
POSTER: Astraea: Enforcing DPU Performance Isolation in

Public Clouds

Qiyang Peng1, Menghao Zhang1, Feiyang Wang1, Guanyu Li2, Chunming Hu1
1Beihang University 2Unaffiliated

ABSTRACT

The absence of effective performance isolation mechanisms hin-
ders deploying Data Processing Units (DPUs) in public clouds for
multi-application co-location scenarios. To address this challenge,
we introduce Astraea, an efficient DPU performance isolation
framework targeting DPU-specific computational resources. As-
traea overcomes significant obstacles posed by proprietary, high-
level SDK interfaces and coarse-grained First-Come-First-Served
(FCFS) scheduling via resource occupation profiling, task splitting
and workload-guided scheduling. Our open-source prototype on
NVIDIA BlueField-3 DPUs reduces SLA violation rates for latency-
sensitive applications from 47.66% to just 14.84% versus natives,
while introducing less than 4% performance overhead.

CCS CONCEPTS

• Hardware → Networking hardware; • Networks → Network
performance modeling;

KEYWORDS

Data Processing Unit; Performance Isolation;
ACM Reference Format:

Qiyang Peng, Menghao Zhang, Feiyang Wang, Guanyu Li, Chunming Hu.
2025. POSTER: Astraea: Enforcing DPU Performance Isolation in Public
Clouds. In ACM SIGCOMM 2025 Posters and Demos (SIGCOMM Posters and
Demos ’25), September 8–11, 2025, Coimbra, Portugal. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3744969.3748397

1 INTRODUCTION

Hyperscalers have been deploying DPUs throughout their data-
centers as strategic infrastructure components. DPUs, equipped
with heterogeneous hardware modules such as ASIC NICs, ASIC
accelerators, data-path accelerators (DPAs), and ARM CPUs, en-
able efficient offloading of datacenter infrastructure tasks and even
portions of application workloads [8]. Despite their advantages, it
is difficult to deploy DPUs in public clouds for multi-application
co-location scenarios because of the absence of effective and ef-
ficient performance isolation mechanisms, which cannot ensure
This work is supported in part by the National Natural Science Foundation of China
(No. 62402025) and the Fundamental Research Funds for the Central Universities.
Menghao Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-2026-0/25/09.
https://doi.org/10.1145/3744969.3748397

fairness and maintain SLAs for metrics (e.g., bandwidth, and la-
tency). Without performance isolation, co-located applications on
a single DPU can experience significant performance degradation.
For instance, Yala [18] demonstrates that one co-located applica-
tion’s performance can drop by 60% compared to solo deployment.

Prior works on performance isolation for RNICs [5, 10, 17, 19]
and SmartNICs [7, 11, 13, 14] fall short for DPU scenarios. Justi-
tia [19], Tassel [17], and Harmonic [10] successfully enforce fairness
of bandwidth, throughput, and latency among multiple tenants, but
do not address the unique computing resources on DPUs, particu-
larly ASIC accelerators and DPAs. FairNIC [7] proposes a task-level
performance isolation solution for ASIC accelerators on SmartNIC,
which fails to prevent large tasks from monopolizing accelerator
and violates latency SLAs for smaller, delay-sensitive tasks. Other
approaches like Panic [9] and S-NIC [20] propose novel Smart-
NIC designs with built-in isolation strategies, but often depend on
advanced hardware features (e.g., multiple hardware thread acceler-
ators) that commercial DPUs either lack entirely or do not expose
through accessible interfaces, making these strategies impractical.

Designing an effective DPU performance isolation framework
faces several significant challenges. First, many DPU vendors pro-
vide only high-level, proprietary interfaces (e.g., NVIDIADOCA [6]),
creating a "black box" relationship between input parameters and
resource utilization. This lack of transparency prevents develop-
ers from understanding how these APIs leverage the underlying
accelerators and makes direct hardware resource allocation control
impossible. Second, hardware tasks are typically scheduled using
a FCFS approach at the coarse granularity of the SDK API calls.
Each task must wait for all previously submitted tasks to complete,
regardless of its size or priority requirements. This causes large
tasks to monopolize resources and violates latency SLAs for smaller,
time-sensitive operations, resulting in unfair performance.

Through theoretical analysis of the underlying mathematical
properties of these DPU accelerators, we discover that large tasks
can be divided into smaller subtasks that, when executed sequen-
tially and their results properly combined, produce identical out-
comes to executing the original large task. This insight enables
us to implement a transparent shim layer between applications
and SDK APIs that breaks down large tasks and performs fine-
grained scheduling without modifying application code. Based on
this insight, we propose Astraea, an efficient DPU performance
isolation framework, focusing primarily on DPU-specific compu-
tational resources. Astraea employs three key techniques. First,
Astraea quantifies resource occupation by profiling the relation-
ship between input parameters and hardware execution time prior
to deployment, establishing a foundation for fair resource allocation
despite the "black box" nature of accelerators. Second, Astraea
implements accelerator-specific task splitting and result reassem-
bling strategies that are completely transparent to users, enabling
fine-grained scheduling without application modifications. Third,

https://doi.org/10.1145/3744969.3748397
https://doi.org/10.1145/3744969.3748397


SIGCOMM Posters and Demos ’25, September 8–11, 2025, Coimbra, Portugal Q. Peng, M. Zhang, F. Wang, G. Li, C. Hu

t1 t2 t3 t4

Accelerator

Offline Profiling
App EWMA SLAViolation Times

1 254 28

2 762 0

Metadata on Shared Memory

Available
Resources
Reserved
Resources

Scheduling

𝑡 = 𝑓 𝑥!, … , 𝑥"

Astraea Scheduler Accelerators

App1 App2

Task Splitting Result
Reassembling

rate limit

granularity

Vendor SDK

Astraea Lib

Figure 1: Astraea architecture and workflow.

alone on DOCA alone on Astraea both on DOCA both on Astraea
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Av
er

ag
e 

Ti
m

e 
(m

s)

64KB x 256
8KB x 128

Figure 2: Workloads’ completion time.

Astraea features a novel workload-guided scheduling algorithm
that dynamically allocates resources among applications based
on real-time workload patterns. We implement an open-source
prototype of Astraea on NVIDIA BlueField-3 DPU [4], and our
preliminary experiments demonstrate significant improvements in
SLA compliance compared to native implementations, particularly
for latency-sensitive applications.

2 ASTRAEA DESIGN

Figure 1 presents the architecture of the Astraea framework, with
the following three key modules.
Resource Occupation Profiling. Prior to deployment, Astraea
builds a precise model of each accelerator’s resource utilization by
measuring task execution times across various parameter configu-
rations. These measurements are used to fit mathematical functions
per task type (e.g., erasure coding, AES-GCM encryption), express-
ing the relationship between input parameters and execution time.
The resulting functions serve as the foundation for effective re-
source allocation decisions by the scheduler during the deployment
phase, enabling accurate prediction of task execution times even
without visibility into the accelerator’s internal architecture.
Task Splitting and Result Reassembling. Astraea designs spe-
cialized task segmentation and result reorganization algorithms for
each accelerator type based on the underlying mathematical rela-
tionships between inputs and outputs. For erasure coding [16], the
core operation involves matrix multiplication of a source data ma-
trix𝐷𝑏×𝑑 and a coding matrix 𝐸𝑑×𝑟 , generating a redundant matrix
𝑅𝑏×𝑟 . Leveraging the distributive property of matrix multiplication,
we can divide𝐷𝑏×𝑑 into 𝑛 submatrices𝐷𝑏1×𝑑

1 , 𝐷
𝑏2×𝑑
2 , ..., 𝐷

𝑏𝑛×𝑑
𝑛 . By

multiplying each submatrix with 𝐸𝑑×𝑟 independently, we obtain
corresponding result submatrices𝑅𝑏1×𝑟1 , 𝑅

𝑏2×𝑟
2 , ..., 𝑅

𝑏𝑛×𝑟
𝑛 , which can

be concatenated to reconstruct the complete result matrix 𝑅𝑏×𝑟 .
Other accelerators such as AES-GCM [12, 15] and LZ4 [3] decom-
pression can be processed in a similar way.

However, this splitting and reassembling approach introduces
significant memory manipulation overhead during execution. To
mitigate this, we leverage DOCA’s scatter/gather list function, con-
structing 𝑛 scatter/gather lists, each representing one of 𝑛 sub-
tasks with 𝑑 buffers, enabling zero-copy submission of subtasks
to the accelerator while preserving fine-grained scheduling. Ad-
ditionally, we pipeline asynchronous accelerator operations with
post-execution memory operations to reduce latency and enhance
accelerator utilization.

Workload-Guided Task Scheduling. Astraea uses a workload-
guided task scheduling approach that balances performance iso-
lation with efficient resource utilization. To prevent interference
between different accelerator workloads, Astraea maintains sepa-
rate task queues for each application per accelerator type. At the
beginning of each scheduling period, the scheduler traverses task
queues across all applications for each accelerator and allocate
resources to applications according to priority and fairness poli-
cies. And an internal thread in Astraea periodically checks the
available resources allocated to that application and submits tasks.
Latency-sensitive tasks obtain execution priority to maintain their
stricter SLAs. Between scheduling periods, the scheduler remains
dormant, saving CPU resources.

To optimize utilization, Astraea dynamically allocates resources
based on application behavior. The scheduler monitors consump-
tion via Exponentially Weighted Moving Average (EWMA) [1],
building a predictive model for future demands. These guide task
allocations, redirecting resources to active apps. Additionally, these
workload predictions inform the task splitter’s granularity decisions—
maintaining larger task sizes when latency-sensitive workloads are
minimal and an application is projected to consume substantial
resources, thus reducing splitting overhead. As a safeguard against
prediction inaccuracies, Astraea reserves a small portion of re-
sources, which can be allocated to applications experiencing SLA
violations due to unexpected workload fluctuations.

3 EVALUATION AND FUTUREWORK

We implement an open-source Astraea prototype [2] on BlueField-
3 DPU using DOCA 2.9.1 in ∼1,500 lines of C/C++ code. We eval-
uated it with a latency-sensitive app (8KB tasks, 128 submissions;
SLA: completion time ≤ 2× hardware time) and a bandwidth-
sensitive app (64KB tasks, 256 submissions; SLA: bandwidth ≥ 50%
solo bandwidth). Figure 2 shows completion times (blue: bandwidth-
sensitive; orange: latency-sensitive). Concurrently, Astraea re-
duces latency-sensitive SLA violations from 47.66% to 14.84%, though
bandwidth-sensitive tasks see increased completion time due to re-
source sharing—a normal outcome in multi-application co-location
scenarios, unlike DOCA’s native approach where small tasks suffer
significantly. Alone, Astraea adds less than 4% overhead vs. native,
by skipping unnecessary splitting for single apps.

In future work, we plan to: 1) completely implement and evaluate
Astraea in production environments with real-world workloads;
2) extend Astraea with telemetry capabilities that allow cloud
providers to monitor fine-grained resource usage and performance
metrics across co-located applications.



POSTER: Astraea SIGCOMM Posters and Demos ’25, September 8–11, 2025, Coimbra, Portugal

REFERENCES

[1] J. Stuart Hunter and. 1986. The Exponentially Weighted Moving Average. Journal
of Quality Technology 18, 4 (1986), 203–210. https://doi.org/10.1080/00224065.198
6.11979014 arXiv:https://doi.org/10.1080/00224065.1986.11979014

[2] Astraea. 2025. Astraea. https://github.com/Networked-System-and-Security-G
roup/Astraea. (2025).

[3] Yann Collet. 2011. LZ4 Library. https://github.com/lz4/lz4. (2011).
[4] NVIDIA Corporation. 2023. NVIDIA BlueField-3 Data Processing Unit. https:

//www.nvidia.com/en-us/networking/products/data-processing-unit/. (2023).
Accessed: 2025-03-26.

[5] NVIDIA Corporation. 2025. NVIDIA ConnectX-7 RNIC. https://resources.nvidia
.com/en-us-accelerated-networking-resource-library/connectx-7-datasheet.
(2025). Accessed: 2025-03-26.

[6] NVIDIA Corporation. 2025. NVIDIA DOCA Software Framework. https://develo
per.nvidia.com/doca. (2025). Accessed: 2025-03-26.

[7] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren. 2020. SmartNIC
Performance Isolation with FairNIC: Programmable Networking for the Cloud.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’20). Association for ComputingMachinery,
New York, NY, USA, 681–693. https://doi.org/10.1145/3387514.3405895

[8] Jinghan Huang, Jiaqi Lou, Srikar Vanavasam, Xinhao Kong, Houxiang Ji, Ipoom
Jeong, Danyang Zhuo, Eun Kyung Lee, and Nam Sung Kim. 2024. HAL: Hardware-
assisted Load Balancing for Energy-efficient SNIC-Host Cooperative Computing.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 613–627. https://doi.org/10.1109/ISCA59077.2024.00051

[9] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.
2020. PANIC: AHigh-Performance Programmable NIC forMulti-tenant Networks.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 243–259. https://www.usenix.org/conference/os
di20/presentation/lin

[10] Jiaqi Lou, Xinhao Kong, Jinghan Huang, Wei Bai, Nam Sung Kim, and Danyang
Zhuo. 2024. Harmonic: Hardware-assisted RDMA Performance Isolation for
Public Clouds. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 1479–1496.
https://www.usenix.org/conference/nsdi24/presentation/lou

[11] Marvell. 2025. Marvell LiquidIO II SmartNIC. https://www.marvell.com/produc
ts/infrastructure-processors/liquidio-smart-nics/liquidio-ii-smart-nics.html.

(2025). Accessed: 2025-03-26.
[12] David A. McGrew and John Viega. 2005. The Security and Performance of the

Galois/CounterMode (GCM) of Operation. In Progress in Cryptology - INDOCRYPT
2004, Anne Canteaut and Kapaleeswaran Viswanathan (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 343–355.

[13] Napatech. 2025. Napatech 400G SmartNIC N3070X. https://www.napatech.com
/support/resources/data-sheets/n3070x-smartnic/. (2025). Accessed: 2025-03-26.

[14] Netronome. 2024. Netronome Agilio SmartNIC. https://netronome.com/agilio-s
martnics/. (2024). Accessed: 2025-03-26.

[15] National Institute of Standards and Technology (NIST). 2007. Recommendation
for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.
Technical Report Special Publication 800-38D. National Institute of Standards
and Technology (NIST).

[16] I. S. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields.
J. Soc. Indust. Appl. Math. 8, 2 (1960), 300–304. https://doi.org/10.1137/0108018
arXiv:https://doi.org/10.1137/0108018

[17] Zilong Wang, Xinchen Wan, Luyang Li, Yijun Sun, Peng Xie, Xin Wei, Qingsong
Ning, Junxue Zhang, and Kai Chen. 2024. Fast, Scalable, and Accurate Rate
Limiter for RDMA NICs. In Proceedings of the ACM SIGCOMM 2024 Conference
(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,
USA, 568–580. https://doi.org/10.1145/3651890.3672215

[18] Shaofeng Wu, Qiang Su, Zhixiong Niu, and Hong Xu. 2025. Performance Pre-
diction of On-NIC Network Functions with Multi-Resource Contention and
Traffic Awareness. In Proceedings of the 30th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
1 (ASPLOS ’25). Association for Computing Machinery, New York, NY, USA,
828–842. https://doi.org/10.1145/3669940.3707232

[19] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury. 2022. Justitia:
Software Multi-Tenancy in Hardware Kernel-Bypass Networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 1307–1326. https://www.usenix.org/conference/nsdi
22/presentation/zhang-yiwen

[20] Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu. 2024. SmartNIC Se-
curity Isolation in the Cloud with S-NIC. In Proceedings of the Nineteenth European
Conference on Computer Systems (EuroSys ’24). Association for Computing Ma-
chinery, New York, NY, USA, 851–869. https://doi.org/10.1145/3627703.3650071

https://doi.org/10.1080/00224065.1986.11979014
https://doi.org/10.1080/00224065.1986.11979014
http://arxiv.org/abs/https://doi.org/10.1080/00224065.1986.11979014
https://github.com/Networked-System-and-Security-Group/Astraea
https://github.com/Networked-System-and-Security-Group/Astraea
https://github.com/lz4/lz4
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-7-datasheet
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-7-datasheet
https://developer.nvidia.com/doca
https://developer.nvidia.com/doca
https://doi.org/10.1145/3387514.3405895
https://doi.org/10.1109/ISCA59077.2024.00051
https://www.usenix.org/conference/osdi20/presentation/lin
https://www.usenix.org/conference/osdi20/presentation/lin
https://www.usenix.org/conference/nsdi24/presentation/lou
https://www.marvell.com/products/infrastructure-processors/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.napatech.com/support/resources/data-sheets/n3070x-smartnic/
https://www.napatech.com/support/resources/data-sheets/n3070x-smartnic/
https://netronome.com/agilio-smartnics/
https://netronome.com/agilio-smartnics/
https://doi.org/10.1137/0108018
http://arxiv.org/abs/https://doi.org/10.1137/0108018
https://doi.org/10.1145/3651890.3672215
https://doi.org/10.1145/3669940.3707232
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://doi.org/10.1145/3627703.3650071

	Abstract
	1 Introduction
	2 Astraea Design
	3 Evaluation and Future Work
	References

