we discuss the scaling potentials. First, NetEC can support
higher reconstruction throughput because the transient memory
usage is bounded by the BDP. Second, NetEC can hold multiple con-
current reconstruction tasks, also because of the bounded memory
usage, with the help of on-switch dynamic memory allocation [27].
Finally, we emphasize that we do not need to consider more sur-
vived nodes, because normally we choose RS(3,2), RS(6,3) or RS(10,4)
settings [3], with 3, 6 or 10 survived nodes.
NetEC limitations. Despite many efforts to ensure NetEC perfor-
mance under resource constraints, there are still following limita-
tions. First, NetEC takes up SRAMs that span through one or several
pipeline. Then, in the same pipeline(s), NetEC can only co-locate
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with “stateless" functionalities, like basic forwarding and protocol
translation, or small-scale “stateful" functionalities. Alternatively,
we can dedicate a pipeline to NetEC and route reconstruction traf-
fic to this pipeline, yet sacrificing switch interfaces related to this
pipeline. Second, we only discuss trade-offs of recirculation un-
der current SSD settings (∼1 GB/s). Recirculation might become a
bottleneck for in-memory storage or high speed NVMe. We will
explore NetEC application to these systems in our future work.

6 EVALUATION
6.1 Prototype and Testbed
We implement a prototype of NetEC on commodity switches. Data
plane components are implemented with P4 [7] (720 LoC) and
compiled with Barefoot Capilano software suite [2]. The controller
of the data plane program is written with python (269 LoC). On
server side, we implement a set of self-defined EC policies with Java
(2,587 LoC) by extending the native HDFS-EC module. We modify
class BlockReaderRemote to let the reconstructing node connect
to the programmable switch, instead of to all k survivors. Also, we
modify data serialization logic, so that packets from survived nodes
are properly indexed and aligned. We build a storage cluster using
9 servers each with two 12-core Xeon E5-2650v3 CPUs, 64GB of
memory, 40Gbps NIC, 1TB HDD and 400GB SSD. The servers are
directly connected with a Barefoot Tofino programmable switch,
which runs NetEC and a standard L2 forwarding module. We build
three testbeds: RS(3,2), RS(6,3) and replication, and measure NetEC
reconstruction rate, resource usage and other benchmarks.

6.2 Reconstruction and Link Usage
NetEC significantly increases reconstruction rate and decreases link
usage. In Figure 3, each bar indicates the total network throughput
or reconstruction rate.

We first run NetEC in the replication testbed. All traffic traverses
the entire NetEC processing pipeline. The left bars in Figure 3a
and Figure 3b shows that the processing of NetEC incurs negligible
throughput overheads. Note that the reconstruction rate is slightly
lower than network throughput because of network and NetEC
headers.

Figure 3a shows results in an HDD and 1GbE setting. In RS(3,2)
(middle bars), HDFS-EC consumes 1.0 Gb/s network throughput
but only achieves 0.31Gb/s reconstruction throughput, because
the NIC capacity is multiplexed by three downloading streams.
NetEC consumes 0.9 Gb/s network throughput and achieves 0.8
Gb/s reconstruction throughput, which improves over HDFS-EC by
2.7x. In RS(6,3), the improvement becomes even more (9.0x) because
the NIC is divided by more downloading streams.

Figure 3b shows result in an SSD and 40GbE setting, where
Java socket I/O becomes the bottleneck. A single Java Socket can
not exceed 4 Gbps throughput, while multiple sockets can achieve
larger aggregate throughput. NetEC now supports two concurrent
reconstruction flows by splitting register usage, reaching 8 Gb/s
reconstruction throughput (middle and right bars in Figure 3b).
It already saturates the write speed of our SSD (1 GB/s), with a
network usage of 9.3 Gb/s. On the other hand, HDFS-EC makes
use of multiple sockets for downloading and achieves 4Gb/s recon-
struction throughput, bounded by the Java socket limit from the

sending side. However, HDFS-EC consumes 11.3 Gb/s and 18.6 Gb/s
network throughput, significantly higher than NetEC.

6.3 Micro Benchmarks
CPU utilization.We enable Intel ISA-L [4] in HDFS-EC to achieve
higher reconstruction rate and do not constrain CPU core usage
of HDFS, so it grasps as many cores as possible, leading to uti-
lization higher than 100%. Figure 3c shows CPU utilization during
reconstruction on an HDD at its top writing speed (180 MB/s). CPU
utilization can be as high as 350%, and can be even higher when
reconstructing SSD. Note that replication also incurs moderate
CPU overheads for transactional operations [16], but the additional
computational overheads of EC are eliminated by NetEC.
Dynamicmemory usage.Wemeasure the buffer usage of a single
reconstruction task by periodically pulling data plane metadata
that records the sequence numbers of the latest arrived packet and
the latest left (aggregated) packet. The difference between these
two value reflects the actual buffer consumption at the moment.
Figure 4a demonstrates that the switch memory consumption is
low under normal condition (below 50KB), while a programmable
switch ASIC typically has 50MB to 100MB SRAM memory. Rate-
limiting is introduced at time 3s, and we observe a slight increase
followed by a drop in buffer usage. When rate is limited, the sender
sends data higher than the receiver can receive, so the in-flight
packet increases, leading to the increased buffer usage. The average
buffer usage is lower after some time because the lowered rate leads
to smaller BDP of the link.
Rate control. To measure rate control effects, we use Linux tc
to adjust available input bandwidth of one of the survived nodes.
The evaluation is conducted under 1GbE HDD setting. Figure 4b
shows that when one node undergoes rate-limiting, the other nodes
respond almost instantly. The sending rates of all nodes remain
equal after rate limiting that happens at around 19 second.
Packet loss. For packet loss, we use replication as baseline and
compare NetEC to it with the same end-host TCP setting. We man-
ually introduce random packet losses for three seconds twice with
different loss percentage. As shown in Figure 4c, we see that NetEC
behaves similarly with replication in face of packet losses. The
throughput is lowered because of the constant packet loss rate, but
the flow is not disrupted.

7 RELATEDWORK
Accelerating erasure coding reconstruction.Many approaches
have been proposed to accelerate erasure coding reconstruction
from different perspectives. Some new codes are proposed, in-
cluding rotated-RS [15], PM-RBT[20], PM-MSR[22], etc. Other ap-
proaches aim at building more responsive and flexible systems.
HACFS[30] uses two different erasure-codes that dynamically adapt
to workload changes, and RAFI[9] is a novel risk-aware failure iden-
tification scheme.
In-network computation. Researchers have used programmable
switches to offload some communication-heavy network applica-
tions. SilkRoad [18] achieves fast and cheap L4 load balancing.
NetCache [14] utilizes on-switch storage to achieve in-network
caching for key-value systems. NetChain [13] accelerates coordi-
nation services in distributed systems. *Flow [27], Univmon [17],
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(a) HDD, 1GbE (b) SSD, 40GbE (c) CPU Utilization

Figure 3: Reconstruction speed and CPU utilization

(a) Sampled SRAM Usage (b) Rate Control (c) Packet Loss Recovery

Figure 4: One-to-many TCP Proxy

HashPipe [26] are representative network monitoring applications
that leverages switching ASICs.
Comparison with XORInc. XORInc [28] has similar motivation
with this paper. It performs XOR on switches, while GF computa-
tion is still conducted by host CPUs. It is implemented with Open
vSwitch and has simulation-based experiments. Compared to XOR-
Inc, NetEC considers hardware constraints and resource limitations
of real programmable switches, and offloads both GF and XOR
computation, achieving higher line rates and elimination of CPU
burdens.

8 CONCLUSION
We present NetEC, an in-network EC accelerating framework that
fully offloads EC to the new generation programmable switching
ASICs to resolve the proportionate goodput issue. We implement
NetEC and integrate it into HDFS. Evaluation shows that NetEC sig-
nificantly improves reconstruction speed and eliminates CPU over-
heads. We hope our exploration and experience would be valuable
for wider adoption of erasure coding and in-network computation
in future.
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