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ABSTRACT

Collective communication becomes increasingly crucial as large lan-
guage models rapidly evolve, but the RDMA it uses inevitably faces
network performance anomalies (NPAs). Vedrfolnir is an accurate
and efficient diagnosis system for RDMA NPAs in collective com-
munication, which (1) constructs waiting graphs through algorithm
decomposition, (2) adaptively detects anomalies while efficiently
collecting diagnostic data, and (3) precisely analyzes performance
bottlenecks and root causes. Evaluation shows that Vedrfolnir
can achieve accurate diagnosis results with low overhead.

CCS CONCEPTS

• Networks → Network monitoring; Programmable networks;

KEYWORDS

Remote Direct Memory Access; Network Performance Anomalies
Diagnosis; Collective Communication;
ACM Reference Format:

Yuxuan Chen, Menghao Zhang, Xiheng Li, Fangzheng Jiao, Chunming
Hu. 2025. POSTER: Vedrfolnir: RDMA Network Performance Anomalies
Diagnosis in Collective Communications. In ACM SIGCOMM 2025 Posters
and Demos (SIGCOMMPosters and Demos ’25), September 8–11, 2025, Coimbra,
Portugal.ACM, NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3744969.
3748396

1 INTRODUCTION

With the rapid scaling of large language model size and its train-
ing clusters, collective communication has become increasingly
crucial to the efficiency of data exchange among GPUs. Collective
communication often utilizes RDMA networks for inter-node con-
nectivity to achieve high throughput and low latency. However,
due to mechanisms such as line-rate start and PFC flow control
[12], RDMA networks inevitably face congestion, leading to net-
work performance anomalies (NPAs). As collective communication
usually utilizes multiple flows simultaneously, this puts significant
challenges to diagnose the root cause for collective communication
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performance anomalies. For example, in Fig. 3, flow contention
occurs between collective communication flows (F1 and F2) and
a background flow (BF2), resulting in performance anomalies of
collective communication. It is difficult to attribute the performance
degradation of the collective communication to BF2.

Existing works fall short in accurately and efficiently diagnosing
RDMA NPAs in collective communication. Firstly, existing diag-
nosis methods primarily focus on single-flow level analysis (e.g.,
Hawkeye [5, 10], SpiderMon [11], Sonata [2], and *Flow [7]), ignor-
ing emerging paradigms such as collective communication, which
consequently leads to insufficient capability for co-flow patterns.
Unlike the static process at the single-flow level, in collective com-
munication, a flow originating from a node may change over time
and may have dependencies on other flows as collective commu-
nication proceeds. For example, in the Halving and Doubling [8]
algorithm, the destination of a flow can change multiple times, and
this change depends on the data transmitted from another flow.
Current methods cannot accurately capture this dynamic feature.

Secondly, due to the involvement of numerous nodes and flows
in collective communication, achieving accurate diagnosis with low
overhead poses another significant challenge. Some approaches
(e.g., NetSight [3], PINT [1]) collect telemetry data across all switches.
While ensuring accuracy, they introduce substantial communication
or analytical overhead. Other methods (e.g., SpiderMon [11], Print-
Queue [4]) analyze queue contention only in partial switches while
neglecting the chain propagation characteristics of PFC in RDMA,
resulting in insufficient diagnostic precision. Hawkeye [5, 10] ad-
dresses these gaps via a PFC provenance-based methodology, but
still lacks design for collective communication scenarios. For exam-
ple, when deployed for anomaly diagnosis in such environments,
Hawkeye’s manually configured rigid trigger mechanism can re-
peatedly activate anomaly detection in multiple nodes in short
intervals. This leads to redundant data collection and introduces
substantial overhead.

To address the problems above, we propose Vedrfolnir, an effi-
cient anomaly diagnosis system for RDMA network performance
in collective communication. First, to characterize the dynamic
behavior of collective communication, we decompose collective
communication algorithms into steps and construct a waiting graph
to describe the dependencies among the individual flows. Second,
to ensure the accuracy and efficiency of diagnostic data collection,
Vedrfolnir collects collective communication execution data on
the host and captures anomaly-related network telemetry data
across the switches, and reduces overhead by utilizing a step-aware
adaptive detection mechanism. Finally, Vedrfolnir performs a
comprehensive root cause analysis through correlated multi-source
data fusion. We implement a prototype in NS3 to preliminarily
validate the effectiveness of Vedrfolnir. Evaluation shows that
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Figure 1: Vedrfolnir Framework.
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Figure 2: Waiting Graph.

F1
F2
BF2: begin at 200ms

-18

SW5
.P2

SW0
.P4

BF2 F1

18

48

-48

Network Provenance
Critical Path: 0 – 267 ms

6934 52All 
Begin

F1S1
end

F1S2
end

…… ……F1S5
end

SW0

SW5
SW1

N0

N1

N2

N3

N7

…

SW4

SW7 SW
11

… …
SW3

SW8

…
…

P2

P4

Anomaly

Figure 3: Topology and Diagnosis.

Vedrfolnir can accurately localize the root cause of NPAs and re-
duce telemetry collection overhead by 98% compared to Hawkeye.

2 VEDRFOLNIR DESIGN

Figure 1 illustrates the overall architecture of Vedrfolnir. Dur-
ing collective communication operations, monitors deployed on
the hosts continuously record performance information of cor-
responding flows in real-time, which is reported to the analyzer.
When performance anomalies occur, Vedrfolnir adaptively se-
lects appropriate hosts to detect anomalies according to the steps
decomposed by the algorithm. During the detection phase, a polling
packet is sent by the host. This packet triggers the collection of
telemetry information on switches related to the anomaly and the
collected diagnostic information is subsequently reported to the
analyzer. Ultimately, the analyzer gives the performance bottleneck
of the entire collection communications and the root cause flows.
Algorithm Decomposition and Graphical Description. Firstly
Vedrfolnir decomposes collective communication algorithms into
steps. For a flow originating from a specific node, the transmitted
data chunk or destination address changes between consecutive
steps. For example, for Ring [6] algorithm, the flow transmits a
different chunk of data for the source node with each step. For
Halving and Doubling [8] algorithm, the destination node of the
flow changes with each step. Based on these two changes, Vedr-
folnir performs step divisions in parallel at each node and record
in advance the sent and received targets for each step.

After the step splitting of the flows, Vedrfolnir constructs a
waiting graph to describe the collective communication process.
Taking a four-node ring-based reduce-scatter in Figure 2 as an ex-
ample, we denote the flow where the sender is node i and the j-th
step as 𝐹𝑖𝑆 𝑗 , the begin or end of which is defined as a vertex. The
directed edges are defined to represent the waiting relationship be-
tween vertexes, weighted by their corresponding waiting durations.
Specifically, besides “F2S1 end”, “F2S2 begin” also waits for “F1S1
end”, because F1S1 needs to complete the transmission of the data
that F2S2 depends on. Such waiting relationships are represented
by light-colored edges with zero weight. Between the beginning
and the end of F2S2 is represented by a dark-colored edge weighted
by F2S2’s execution duration.
Data Collection Workflow. (1) Host side. Vedrfolnir collects
host-side collective communication execution information for wait-
ing graph construction. When the system is running, the start time,
execution time, and dependency relations of each flow step are
recorded and reported to the analyzer. The analyzer builds the

graph in reverse directed graph order. (2) Network side. When
a flow performance anomaly is detected, the host sends polling
packets to trigger telemetry information collection on switches.
Vedrfolnir uses Hawkeye as the telemetry information collection
mechanism to trace the path of the victimized flow. Vedrfolnir
determines anomaly detection triggers through a step-aware adap-
tive mechanism. Specifically, when a step of a flow completes, the
source host sends a notification packet to dependent flow source
(if exists), marking it as “waited” states. If a “waited” host cannot
deliver the marking to subsequent nodes while monitored flow RTT
exceeds predefined thresholds, anomaly detection begins. Mean-
while, Vedrfolnir restricts the detection to only once per step
of the flow. In this way, Vedrfolnir can theoretically reduce the
redundancy overhead by half at least.
Comprehensive Root Cause Analysis. The analyzer of Vedrfol-
nir performs a comprehensive analysis on collected data from the
host and the network. For host-side data, Vedrfolnir constructs a
visualized waiting graph followed by pruning and analytical pro-
cessing. As shown in Figure 2, during practical operation, nodes
with two light-colored outgoing edges retain only one edge based
on execution dependencies. For example, when F4S1 completes
after F1S1, F1S2 actually waits only for F4S1, so the only outgoing
edge of F1S2 is the blue one. Subsequently, Vedrfolnir recursively
removes all nodes with zero in-degree. After the pruning is com-
plete, Vedrfolnir computes the critical path of the graph, showing
the flows that have the main impact on the execution time of the col-
lective communication. For network-side data, Vedrfolnir adopts
Hawkeye’s analytical methodology to construct provenance graphs.
By integrating both analytical perspectives, the system effectively
pinpoints critical flows along with their root causes in network.

3 EVALUATION AND FUTUREWORK

We implemented an open-source prototype of Vedrfolnir [9] and
used 8 nodes for ring AllReduce with two background flows in a
k=4 fat-tree topology. The two background flows (BF1 and BF2) have
flow contention with collective communication (F1) at two periods
(40-200ms and 200-400ms) in sequence. Figure 3 illustrates the
topology and diagnosis for BF2. Vedrfolnir accurately gives the
performance bottleneck of collective communication by computing
the critical path of the waiting graph and shows the results of
network provenance. Moreover, Vedrfolnir collects 98% fewer
telemetry bytes than Hawkeye. In future, we will give a clearer
definition of the types of anomalies in collective communication,
and evaluate Vedrfolnir in real testbeds.
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