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1 PROBLEM STATEMENT
vLLM [1] is a large language model (LLM) inference service
system that achieves near-zero waste in KV cache memory
while enabling flexible sharing of KV cache both within and
across requests to further reduce memory consumption [2].
Inspired by paged memory management techniques used in
operating systems, vLLM adopts the PagedAttention algo-
rithm and utilizes a block module for memory allocation and
management. This approach dynamically allocates KV cache
GPUmemory for requests, improving memory efficiency and
supporting large-scale language model inference operations.

However, large models typically have millions of or even
billions of parameters, they require a substantial amount of
costly memory resources. In memory-constrained environ-
ments, the block table space in most large model inference
service systems is relatively limited, and it often proves inad-
equate when handling a high volume of inference requests.
When a large number of requests arrive at the vLLM server,
vLLM employs a First-Come-First-Serve (FCFS) strategy, pri-
oritizing the processing of earlier requests. As the number
of requests and their outputs increases, vLLM may exhaust
GPUmemory to store the newly generated KV cache, leading
to insufficient GPU memory and ultimately preventing the
processing of new requests.

To handle new requests, vLLM temporarily suspends the
execution of certain tasks, adopting an all-or-nothing strat-
egy to release all KV cache blocks associated with preempted
requests. These tasks are resumed once sufficient GPU re-
sources become available. Although this mechanism helps
manage limited block resources and prevents overflow dur-
ing resource contention, it may lead to the unintended evic-
tion of frequently accessed and important block sequences.
Attackers can exploit this mechanism by launching mali-
cious attacks, continuously sending a large number of high-
frequency requests to occupy the majority of block resources.
By monopolizing available blocks, they could cause block
table overflow, preventing legitimate users or requests from
accessing the necessary memory resources, resulting in a
denial of service for vLLM inference or degraded inference
performance.
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2 COUNTERMEASURE ANALYSIS
As all new requests compete for the limited block table re-
sources, subsequent requests may inevitably evict previously
allocated memory blocks without discrimination. This is-
sue becomes particularly problematic when malicious users
continuously issue a high volume of requests, potentially
filling up the entire block table and leading to memory block
starvation for other users, who may be unable to access the
resources they need. A seemingly viable preliminary solu-
tion is to distinguish between suspected and benign requests
and to discard the former. However, this approach may not
be sufficiently reliable and is susceptible to risks such as false
positives and false negatives. As a result, this may result in
unavoidable harm to legitimate demands, while permitting
some attack requests to bypass protection with ease.
To cope with above problem, we propose BTDefense, a

behavior-based priority adaptive perception strategy, to
address this block table overflow attack. Our basic idea is to
distinguish different requests with different priorities and to
implement soft isolation for users based on different evalua-
tions. This evaluation is formalized into a score that favors
benign request characteristics while disadvantaging mali-
cious ones. Based on these evaluation scores, we dynamically
assign different priorities to user requests. Requests from be-
nign users are assigned higher priority, whereas those from
malicious users are assigned lower priority. When the block
table is full, blocks with the lowest priority are evicted to
make space for new requests. Experiments and evaluations
demonstrate that BTDefense safeguard the requests from
malicious users and effectively mitigates block table overflow
attacks in vLLM.

3 BTDEFENSE DESIGN
The architecture of BTDefense is shown in Figure 1. Dur-
ing the design of BTDefense, we encountered three major
challenges. 1) how to effectively collect user request behav-
ior. 2) how to establish evaluation criteria to distinguish the
requests. 3) how to implement the strategy under limited re-
source conditions. To address these challenges, we designed
three modules, as shown in Figure 1, each corresponding to
a solution for the respective challenge.

For the first challenge, we design the Request Feature Col-
lection module that gathers user request characteristics from
the basic services provided by the vLLM system. Normal
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Figure 1: Architecture Overview
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Figure 3: attack scenarios

requests and attack requests typically exhibit differences
in aspects such as frequency, resource consumption pat-
terns, geographic location, and request content, with attack
behavior often showing obvious anomalies. To maximize
system resource consumption, attackers commonly send
high-frequency, low-latency requests. By identifying and
monitoring request origins (e.g., IP addresses, geographic
location), request times, request content, and resource us-
age characteristics, we can effectively distinguish between
benign and malicious requests. When an attacker generates
a large amount of requests in a short time, with request
structures that deviate from the norm, this behavior can be
identified as potentially malicious.
For the second challenge, we introduced a request eval-

uation module and developed an assessment framework
to distinguish between various user behaviors. Based on
the collected request feature information, a comprehensive
evaluation score is calculated for each request. The impor-
tance of each feature is determined through weighted scor-
ing, with the score for different user requests denoted as
𝑆𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , where 𝑆𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =

∑𝑛
𝑖=1𝑤𝑖 · 𝐹𝑖 , 𝐹𝑖 represents the

score of the different features, such as request frequency,
resource consumption, etc., and 𝑤𝑖 denotes the weight of
the different features. Considering the user’s behavioral his-
tory, the weights of each feature are dynamically updated
using Exponentially weighted moving average (EWMA) [3]:
𝑤𝑖 = (1 − 𝛼)𝑤𝑖 + 𝛼 ·𝑤new

𝑖 ,𝑤𝑖 represents the current weight,
𝑤new
𝑖 denotes the new weight value, and 𝛼 is a smoothing

factor that lies between 0 and 1.
As for the third challenge, a priority-aware module was

introduced to map the request evaluation scores to three pri-
orities (high, medium, and low). These priorities correspond
to three request types (benign, suspicious and malicious)
respectively. Based on historical data and the distribution
of request features, initial thresholds for high priority 𝑇high
and low priority𝑇low are set. Requests with evaluation scores
above the high-priority threshold are classified as benign and
assigned a high priority, while requests with scores between
𝑇low and 𝑇high are considered suspicious and given medium

priority. Requests with scores below the low-priority thresh-
old are deemed malicious and assigned a low priority. During
the inference process in a vLLM system, block table resources
are allocated based on the priority of the requests. High pri-
ority requests receive more resources, while medium and low
priority requests are limited or delayed. When block table
resources are exhausted, low-priority blocks are removed
first to make space for new requests, reducing the impact of
block table overflow attacks and preventing malicious users
from consuming excessive system resources. To adapt to
evolving request patterns and attack behaviors, the system
dynamically adjusts thresholds based on the load conditions
and the nature of incoming requests.

4 EVALUATION AND FUTUREWORK
We implement BTDefense based on the open-sourced vLLM
project and perform experiments using LLaMA. We uni-
formly set the block table size to 16 and simulate user mem-
ory usage under different priority requests using three sets
of user requests. In Figure 2 and 3, NA denotes the original
strategy and BT refers to our priority-aware strategy.
In the no-attack scenarios, as shown in Figure 2, the sys-

tem can allocate block resources effectively for normal user
requests, demonstrating that our strategy does not introduce
any negative impact on benign requests when there is no
attack. In the attack scenarios depicted in Figure 3, when
a user becomes the attacker and sends a large volume of
malicious requests, the attacker’s requests will occupy most
of the block table space without our strategy, resulting in
block table overflow.

In our future work, we plan to explore additional user and
request features, refine our evaluation criteria for greater
accuracy, provide further recommendations on strategy pa-
rameters, conduct more experiments to assess the load on
the block table, and investigate more complex system states.
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