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Abstract

RDMA is becoming increasingly prevalent from private data centers
to public multi-tenant clouds, due to its remarkable performance im-
provement. However, its lossless traffic control, i.e., PFC, introduces
new complexities in network performance anomalies (NPAs) due to
its cascading congestion spreading property, which usually incurs
complaints from customers/applications about certain flows’ per-
formance degradation. Existing studies fall short in fine-grained vis-
ibility of PFC impact and traceability of PFC causality, and are thus
ineffective in diagnosing the root causes for RDMA NPAs. In this
paper, we propose Hawkeye, an accurate and efficient RDMA NPA
diagnosis system based on PFC provenance. Hawkeye comprises
1) a fine-grained PFC-aware telemetry mechanism to record the
PFC impact on flows; 2) an in-network PFC causality analysis and
tracing mechanism to quickly and efficiently collect causal teleme-
try for diagnosis; and 3) a provenance-based diagnosis algorithm to
comprehensively present the anomaly breakdown, identifying the
anomaly type and root causes accurately. Through extensive evalu-
ations on both NS-3 simulations and a Tofino testbed, Hawkeye
can quickly and accurately diagnose multiple RDMA NPAs with
over 90% precision and 1-4 orders of magnitude lower overhead
than baselines.
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1 Introduction

Remote Direct Memory Access (RDMA) has become a pivotal tech-
nology for network applications to achieve ultra-low latency and
ultra-high throughput. With the advent of RoCEv2 (RDMA over
Converged Ethernet version 2) [29], RDMA has been increasingly
used for many distributed applications in industrial large-scale
data centers [6, 17, 20, 56, 80], especially in areas like distributed
deep learning training [9, 16, 30, 31, 51, 65, 69] and cloud stor-
age [6, 11, 12, 15, 17, 32, 44, 70]. And currently it is becoming a
trend to expand RDMA from private data centers to public multi-
tenant clouds [1, 5, 6, 56].

However, RDMA also introduces new complexity for network
performance anomalies (NPAs), especially under the trend of de-
ployment in multi-tenant public clouds. In RDMA networks, Prior-
ity FlowControl (PFC) [28] is deployed to enable a loss-free network
and guarantee high performance. Nevertheless, PFC introduces sev-
eral performance issues. Once one port becomes congested, PFC
spreads the congestion across multiple hops and imposes perfor-
mance degradation on other flows that may even not traverse the
initial congested point. Therefore, various performance anomalies
can be raised, such as head-of-line blocking, unfairness, PFC storm
and even PFC deadlock [20, 26]. Even with fine-grained conges-
tion control [36, 45, 80] and advanced load balance [52, 59], PFC
cannot be fully eliminated and still occurs frequently. Worse yet,
these mechanisms can in turn be misled by PFC to make wrong
decisions [25, 63]. As a result, when customers/applications com-
plain about certain flows’ performance degradation, it is difficult
to diagnose the root causes for the RDMA NPAs, especially under
increasingly complex traffic in multi-tenant public clouds.

Current network performance anomaly diagnosis mechanisms
cannot diagnose RDMA NPAs and the root causes effectively and
efficiently. First, fine-grained PFC visibility is lacking in current
monitoring and diagnosis systems, making inaccurate congestion
identification. Existing NPA diagnosis studies, either on the host
side [19, 21, 41, 46] or the switch side [6, 17, 22, 24, 39, 47, 58, 66,
79], lack the monitoring capability for flow-level PFC impact, and
thus cannot distinguish PFC-related anomalies from direct flow
contention. Second, current monitoring and diagnosis systems fall
short in quickly and efficiently tracing PFC causality. Due to the
cascading property of PFC, the congestion may not occur within a
single queue independently. Therefore, tracing the PFC causality
requires collecting the related telemetry on the PFC spreading path
efficiently. However, existing approaches either fail to capture the
complete set of causal switches [22, 37, 47, 58, 66, 79] or suffer from
high overhead [24, 55]. Third, current diagnosis algorithms, which
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are mainly based on the flow-interaction paradigm [10, 37, 46, 66],
cannot support accurate root cause analysis on PFC anomalies.
They attribute the root cause to the flows contending with the
victim flow in the shared queue, instead of flows or hosts causing
PFC originally. Therefore, both why (the root cause flows or hosts
beyond the victim path) and how (the PFC spreading path) about
the anomaly are largely ignored by current diagnosis paradigms.

In this paper, we present Hawkeye, an accurate and efficient
RDMA NPA diagnosis system with PFC provenance. Hawkeye
detects the victim flow encountering performance anomalies, con-
structs the complete anomaly provenance and locate the root causes:
flows (e.g., problematic bursts) or hosts (e.g., host-side PFC injec-
tion), hence providing network operators with comprehensive un-
derstanding of the anomalies. The accuracy and efficiency of Hawk-
eye are derived from the following three key techniques. First,
Hawkeye augments telemetry systems by incorporating flow-level
PFC impact, delivers fine-grained PFC visibility and enables analysis
of PFC-induced effects beyond conventional intra-queue flow inter-
action. Second, Hawkeye supports accurate and efficient telemetry
information collection across the network. By line-rate analyzing
the victim flow path and the port-level PFC causality in the data
plane, Hawkeye quickly identifies the switches causally relevant
to the anomaly, and efficiently collects the telemetry data through
the switch CPU asynchronously. Third, Hawkeye constructs a
heterogeneous provenance graph describing causality relationship
between flows and ports. Hawkeye also proposes a signature-based
anomaly diagnosis algorithm to match the behaviors and locate the
root cause. We implement a prototype of Hawkeye at both Intel
Tofino hardware and NS-3, and make the code publicly available
at Github [62]. Extensive evaluations on simulations and testbed
demonstrate that Hawkeye is able to accurately and robustly di-
agnose multiple representative NPAs in RDMA networks, with >
90% average precision and ∼100% recall. Hawkeye also presents
high efficiency in telemetry collection and diagnosis, whose band-
width and processing overhead are orders of magnitude lower than
baselines. Hawkeye also fits well in current switch hardware with
efficient resource usage.
Contributions. We analyze the complexity of diagnosing RDMA
NPAs (§2) and propose Hawkeye, an accurate and efficient RDMA
NPA diagnosis system with PFC provenance (§3). We implement
the prototype at both NS-3 simulation and Tofino hardware (§3.6).
Our evaluations demonstrate the effectiveness and efficiency of
Hawkeye (§4).
Ethics: This work does not raise any ethical issues.

2 Background and Motivation

RDMA requires a lossless network to achieve high transport perfor-
mance1. In particular, RoCEv2 deploys PFC [28], the hop-by-hop
flow control, to achieve the loss-free property. With PFC, when a
switch’s ingress queue exceeds a threshold (𝑋𝑜 𝑓 𝑓 ) due to conges-
tion, it sends a "PAUSE" frame to stop upstream packet transmission,
and sends a "RESUME" frame when the queue drops below another
threshold (𝑋𝑜𝑛). While PFC prevents packet loss, it can potentially

1Although lossy networks are becoming popular currently, whether lossless or lossy
networks are better is still an open question and lossless networks are still widely
deployed.
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Figure 1: PFC introduces complexity in congestion.

spread congestion in a cascading manner, causing issues like head-
of-line blocking, unfairness, PFC storms, and even deadlock [20, 26].
To alleviate the side effect of PFC, conventional wisdom introduces
the end-to-end congestion control [36, 40, 45, 80] to mitigate the
congestion. However, PFC cannot be fully eliminated and still oc-
curs frequently.

2.1 RDMA NPAs

Hawkeye focuses on the performance anomalies caused by switch
queue congestion in networks. However, these problem are chal-
lenging to diagnose in the context of RDMA. We here present
several typical cases of RDMA NPAs to illustrate their complexity.
PFC backpressure by flow contention. Flow contention, such as
incast traffic, micro-bursts or ECMP load imbalance, is frequent in
data center networks [6, 18, 20, 27, 59], which rarely occurs within
a single switch in isolation. It typically causes PFC and spread
congestion across multiple hops in RDMA networks. Therefore,
victim flows even without any queue sharing with the conges-
tion culprit may get blocked, such as F1 in Figure 1(a). Besides, the
queue buildup caused by PFC falsifies the congestion signals such as
queue length [80] and queuing delay [36], which may mislead con-
gestion control to make long-term rate degradation on these victim
flows [63]. PFC backpressure by flow contention can also be poten-
tially exploited by attackers, such as LoRDMA attacks [63], thereby
leading to performance degradation of innocent flows covertly.
PFC storm. We define PFC storms as the cascading PFC backpres-
sure that caused by continuous PFC injection by hosts (as shown in
Figure 1(b)), potentially leading to significant degradation of overall
network performance [6, 17, 20]. Host PFC injection may originate
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from diverse causes such as malfunctioning or buggy NICs, slow
receiver issues caused by buffer exhaustion on the NIC, or even
PCIe bottlenecks [20]. PFC storms thus present different durations
and the number of paused links. In such scenarios, even without
any flow contention, PFC injection can still lead to extensive or
even network-wide traffic blocking.
PFC deadlock. PFC deadlock occurs when the paused links form
into a cycle [20]. No packets in the deadlock links can be transmit-
ted, and the flows will be stopped entirely until the packets in the
buffers are dropped manually. PFC deadlock requires cyclic buffer
dependency (CBD) [26, 27, 50, 55, 67] in the network, where each
buffer waits for the next to drain out. Even in tree-based topology
with loop-free routing normally, CBD can also be caused by prob-
lematic routing on single/multiple flows such as link failure, port
flaps and transient/persistent routing misconfigurations or routing
loops [20, 27, 67]. Once one of the ports in the CBD becomes con-
gested, PFC pause frames will propagate and form into a cycle, i.e.,
deadlock. PFC deadlock can be categorized into two types based
on the initial congestion. The initiator-in-loop deadlock is caused
by the flow contention within the CBD. As shown in Figure 1(c),
SW2.P2 encounters micro-bursts and triggers PFC backpressure
along the CBD. The short-duration flow contention (<1ms) then
leads to a persistent deadlock. The initiator-out-of-loop deadlock is
caused by the PFC injection outside the CBD. SW2.P1 in Figure 1(d)
gets PFC frames injected and spreads congestion along the CBD,
resulting in a deadlock.

2.2 Complexity of RDMA NPAs

There are two key complexities in RDMA NPA diagnosis.
Frequent and transient queue congestion. The traffic in RDMA
networks exhibits a wide and scattered pattern, especially the sig-
nificant occurrence of bursty mice flows. Exacerbated by the preva-
lence of incast traffic patterns [18] and line-rate start of RDMA
congestion control [13, 57, 80], mice flows can easily overwhelm
the shallow buffers of switches quickly [20], resulting in frequent
and transient congestion. Worse yet, even with expensive emerging
switching hardware such as NVIDIA Spectrum-X [49], fine-grained
load balance is still challenging in large RDMA networks [59],
which further increases the possibility of congestion.
PFC complexity. PFC introduces a unique congestion pattern in
RDMA networks. Unlike traditional TCP networks where switch
queue congestion stems solely from local flow contention within
queues, PFC-induced congestion spreads from downstream nodes
independently of local queue conditions. This creates novel per-
formance anomalies analyzed in §2.1. Worse yet, PFC invalidates
conventional diagnostic approaches based on local flow interaction
analysis [66], and such methods cannot identify root causes located
multiple hops away. As Figure 1(a) demonstrates, F1’s degradation
at SW1.P1 actually originates from the bursts at SW4.P1 (propa-
gated via PFC). Only analyzing local contention between F1 and F2
would miss the true root cause at SW4.P1, which is hops away and
even out of F1’s path.

2.3 Problems of Current Work

In this subsection, we summarize why existing methods fall short
in accurately and efficiently diagnosing RDMA NPAs.

Current solutions fall short in fine-grained PFC visibility.

Current solutions in traditional TCP networks, either host-based [19,
21, 46] or network-based [22, 24, 39, 47, 58, 66, 79], lack the visibility
of PFC-related information, such as port status and the PFC impact
on each flow. As a result, it is challenging for host-based solutions
(even RDMA-specific solutions [20, 41]) to accurately determine
whether a flow has encountered PFC-related anomalies based solely
on end-to-end metrics (e.g., latency). Many traditional in-network
systems also have no capability of effective PFC telemetry moni-
toring, and thus are unable to detect PFC frames or PFC-related
anomalies. Although some emerging studies in RDMA networks
monitor the events such as PFC status [20], pause frames [79] and
NACK messages [17], fine-grained PFC visibility, including the PFC
status at per-packet level and PFC impact on each flow, is still lack-
ing. For example, PFC watchdog [6, 17, 20], a typical industrial
monitoring tool, checks the PFC status of switch ports periodically.
However, the polling period is hundreds of milliseconds or even
seconds, which may miss massive transient PFC congestion. Be-
sides, the port-level monitoring lacks fine-grained records of the
performance impact on each flow, and thus cannot help identify
the root causes for the victim flows.
Current solutions fall short in fast and efficient PFC causality

tracing. Current diagnosis mechanisms fall short in identifying the
PFC-relevant switch and collecting its telemetry. Some fine-grained
monitoring systems [22, 37, 47, 58, 79] mainly focus on the flows
within a single switch, which thus cannot find the PFC root cause
located hops away. A straw-man causality tracing method is to
collect the complete telemetry information from all switches in
the network [24] and analyze the PFC causality relationship for
the victim flow. However, full telemetry collection usually incurs
high overhead for both collection and diagnosis. Another method
is to collect the telemetry of the victim flow path’s switches, such
as SpiderMon [66]. Nevertheless, it may miss a part of the PFC
spreading path, especially the initiator node, since the PFC path
does not always overlap completely with the victim flow path.
Additionally, some solutions [20, 67] support loop detection on PFC
spreading paths. For example, PFC watchdog can only check the
port PFC status on a single switch, and the operator should analyze
the PFC spreading path by manually checking multiple switches.
Besides, ITSY [67] sends probing packets to the upstream PFC
causal ports to detect PFC deadlock, but it ignores non-loop PFC
backpressure and cannot diagnose the root cause of PFC anomalies.
Current solutions fall short in accurate anomaly diagnosis.

Currently, traditional diagnosis studies usually analyze the flow
contention within the switch queues on the victim flow path. They
find the main contributor by flow statistics [4, 22, 39, 46, 58, 60],
queuemeasurement [10, 37], or provenance [66, 68]. However, these
diagnosis solutions become less accurate in RDMA networks and
fail to completely describe the whole anomaly causality. First, the
diagnosis analyzer cannot identify whether congestion is caused
by local flow contention or remote PFC, and how badly the PFC
is pausing the victim flow due to the lack of PFC consideration
in diagnosis algorithms. Second, the diagnosis analyzer cannot
identify the true anomaly type due to the lack of PFC causality
understanding. For example, PFC deadlock will be misdiagnosed
if the loop is not recognized. Third, the diagnosis analyzer cannot
attribute the anomaly to the root-cause flow events, even with
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Figure 2: Hawkeye framework.

extensive flow interaction analysis in current switches. For the root
cause flows (e.g., bursts in SW4.P1 in Figure 1(a)) outside the victim
flow path (e.g., F1 in Figure 1(a)), the diagnoser can only attribute
the anomalies to flows sharing queues with the victim flow, and
cannot catch the real root causes correctly.

3 Hawkeye Design

3.1 Design Goal

Based on the above analysis, diagnosing RDMA network perfor-
mance anomalies should fulfill the following goals: 1) It should pro-
vide fine-grained PFC visibility. The monitor should capture flow
victimization characteristics, distinguishing between PFC-induced
congestion and conventional flow contention while quantifying
respective victimization extents. 2) It should efficiently collect the
telemetry relevant to the victim flows. The system must quickly
and exactly identify all causally relevant switches on both the vic-
tim flow path and PFC spreading path, to comprehensively cover
the anomaly provenance while minimizing the size of collected
telemetry. 3) It should accurately identify the anomaly and the cor-
responding root cause. After collecting the telemetry, the analyzer
should comprehensively understand the anomaly, including the de-
tailed anomaly scenario (e.g., PFC-related anomalies or normal flow
contention), how the PFC spreads (i.e., the PFC spreading path), and
where the anomaly originates (e.g., micro-bursts, load imbalance
or host PFC injection).

3.2 Overview and Workflow

Figure 2 shows the overall framework of Hawkeye. First, Hawkeye
passively records the telemetry with PFC visibility and causality
awareness (§3.3). It enables packet-level port PFC status visibility to
record PFC impact, and logs PFC causality to trace PFC spreading.
It then aggregates the detailed flow and port telemetry information
augmented with PFC impact for comprehensive diagnosis. Second,
Hawkeye deploys fast in-data-plane PFC causality analysis and
CPU-based telemetry collection (§3.4). To start diagnosis and trigger
the PFC causality analysis, we set a host-based agent monitoring
the flow performance. Once performance degradation is detected,
the detection agent will send a "polling" packet with the victim
flow information encoded into the network. When a Hawkeye
switch receives the polling packet, it infers the causal neighboring
switches relevant to this anomaly at line rate and distributes the
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polling packets to them. Simultaneously, the switch notifies its CPU
to perform asynchronous telemetry collection without compromis-
ing packet forwarding. Third, Hawkeye runs a provenance-based
offline diagnosis algorithm (§3.5). The analyzer constructs a hetero-
geneous provenance graph describing the comprehensive anomaly
breakdown, including the flow victimization extents, PFC causality,
and each flow’s contribution to this anomaly. Then it conducts a
diagnosis procedure to trace the congestion causality and pinpoint
the root causes.

3.3 Telemetry Logging

Awareness of PFC visibility and causality. To support PFC-
related telemetry, Hawkeye sets up a PFC status register at the
egress pipeline for each port, as shown in the "Port Status" column
in Figure 3. When receiving a PFC frame at the ingress pipeline of
a specific port, Hawkeye passes the frame into the egress pipeline,
extracts the pause time encoded in the frame and updates the port
status and remaining pause time (refer to the red line in Figure 6)2.
Accordingly, when a data packet enqueues during the paused status
of the port, it is regarded as a paused packet, and the corresponding
telemetry is updated correspondingly. Furthermore, to analyze PFC
causality, Hawkeye records the port-level traffic causality at the
egress pipeline, as shown in Figure 3. Specially, to monitor the
PFC spreading contribution between ports, Hawkeye sets up a
traffic meter for each port pair to record the traffic volume. This
is much finer grained than existing approaches like ITSY [67] that
uses only a single bit to note the presence of traffic between ports.
For example, as shown in Figure 3, although both P3 and P4 are
PFC congested, P4 is irrelevant to the PFC backpressure at P1 be-
cause there is no traffic sending from P1 to P4, and thus P4 does
not contribute to the packet accumulation at P1. Therefore, once
the upstream switch connected with P1 complains about its PFC
congestion, this switch can identify the causal ports relevant to the
PFC backpressure as P3.
Epoch-based multi-granularity telemetry. Hawkeye logs flow-
level and port-level telemetry in an epoch-based manner for fine-
grained monitoring, as shown in Figure 4. The switch maintains a
set of epochs in the egress pipeline as a ring buffer. To index the
epoch to which a packet belongs at line rate, we utilize the times-
tamp in the packet metadata. Specifically, programmable switches
2To enable PFC awareness of Hawkeye on Tofino, we have to pass PFC frames into
P4 pipelines and record PFC status using extra registers, since Tofino does not support
the monitoring of certain PFC features natively, such as the real-time PFC status of
each port.
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assign each enqueued packet a unique 48-bit timestampwith nanosec-
ond granularity, where the least significant bit corresponds to 1 ns.
Consequently, we can select several bits from this 48-bit times-
tamp to demarcate the epoch. For example, assuming that the
epoch size is 1 ms, which is approximately 220 ns, we can uti-
lize timestamp[21:20] to identify indices of different epochs, as
shown in Figure 4. In addition, to distinguish the sequential order of
different epochs in the ring buffer, Hawkeye also records the 8 bits
preceding the epoch index as the epoch ID, e.g., timestamp[29:22].
Once the epoch ID in the incoming packet timestamp is newer than
that stored in the current epoch, which means a wrap-around, the
register value will be reset and start to count from zero.

For flow-level telemetry, Hawkeye records the flow 5-tuple,
packet count, and egress queuing depth, similar to existingwork [22,
47]. Additionally, to enable fine-grained PFC visibility, Hawkeye
also records the number of packets paused by PFC for each flow.
For each incoming packet, Hawkeye first locates the right flow
telemetry table based on its epoch, and the slot in this table is in-
dexed by the hash value of the packet’s 5-tuple. Then a bit-wise
XOR between the packet’s 5-tuple and the 5-tuple in the slot is
executed. The result 0 indicates this packet belongs to an existing
flow and the telemetry will be updated accordingly; the result 1
indicates this packet belongs to a new flow, and the existing entry
will be evicted and stored at the controller. Moreover, since PFC
spreads hop by hop, diagnosing the anomaly usually requires ag-
gregating flow-level data into port level, requiring considerable
computation overhead on the data plane. We therefore record the
port-level telemetry in the egress pipeline, to avoid this expensive
computation. For each port, Hawkeye records the number of pack-
ets paused by PFC and egress queue depth. The port-level data is
indexed by the port number in each epoch, and is also updated by
each incoming packet, similar to the flow-level data.

3.4 Telemetry Collection

Anomaly-driven detection agent. Rather than monitoring anom-
alies on switches [66, 79], Hawkeye detects the NPA by deploying
a host-based detection agent. The detection agent monitors the

Table 1: Polling flag specifications.

Polling Flag Meaning

00 Useless tracing
01 (Default) Only trace along victim flow path
10 Only trace along PFC causality
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Figure 6: Hawkeye PFC causality analysis.

end-to-end performance of flows (e.g., RTT), and triggers an anom-
aly diagnosis event when the performance degradation exceeds
a threshold. This host-side triggering mechanism provides two
key advantages over switch-triggering approaches. First, host-side
triggering eliminates duplicated efforts of PFC tracing. Due to the
cascading property of PFC congestion, there are usually multiple
switches on a PFC path detecting the anomaly simultaneously and
initiating the procedure of PFC causality analysis. In contrast, by
sending polling packets from the source host and piggybacking
PFC tracing instructions, each switch forwards the extra control
packets only once to completely cover PFC causality. Second, in-
network monitoring cannot obtain some high-level performance
metrics, such as RTT [36, 45], flow completion time [72] or job
completion time [53], which usually require massive information
from host-side applications.

Once performance degradation is identified, the host-end detec-
tion agent generates a polling packet into the network, which is
assigned to a separate queue that is not paused by PFC, to further
trigger the telemetry collection and diagnosis. The polling packet
format is illustrated in Figure 5. By default, the polling flag is set to
01 (see Table 1), instructing switches to forward the packet along
the path of the victim flow, whose 5-tuple is encoded in the polling
header. Once PFC is detected on the victim flow path, it will also
be forwarded to the PFC spreading path to trace the causality (flag
1*), so that the complete anomaly causality is covered. To avoid
duplicate detection for a single flow, Hawkeye drops polling pack-
ets with the same 5-tuple within a certain time interval. All polling
packets are set to the same priority as control packets (e.g., CNP) to
avoid potential queuing delay. The forwarding of polling packets
is conducted exclusively by the switch data plane, as shown in the
gold dotted line Figure 6.
In-data-plane causality analysis. Hawkeye presents a line-rate
causality analysis mechanism that can accurately locate all causally
relevant switches on the paths of the victim flow and PFC spreading,
without covering unnecessary ones or introducing additional over-
head. Specifically, each Hawkeye switch analyzes its PFC causality
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and further forwards the polling packet to the causally relevant
switches. The causality analysis workflow of polling packets inside
a switch is demonstrated in Figure 6. First, when a switch on the
victim flow path receives a polling packet marked as 01 (e.g., SW1
in Figure 1(a)), the polling packet is unicasted to the same port
as the victim flow by extracting the IP address (in the 5-tuple) en-
coded in the packet. The switch then checks the number of paused
packets on the egress pipeline. If the victim flow is PFC paused, the
higher bit of the polling flag is set, notifying the next switch (from
which PFC frames spread) to analyze its PFC causality. The ingress
pipeline of the downstream switch (e.g., SW2), multicasts the 1*
polling packet to each egress port, so that every port analyze wether
it is related to the anomaly. They check the PFC causality structure
(maintained as Figure 3) and only emits the polling packets on
the ports causally relevant to this PFC congestion (e.g., SW2.P3).
Such PFC causality analysis procedure is conducted recursively hop
by hop, until the last switch whose egress port is connected to a
host or has no PFC paused packets, which respectively means the
PFC comes from host injection or the flow contention within this
queue. Note that, once receiving the polling packet, each switch
will also notify its controller through mirroring the polling packet
to the CPU port, triggering the asynchronous telemetry collection.
Consequently, all the telemetry data on the PFC spreading path
and victim flow path will be collected, and the polling packet is
transmitted at line rate without disrupting the collection.
Controller-assisted data collection. Upon receiving the polling
packet, the switch reports the telemetry it stored to the analyzer
server. Although programmable switches are able to generate pack-
ets and take telemetry data as the payload, it is cumbersome to
dump all the data fully using data plane packet generation. Since
each stage only allows one memory access, dumping the telemetry
for all flows requires numerous recirculations. Besides, due to the
limited PHV field size of programmable switches, a large number
of packets need to be generated to dump all the data. Consequently,
in-data-plane packet generation will impose a non-negligible over-
head on traffic forwarding. To alleviate these problems, we design
a controller-assisted data collection mechanism that enables the
asynchronous telemetry collection without affecting the data plane
forwarding. Once receiving the mirrored polling packet, the con-
troller then starts to read the telemetry register, filters out useless
telemetry such as zero-value data slots, and aggregates the data
into a large packet reporting to the analyzer. The packet size can
be as large as the Maximum Transmission Unit (MTU), thereby
reducing the number of telemetry packets. To prevent duplicate
data collection on one switch caused by multiple flows’ polling
packets (e.g., F1-F4 in Figure 1(c)), Hawkeye set a time interval
between two telemetry collections. Note that Hawkeye can easily
support multiple NPAs concurrently. If two NPAs do not have the
path overlap, their telemetry data can be collected and diagnosed
independently.

3.5 Provenance-based Diagnosis

Hawkeye proposes a diagnosis paradigm that can completely an-
alyze the anomaly causality. Due to the PFC complexity (§2.2),
diagnosing RDMA NPAs should answer the following questions:
1) whether the victim flow encounters normal flow contention or

PFC at each hop and their corresponding impact extents; 2) how
PFC spreads to the victim flow path and which flow contributes to
this spreading; 3) where is the initial congestion point and what
is the root cause. Hawkeye addresses these challenges through: 1)
constructing a heterogeneous wait-for provenance graph to compre-
hensively describe the congestion causality(§3.5.1); 2) identifying
the anomaly case and locating the root causes by analyzing the
provenance and matching anomaly signatures (§3.5.2).

3.5.1 Provenance Graph Construction. The heterogeneous wait-for
provenance graph encodes the congestion causality between flows
and ports. Specifically, flows and ports are represented as the nodes
in the graph, and directed weighted edges between the nodes are
defined to present their wait-for relationship [76]. Hawkeye first
adds port-level edges presenting the PFC causality, then adds flow-
port edges demonstrating the PFC pausing impact on flows, and
finally adds port-flow edges indicating flow contention. The formal
procedure is described in Algorithm 1.
Port-level edges. We define the port-level provenance graph to
describe PFC causality including the spreading path and the initial
congestion point. For a port 𝑃𝑖 paused by PFC, it actually waits for
the downstream congested ports to drain out the queues. There-
fore, we define a wait-for directed edge from a congested egress
port 𝑃𝑖 (e.g., SW2.P3 in Figure 1(a)) to each downstream congested
egress port 𝑃 𝑗 (e.g., SW4.P1 in Figure 1(a)). For 𝑃 𝑗 , its contribu-
tion to the PFC congestion at 𝑃𝑖 is determined by the traffic rate
between 𝑃𝑖 and 𝑃 𝑗 , 𝑚𝑒𝑡𝑒𝑟 [𝑃𝑖 ] [𝑃 𝑗 ], and the queue buildup of 𝑃 𝑗 ,
𝑞𝑑𝑒𝑝𝑡ℎ[𝑃 𝑗 ]. Therefore, we define the edge weight from 𝑃𝑖 to 𝑃 𝑗 as
𝑤𝑖 𝑗 = 𝑝𝑎𝑢𝑠𝑒𝑑_𝑛𝑢𝑚[𝑃𝑖 ]∗

𝑚𝑒𝑡𝑒𝑟 [𝑃𝑖 ] [𝑃 𝑗 ]∑
𝑘 𝑚𝑒𝑡𝑒𝑟 [𝑃𝑖 ] [𝑃𝑘 ] ∗𝑞𝑑𝑒𝑝𝑡ℎ[𝑃 𝑗 ]. For 𝑃 𝑗 with

𝑁 packets enqueuing over a period, 𝑞𝑑𝑒𝑝𝑡ℎ[𝑃 𝑗 ] can be calculated
as the average 1

𝑁
∗ Σ𝑘∈[1,𝑁 ]𝑞𝑑𝑒𝑝𝑡ℎ(𝑝𝑘𝑡𝑘 ).

Flow-port edges.We define flow-port edges to represent which
ports pause a certain flow and the corresponding severity. Specifi-
cally, for a flow 𝑓𝑖 which traverses through a PFC-paused port 𝑃 𝑗 ,
such as F1 in SW1.P1 in Figure 1(a), 𝑓𝑖 is waiting for 𝑃 𝑗 to restart
packet forwarding. We hence add an edge from 𝑓𝑖 to 𝑃 𝑗 , and set
the weight as the number of paused packets for 𝑓𝑖 at 𝑃 𝑗 , denoted as
𝑝𝑎𝑢𝑠𝑒𝑑_𝑛𝑢𝑚(𝑓𝑖 , 𝑃 𝑗 ).
Port-flow edges. Conversely, for some ports encountering flow
contention, they are actually waiting for the flows to be drained
from their queues. We characterize the wait-for relationship from
a port to a flow using the flow’s contribution to the overall flow
contention in the port. When a packet 𝑝𝑘𝑡 of flow 𝑓𝑖 enqueues with
𝑞𝑑𝑒𝑝𝑡ℎ(𝑝𝑘𝑡), a flow-level wait-for edge from 𝑓𝑖 to 𝑓𝑗 can be defined
with the weight as the number of 𝑓𝑗 ’s packets in 𝑞𝑑𝑒𝑝𝑡ℎ(𝑝𝑘𝑡), de-
noted by 𝑥 𝑗 (𝑝𝑘𝑡). Therefore, the average wait-for edge from 𝑓𝑖 to 𝑓𝑗
over a period can be calculated as𝑤 (𝑓𝑖 , 𝑓𝑗 ) = Σ𝑝𝑘𝑡𝑘 ∈ 𝑓𝑖𝑥 𝑗 (𝑝𝑘𝑡𝑘 )/𝑁𝑖 ,
where 𝑁𝑖 is the number of 𝑓𝑖 ’s packets in this period. This wait-for
weight is exactly the congestion contribution of flow 𝑓𝑗 to 𝑓𝑖 . How-
ever, 𝑓𝑗 ’s contribution to the overall flow contention can not be
described by directly aggregating the wait-for weights to 𝑓𝑗 from
every 𝑓𝑖 , since 𝑓𝑗 may also be blocked by other flows. For example,
a large flow blocked by short micro-bursts may have a high wait-
for weight from other flows, although it is actually a victim [37].
Therefore, the wait-for weight from 𝑓𝑗 to other flows should be
subtracted. We hence finally denote the port-flow wait-for weight
to 𝑓𝑗 as Σ𝑖𝑤 (𝑓𝑖 , 𝑓𝑗 ) − Σ𝑘𝑤 (𝑓𝑗 , 𝑓𝑘 ). Flows with positive and negative
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Algorithm 1: Provenance Construction Procedure.
Input: 𝑃 - Port list in reported telemetry; 𝐹 - Flow list in reported telemetry;

𝑇 - Epoch size; 𝑁 - Network topology
Output:𝐺 - Provenance graph

1 # Construct port-level provenance
2 for 𝑝𝑖 ∈ 𝑃 do

3 𝐺.AddVertex(𝑝𝑖 , 𝑃𝑂𝑅𝑇𝐿𝐸𝑉𝐸𝐿)
4 𝑞𝑑𝑒𝑝𝑡ℎ[𝑝𝑖 ] = 𝑡𝑜𝑡𝑎𝑙_𝑞𝑑𝑒𝑝𝑡ℎ[𝑝𝑖 ]/𝑝𝑘𝑡_𝑛𝑢𝑚[𝑝𝑖 ]
5 𝑠𝑢𝑚_𝑚𝑒𝑡𝑒𝑟 [𝑝𝑖 ] = Σ𝑝𝑗 ∈𝑝𝑖 .𝑝𝑒𝑒𝑟_𝑠𝑤𝑖𝑡𝑐ℎ 𝑚𝑒𝑡𝑒𝑟 [𝑝𝑖 ] [𝑝 𝑗 ]
6 for 𝑝𝑖 ∈ 𝑃 do

7 for 𝑝 𝑗 ∈ 𝑝𝑖 .𝑝𝑒𝑒𝑟_𝑠𝑤𝑖𝑡𝑐ℎ :𝑚𝑒𝑡𝑒𝑟 [𝑝𝑖 ] [𝑝 𝑗 ] > 0 do
8 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑝𝑎𝑢𝑠𝑒𝑑_𝑛𝑢𝑚[𝑝𝑖 ] ∗𝑚𝑒𝑡𝑒𝑟 [𝑝𝑖 ] [𝑝 𝑗 ] ∗

𝑞𝑑𝑒𝑝𝑡ℎ[𝑝 𝑗 ]/𝑠𝑢𝑚_𝑚𝑒𝑡𝑒𝑟 [𝑝𝑖 ]
9 𝐺.AddEdge( (𝑝𝑖 → 𝑝 𝑗 ), 𝑤𝑒𝑖𝑔ℎ𝑡 )

10 for 𝑓𝑖 ∈ 𝐹 do

11 𝐺.AddVertex(𝑓𝑖 , 𝐹𝐿𝑂𝑊𝐿𝐸𝑉𝐸𝐿)
12 # Construct flow-port provenance
13 for (𝑓𝑖 , 𝑝 𝑗 ) ∈ 𝐹 × 𝑃 : 𝑝𝑎𝑢𝑠𝑒𝑑_𝑛𝑢𝑚 (𝑓𝑖 , 𝑝 𝑗 ) > 0 do
14 𝐺.AddEdge( (𝑓𝑖 → 𝑝 𝑗 ), 𝑝𝑎𝑢𝑠𝑒𝑑_𝑛𝑢𝑚 (𝑓𝑖 , 𝑝 𝑗 ) )
15 # Construct port-flow provenance
16 for 𝑝𝑖 ∈ 𝑃 do

17 𝑆𝑒𝑞 = ReplayQueue(𝑝𝑖)

18 𝐶𝑜𝑛𝑡𝑟𝑏 =Contribution(𝑆𝑒𝑞)

19 for 𝑓𝑗 ∈ 𝐹 do

20 𝐺.AddEdge( (𝑝𝑖 → 𝑓𝑗 ),𝐶𝑜𝑛𝑡𝑟𝑏 [ 𝑓𝑗 ] )

21 Function ReplayQueue(p):
22 for 𝑓𝑖 ∈ 𝐹 do

23 for 𝑗 ∈ 𝑝𝑘𝑡_𝑛𝑢𝑚 (𝑓𝑖 , 𝑝 ) do
24 𝑡𝑖𝑚𝑒 = 𝑗 ∗𝑇 /𝑝𝑘𝑡_𝑛𝑢𝑚 (𝑓𝑖 , 𝑝 )
25 𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑙𝑖𝑠𝑡+ = (𝑝𝑘𝑡 𝑗 , 𝑡𝑖𝑚𝑒 )

26 Sort 𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑙𝑖𝑠𝑡 by ascending order of 𝑡𝑖𝑚𝑒

27 return [𝑝𝑘𝑡 ∈ 𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑙𝑖𝑠𝑡 ]
28 Function Contribution(Seq):
29 𝐶𝑜𝑛𝑡𝑟𝑏 = {} 𝑊 = {{0}} 𝑤 = {{0}}
30 for 𝑝𝑘𝑡𝑖 ∈ 𝑆𝑒𝑞 do

31 for 𝑝𝑘𝑡 𝑗 ∈ 𝑞𝑑𝑒𝑝𝑡ℎ (𝑝𝑘𝑡𝑖 ) do
32 𝑊 [ 𝑓 (𝑝𝑘𝑡𝑖 ) ] [ 𝑓 (𝑝𝑘𝑡 𝑗 ) ]+ = 1

33 for (𝑓𝑖 , 𝑓𝑗 ) ∈ 𝐹 × 𝐹 do

34 𝑤 [ 𝑓𝑖 ] [ 𝑓𝑗 ] =𝑊 [ 𝑓𝑖 ] [ 𝑓𝑗 ]/𝑝𝑘𝑡_𝑛𝑢𝑚[ 𝑓𝑖 ]
35 for 𝑓𝑗 ∈ 𝐹 do

36 𝐶𝑜𝑛𝑡𝑟𝑏 [ 𝑓𝑖 ] = Σ𝑤 (𝑓𝑖 , 𝑓𝑗 ) − Σ𝑤 (𝑓𝑗 , 𝑓𝑖 )
37 return𝐶𝑜𝑛𝑡𝑟𝑏

38 return𝐺

weights are contention contributors and victims, respectively. Note
that in real networks, the queue may experience PFC pause and
flow contention simultaneously. The packets in the queue may also
includes paused packets, which is not congested by local flow con-
tention. In this case, the port-flow edge construction excludes the
paused packets in queues.

3.5.2 Anomaly Breakdown and Diagnosis. The provenance graph
provides a comprehensive breakdown for the anomaly causality,
including the victimization extent from flow contention and PFC
at each hop, the PFC spreading causality, and each flow’s contri-
bution. We present the signatures of representative RDMA NPAs
mentioned in §2.1, describing the corresponding graph feature of
each anomaly. Their detailed formal definitions are shown in Ta-
ble 2, and their example provenance graphs are demonstrated in
Figure 12. Hawkeye traverses the graph and matches the signatures
to identify the anomaly and locate the anomaly-contributing flows,

including the root causes and PFC-spreading ones. The formal diag-
nosis procedure is shown in Algorithm 2. The supported signatures
can be extended if more anomalies are identified.

Table 2: Representative signatures.

Anomaly Root Cause Signatures

Micro-bursts incast Flow contention
(Micro-bursts)

∃𝑝𝑎𝑡ℎ ⊆ 𝐺𝑃 , ∃𝑝 ∈ 𝑝𝑎𝑡ℎ :
(out-deg𝑃 (𝑝) = 0
∧ (∃𝐹𝑐 ⊆ 𝐹,∀𝑓 ∈ 𝐹𝑐 :
(𝑝, 𝑓 ) ∈ 𝐸𝑃𝐹

∧weight(𝑝, 𝑓 ) > 0 ∧ burst-flow(𝑓 )))

In-loop
deadlock Flow contention

∃𝑙𝑜𝑜𝑝 ⊆ 𝐺𝑃 : (∀𝑝 ∈ 𝑙𝑜𝑜𝑝 :
(out-deg𝑃 (𝑝) = 1
∧ ∀𝑝′ : (𝑝, 𝑝′) ∈ 𝐸𝑃 → 𝑝′ ∈ loop))
∧ (∃𝑝′′ ∈ 𝑙𝑜𝑜𝑝, ∃𝐹𝑐 ⊆ 𝐹,∀𝑓 ∈ 𝐹𝑐 :
(𝑝′′, 𝑓 ) ∈ 𝐸𝑃𝐹 ∧weight(𝑝, 𝑓 ) > 0)

Out-of-loop
deadlock Flow contention

∃𝑙𝑜𝑜𝑝 ⊆ 𝐺𝑃 , ∃𝑝 ∈ 𝑙𝑜𝑜𝑝, ∃𝑝′ :
(out-degP (𝑝) > 1
∧ ∃𝑝𝑎𝑡ℎ(𝑝, 𝑝′) ⊆ 𝐺𝑃 : out-deg𝑃 (𝑝′) = 0
∧ (∃𝐹𝑐 ⊆ 𝐹,∀𝑓 ∈ 𝐹𝑐 :
(𝑝′, 𝑓 ) ∈ 𝐸𝑃𝐹 ∧weight(𝑝′, 𝑓 ) > 0))

Out-of-loop
deadlock Host PFC injection

∃𝑙𝑜𝑜𝑝 ⊆ 𝐺𝑃 , ∃𝑝 ∈ 𝑙𝑜𝑜𝑝, ∃𝑝′ :
(out-degP (𝑝) > 1
∧ ∃𝑝𝑎𝑡ℎ(𝑝, 𝑝′) ⊆ 𝐺𝑃 : out-deg𝑃 (𝑝′) = 0
∧ ∀𝑓 : (𝑝′, 𝑓 ) ∈ 𝐸𝑃𝐹 → weight(𝑝′, 𝑓 ) ≤ 0)

PFC storm Host PFC injection
∃𝑝𝑎𝑡ℎ ⊆ 𝐺𝑃 , ∃𝑝 ∈ 𝑝𝑎𝑡ℎ :
(out-deg𝑃 (𝑝) = 0
∧ ∀𝑓 : (𝑝, 𝑓 ) ∈ 𝐸𝑃𝐹 → weight(𝑝, 𝑓 ) ≤ 0)

Normal flow
contention Flow contention

(∀𝑢, 𝑣 ∈ 𝐺𝑃 : 𝑢 ≠ 𝑣 → (𝑢, 𝑣) ∉ 𝐸𝑃 )
∧ (∃𝑝 ∈ 𝐺𝑃 , ∃𝐹𝑐 ⊆ 𝐹,∀𝑓 ∈ 𝐹𝑐 :
((𝑝, 𝑓 ) ∈ 𝐸𝑃𝐹 ∧weight(𝑝, 𝑓 ) > 0))

PFC backpressure by flow contention. This anomaly case is
characterized by 1) a high number of paused packets of the victim
flow, 2) a PFC path on the port-level sub-graph, and 3) flow con-
tention at the initially congested port. As shown in Figure 12(a), F1
is paused at SW1.P1 by PFC instead of normal flow contention (the
dotted flow-port lines). And the initial node at the PFC path has
a large number of outgoing port-flow edges, remarking that the
root cause is flow contention. The major contributing flows are also
remarked by the positive weights (marked in red) directed to them.
The flow contention cause can be further analyzed. For example,
incast bursts can be identified by analyzing the contributing flows’
paths and throughput [46, 79], and load imbalance can be located
by calculating ECMP imbalance ratio. We omit these details orthog-
onal to our work which can be further integrated into Hawkeye.
Besides the root-cause flows, other anomaly-contributing flows can
be identified. For example, F2 is responsible for the PFC spreading
from SW2.P3 to SW1.P1, since it is paused at both ports.
PFC storm. Similarly, Hawkeye locates the initially congested port
node along the port-level edges in the provenance graph. However,
since PFC storm is usually caused by host PFC injection, the initial
port node has no flow contention, i.e., no positive outgoing port-
flow edges. Therefore, the root cause can be located as host issues,
as shown in Figure 12(b).
Initiator-in/out-of-loop deadlock. Hawkeye detects PFC dead-
locks by searching for loops starting from the port pausing the
victim flow. Hawkeye further identifies the deadlock types and
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root causes by analyzing the port-port and port-flow edges. Specifi-
cally, on one hand, the initially congested queue may be located in
the port within the deadlock loop (i.e., initiator-in-loop deadlock),
which is usually caused by the accidental flow contention. In this
case, one of the port nodes in the loop will have multiple outgoing
positive edges to a set of flows, as shown in Figure 12(c). On the
other hand, PFC can be injected by a host or caused by flow con-
tention in a port out of the loop (i.e., initiator-out-of-loop deadlock).
In this case, there will be a port node in the loop withmultiple neigh-
boring port nodes, which leads to a PFC path ending at the initial
congestion node, as shown in Figure 12(d). Analyzing the port-flow
edges on it can identify whether the root cause is flow contention
or PFC injection. The PFC spreading causality of Hawkeye also
enables analysis on circular buffer dependency (CBD) for deadlock
prevention and resolution [20, 27, 67]. As shown in Figure 12(c),
F1-F4 causes the PFC spreading loop. Further troubleshooting, such
as routing configuration checking [7] can be conducted.
Traditional congestion by flow contention. Although flow con-
tention congestion in RDMA networks is almost impossible without
generating PFC, it can also be diagnosed by Hawkeye, which degen-
erates into a traditional congestion diagnosis. In this case, there is
no port-level edges because of no PFC spreading path. But there is a
set of port nodes containing port-flow edges with positive weights
which point to the contributors of flow contention.

3.6 Implementation

We implement a prototype of Hawkeye at Intel Tofino hardware
using ∼2500 lines of P4 code and ∼3000 lines of C code. We also
implement an NS-3 version based on HPCC simulator [2]. The root
cause analyzer is implemented in Python.We implement a detection
agent prototype on NVIDIA BlueField-3 DPU. The source code is
publicly available at Github [62].
Host detection agent. The detection agent prototype is imple-
mented on NVIDIA BlueField-3 DPU, based on PCC (Programmable
Congestion Control) in DOCA [48]. The agent monitors each flow’s
RTT on the data-path accelerator via PCC’s API. Once the RTT of a
specific flow exceeds the threshold, the agent sends a polling packet
encoding the victim flow 5-tuple and start a diagnosis. Note that,
we use RTT as an example performance metric, and more metrics
such as throughput, flow-completion time and even job-completion
time can be integrated to support flexible detection.
Enable PFC awareness for P4. In Tofino, PFC port control is
orthogonal to P4 application logic, and PFC frames are filtered out
by MAC without sending to the P4 pipeline by default, leading
to limited PFC visibility. To enable awareness of PFC status, we
set the filterpf bit to 0 in rxconfig register on MAC so that
PFC frames can be passed to the application logic. Once receiv-
ing a PFC frame at the ingress P4 pipeline, the PFC frame is then
passed to the egress pipeline so that the corresponding port sta-
tus register can be updated. Then the PFC-related telemetry can
be maintained accordingly. Fortunately, emerging RDMA-native
switches support significantly enhanced monitoring capabilities
and expose interfaces for monitoring PFC status at switch ports,
eliminating the need for additional PFC frame processing, thereby
easing Hawkeye’s implementation.

Algorithm 2: Provenance Analysis Procedure.
Data: 𝑁𝑒𝑖𝑏𝑟𝐹 (𝑝 ) - Neighboring flow nodes of port 𝑝 ; 𝑁𝑒𝑖𝑏𝑟𝑃 (𝑝 ) -

Neighboring port nodes of port 𝑝 ; outdegP (𝑝 ) - Port-level outdegree
for port 𝑝

Input: 𝐺 - Provenance graph; 𝑁 - Network topology; 𝑓𝑣 - Victim flow
1 Function AnalyzeFlowContention(p):
2 # Flow contention analysis
3 if max𝑓 ∈𝑁𝑒𝑖𝑏𝑟𝐹 (𝑝 ) weight(𝑝, 𝑓 ) ≤ 0 then
4 # No flow contention
5 check PFC injection from port 𝑝’s peer device

6 else

7 for 𝑓 ∈ 𝑁𝑒𝑖𝑏𝑟𝐹 (𝑝 ) : weight(𝑝, 𝑓 ) > 0 do
8 # check flow contention causes
9 check flow throughput

10 check flow priority
11 check ECMP imbalance ratio

12 Function DeadlockDiagnose(𝑙𝑜𝑜𝑝_𝑙𝑖𝑠𝑡):
13 # Root cause
14 if ∃𝑝 ∈ 𝑙𝑜𝑜𝑝_𝑙𝑖𝑠𝑡 : outdeg𝑃 (𝑝 ) > 1 then
15 # Initial node out of loop
16 for 𝑝𝑖 ∈ Neibr𝑃 (𝑝 ) ∧ ¬𝑝𝑖 ∈ 𝑙𝑜𝑜𝑝_𝑙𝑖𝑠𝑡 do
17 CheckPortNode(𝑝𝑖 , [ ])

18 else

19 # Initial node in loop
20 for 𝑝𝑖 ∈ 𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 do
21 AnalyzeFlowContention(𝑝𝑖)

22 # Buffer dependency analysis
23 print port-nodes in loops

24 Function CheckPortNode(𝑝, 𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡):
25 # DFS-based check port
26 check whether loop exists
27 if 𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 contains loop then

28 # Deadlock
29 DeadlockDiagnose(𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡)

30 if outdeg𝑃 (𝑝 ) == 0 then
31 # Initial nodes of PFC spreading
32 AnalyzeFlowContention(𝑝)

33 for 𝑝𝑖 ∈ Neibr𝑃 (𝑝 ) do
34 CheckPortNode(𝑝𝑖 , 𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 + 𝑝)

35 for 𝑝𝑖 ∈ 𝑓𝑣 𝑝𝑎𝑡ℎ do

36 if weight(𝑓𝑣 , 𝑝𝑖 ) > 0 then
37 # check PFC causality
38 CheckPortNode(𝑝𝑖 , [ ])
39 else

40 # normal flow contention
41 AnalyzeFlowContention(𝑝𝑖)

Hawkeye in Tofino hardware. The polling packet forwarding
logic is implemented in the ingress pipeline to determine which
port(s) to forward the polling packet. The port status, the PFC
causality meter, and the telemetry are collectively implemented in
the egress pipeline. To accelerate the bulk register read performance
on CPU, we utilize the REGISTER_SYNC table operation provided by
BF_Runtime, the runtime library on the controller, which utilizes
DMA transfer to quickly synchronize the whole register array to
the control plane. Then the register value can be quickly read inside
the software.

4 Evaluation

We evaluate Hawkeye in both large-scale simulation and real
testbed experiments to answer the following questions:
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• Can Hawkeye accurately diagnose RDMA NPAs (§4.2)?
• How efficiently does Hawkeye collect the telemetry and
diagnose the root cause (§4.3)?

• Can Hawkeye cover common RDMA NPAs (§4.4)?
• Can Hawkeye be efficiently implemented on current net-
work hardware (§4.5)?

4.1 Experimental Setup

Topology.We set up a Fat-Tree (K=4) topology [14]with 20 switches
on NS-3 simulation. The link bandwidth is 100 Gbps and the link
delay is 2 𝜇𝑠 . Our hardware testbed partitions 2 pipelines of a Tofino
switch into 2 logical switches. The logical links between them are
emulated by directly attached cables. Two Dell PowerEdge R7525
servers are connected to each logical switch.
Workload.We set up an empirical RoCEv2 workload to evaluate
Hawkeye, which comes from an industrial operating data center
and displays a long-tailed flow size distribution [54]. Specifically,
< 80% of flows are smaller than 10 MB, < 90% of flows are smaller
than 100 MB, and about 10% flows are 100 MB ∼ 300 MB. The
arrival time of flows is based on a Poisson process, the arrival
rate of flows is varied based on the link load of the network, and
the source and destination of flows are selected randomly. For
each anomaly scenario, we craft 100 traffic traces following the
described traffic patterns with different link load. We inject a group
of synchronized short-lived bursts passing through the same link
to craft PFC backpressure by flow contention, configure a host
to continuously inject PFC frames and cause PFC storm. We also
simulate routing misconfigurations to trigger the initiator-in/out-
of-loop deadlocks.

4.2 Overall Effectiveness

In this subsection, we evaluate the effectiveness of Hawkeye. We
first evaluate Hawkeye’s diagnosis accuracy with different param-
eters, and compare the accuracy with other baselines using NS-3
simulation.
Precision & recall with different parameters. We define a true
positive result iff it identifies both the exact anomaly case (e.g., a
deadlock) and the corresponding root causes (e.g., the burst flows).
False positives mean incorrect anomaly cases or root causes are
reported, while false negatives occur when an existing anomaly is
not reported. We evaluate the precision and recall over different
PFC anomalies, as mentioned in §3.5.2, with different combinations
of parameters: detection threshold and epoch size. The threshold
is normalized as percentage of RTT (i.e., 200% ∼ 500% RTT), and
the epoch size varies from 100us to 2ms. As shown in Figure 7,
Hawkeye can achieve 100% precision and recall with correctly
configured parameters, and the precision is mainly affected by the
epoch size of the telemetry. Specifically, as the epoch increases,
the accuracy of flow contention identification decreases, thereby
reducing the locating precision of transient burst flows and the
diagnosis precision. Besides, a too long epoch may mistakenly
correlate two events and make wrong causality. For example, a
slight flow contention ending before the host PFC injection within
the same epoch maybe mistakenly regarded as one NPA. Then the
diagnosis may be misled into attributing the PFC causes to flow
contention, reducing the precision consequently. Considering the

recall, since Hawkeye triggers diagnosis once RTT exceeds the
threshold, nearly all the anomalies can be reported and thus false
negativeness is rare.
Precision& recall v.s. baselines.We compare the precision and
recall between Hawkeye and other baselines in diagnosing PFC-
related anomalies and normal flow contention. We deploy Spider-
Mon [66] and NetSight [24] as the baselines from traditional net-
works. SpiderMon monitors the queuing delay of every packet and
reactively analyzes the flow interaction within the queues on the
victim flow path; NetSight collects per-packet postcards at each
switch across the network. Since traditional solutions cannot handle
RDMANPAs well, we also propose another 2 baselines derived from
Hawkeye. The "full polling" method collects the complete telemetry
across all the switches in the network. The "victim-only" method
only polls the telemetry on the victim flow path without tracing
the switches on PFC spreading paths. As the sub-optimal results
of Hawkeye are already presented in Figure 7, we demonstrates
the upper bound of precision and recall each method presents over
different anomalies with its optimal parameters, as depicted in Fig-
ure 8. Hawkeye shows an upper bound of accuracy at the same
level as the full polling method, since it also covers the complete
causal telemetry. However, only collecting telemetry on the vic-
tim flows presents much lower precision, especially on deadlock
diagnosis, since the causality coverage is limited. Specifically, when
diagnosing burst-induced PFC backpressure, PFC storm, and nor-
mal flow contention, the victim flow triggering the diagnosis may
pass through the initial congestion point, which means the PFC
path is exactly the victim flow path. Therefore, the precision of
the victim-only method is closed to Hawkeye. In PFC deadlock
scenarios, each flow typically occupies only a part of the loop. As a
result, tracing only the victim flow path results in incomplete prove-
nance graph and lower accuracy. Furthermore, since traditional
baselines do not have the visibility for PFC, they can hardly diag-
nose the PFC-related NPAs, despite high effectiveness on normal
flow contention.

4.3 Efficiency Breakdown

We evaluate the efficiency of each component in Hawkeye.
Telemetry logging effectiveness. Hawkeye logs port-level and
flow-level telemetry to construct complete causality and make fine-
grained diagnosis. We evaluate the effectiveness of the telemetry
at different granularity. We set up 2 baselines: 1) Port-level only
telemetry system, which only stores the port-level telemetry in-
cluding the paused packet count at each port and the port-level
traffic meter. The port-only method still supports in-network PFC
causality analysis. 2) Flow-level only telemetry system, which only
stores the flow-level telemetry including the paused packet count
and queue depth for each flow. The flow-only method is thus un-
able to trace PFC due to the lack of port-level traffic causality.
Figure 10 demonstrates the precision and recall of different meth-
ods for monitoring traffic containing mixed different anomalies.
Two baselines present much lower performance, due to the lack
of complete causality. Specifically, the port-level method cannot
identify the flow contention and therefore misses the root causes,
although it can detect the PFC path. And the flow-level method can
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(a) PFC backpressure by flow contention. (b) PFC storm by host injection. (c) Initiator-in-loop deadlock. (d) Initiator-out-of-loop deadlock.

Figure 7: Precision & recall of typical anomaly cases over different epoch sizes and thresholds.

(a) Precision v.s. baselines. (b) Recall v.s. baselines.

Figure 8: Precision & recall upper bound v.s. baselines.

(a) Processing overhead. (b) Bandwidth overhead.

Figure 9: Overhead v.s. baselines.

not identify PFC path, leading to wrong diagnosis, as analyzed in
§2.3.
Processing overhead.We compare the processing overhead us-
ing the size of the telemetry collected for diagnosis. As shown in
Figure 9(a), the full polling method collects the telemetry on all
switches, which includes a huge amount of irrelevant telemetry
data. The victim-only method merely collects the telemetry on the
victim flow path, showing much lower processing overhead despite
lower accuracy. Hawkeye collects the telemetry on the switches
along both victim flow paths and PFC spreading paths, thus exhibit-
ing approximately higher processing overhead than the victim-only
method. SpiderMon collects the flow telemetry along the victim
flow path with 36 bytes per flow, showing similar telemetry amount
to the victim-only method. NetSight collects all the postcards for
every packet at each hop, and consequently results in significant
overhead.
Monitoring bandwidth overhead. We measure the additional
bandwidth overhead during the monitoring introduced by differ-
ent methods in Figure 9(b). Hawkeye monitors and records the
telemetry passively without extra traffic, and it only generates addi-
tional polling packets to the switches on victim flow paths and PFC
spreading paths when an anomaly is detected. Therefore, it presents

Figure 10: Diagnosis effec-

tiveness of different teleme-

try systems.

Figure 11: Count of Col-

lected switch& causal switch

coverage ratio.

very low bandwidth overhead. The victim-only method presents
approximately lower bandwidth overhead because the polling pack-
ets are only forwarded to the switches on the victim flow path. The
full polling method causes no extra bandwidth since it does not
need polling packets to trigger the telemetry collection on switches.
SpiderMon adds an extra 16-bit header field in every packet to
record the cumulative delay, leading to higher bandwidth overhead.
NetSight generates considerable per-packet additional bandwidth
overhead, with about 15 bytes per packet and per average hop count
due to the postcard for the packets at every switch.
Telemetry-collected switch. Hawkeye collects the telemetry on
the switches related to the anomaly via in-network PFC causality
analysis. We evaluate the collected switch count and the coverage
ratio of the causally relevant switches, as Figure 11 shows. Com-
pared to full polling, Hawkeye collects a much smaller number of
switches while ensuring 100% coverage of causal switches. In con-
trast, the victim-only method exhibits low causality coverage due
to not tracing the PFC, despite a lower count of switches collected.
Therefore, the complete provenance cannot be constructed, and
the accuracy is thus lower. To summarize, through in-network PFC
causality analysis, Hawkeye efficiently collects the anomaly causal
switches with low collection scale.

4.4 Case Study

We demonstrate Hawkeye’s diagnosis effectiveness by constructing
the provenance graphs of the typical NPAs in §2.1.
PFC by incast micro-bursts. As shown in Figure 1(a), multiple
line-rate micro-burst flows are injected into SW4.P1 by devices
A1∼A4 and spread PFC to SW1.P1. As Figure 12(a) shows, the
victim flows F2 and F1 are paused at SW1.P1 and SW2.P3 by PFC
(dotted edges to port nodes), and the port-level graph indicates that
the initial congestion point is SW4.P1. Inside SW4.P1, the main
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(c) Initiator-in-loop deadlock.
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Figure 12: Provenance graphs for typical anomalies. Port-flow and port-level edge weights are omitted for simplicity.

(a) Resource usage summary. (b) Resource usage with 2 & 4 epochs.

Figure 13: Hardware resource usage.

contributor flows F3-F6 (connected with red edges) are identified
as root causes.
PFC storm. The PFC injection from H1 in Figure 1(b) causes PFC
storm in the network. Figure 12(b) demonstrates the PFC path from
SW1.P1 to SW2 and SW3. With no flow contention in SW1.P1, the
congestion is due to host PFC injection.
Initiator-in-loop deadlock. Figure 1(c) shows the PFC deadlock
caused by the flow contention in the loop. The provenance graph
in Figure 12(c) identifies the deadlock through a loop of port-level
edges. Since each port node has a port-level out-degree < 2, the
initial congestion point lies inside the loop. Analyzing the port-to-
flow edges for each port reveals the root cause of flow contention
at SW2.P2.
Initiator-out-of-loop deadlock. Figure 1(d) shows the PFC dead-
lock caused by PFC injection out of the loop. The provenance graph
in Figure 12(d) first identifies the deadlock through the loop. Among
the port nodes in the loop, SW1.P1 has another outgoing path
destined to SW2.P1 which has no flow contention, and the PFC
injection can be identified.

4.5 Real Testbed Evaluation

We implement Hawkeye at a real testbed, and validate its deploya-
bility and efficiency accordingly.
Switch resource usage. Figure 13(a) shows Hawkeye’s hardware
resource usage, which fits well on Tofino. Furthermore, Hawkeye’s
memory usage scales well with the epoch count monitored and
the maximum flow count per epoch. As shown in Figure 13(b), the
memory usage of PFC causality structure (Figure 3) and port-level
telemetry is small and constant, bounded by the number of switch
ports, while the flow-level telemetry increases with 𝑂 (#𝑓 𝑙𝑜𝑤).
CPU poller.We first measure the total time usage of polling the
telemetry from switches using the on-switch CPU. Polling full
telemetry from one switch, including 2 or 4 epochs, requires ap-
proximately 80 and 120ms, respectively, with each epoch containing

(a) Telemetry size reduction. (b) Telemetry packet reduction.

Figure 14: CPU reduces telemetry collected.

the data of 64 ports and 4096 flows. Since CPU polling and line-
rate polling packet forwarding are asynchronous, the telemetry
collection on multiple individual switches starts in parallel within
an end-to-end delay (∼ 𝜇𝑠). Therefore, the total time usage is ap-
proximately equal to the time of polling one switch, showing high
scalability with network scale.

We then evaluate the efficiency of the CPU poller. Compared
to fully dumping the telemetry using packet generation in the
data plane, the CPU can reduce the telemetry data size reported
to the analyzer significantly by excluding the useless telemetry
data such as zero values. As shown in Figure 14(a), in most cases,
the concurrent flow count in one epoch is much smaller than the
maximum flow count in data plane telemetry, thus the telemetry
size can be reduced by >80%. Besides, due to the limited PHV size
(around 200 bytes), exporting the complete flow telemetry on the
data plane requires a significant number of packets and incurs
a heavy communication overhead. However, the CPU can batch
the meaningful subset of the telemetry into a much larger packet
(e.g., the MTU of 1500 bytes), reducing the number of packets
considerably. As shown in Figure 14(b), the telemetry-reporting
packet count can be reduced by about 95% in most cases.

5 Discussion

Operating scenarios of Hawkeye. Network operators can uti-
lize Hawkeye in different ways by setting different triggering con-
ditions. For example, the monitored performance metrics can be
extended to various definitions, such as flow throughput, co-flow
completion time, or even application-level metrics such as job com-
pletion time or algorithmic bandwidth. Besides on-demand diagno-
sis, when integrated with pingmesh-like probes [41], Hawkeye can
carry out periodic diagnosis for a more complete understanding
of the network. Furthermore, in multi-tenant networks, anomaly
diagnosis can be provided as a service to users by sharing client
performance information with operators.



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Shicheng Wang et al.

Representativeness of covered anomalies. In this paper, we
propose a diagnosis method for a range of representative anomalies.
Although we do not claim that we cover the complete NPA space
in RDMA networks, the anomaly cases addressed in this paper
are sufficiently representative. Specifically, the proposed anomalies
cases (shown in Table 2) cover the existence of PFC, the different
PFC root causes (flow contention or host PFC injection) and the
shape of PFC spreading paths (whether a loop exists). We leave
more comprehensive NPA coverage and a more general diagnosis
algorithm as our future work.
Extensibility of Hawkeye telemetry. Our main focus in teleme-
try design is to enable PFC visibility and causality tracing, which
is orthogonal to flow-level information recording. Therefore, the
flow-level telemetry in Hawkeye can be further complemented by
numerous existing studies [22, 37, 47, 58] to provide more informa-
tion such as flow features and queue evolution, enabling a more
in-depth understanding of flow interactions. However, integrating
fine-grained flow telemetry also incurs higher overhead especially
on switch resource usage.
Applicability of Hawkeye. Our Tofino implementation serves
as a readily available proof-of-concept. However, Hawkeye is not
tightly tied to Tofino, and is inexpensive to implement into next-
generation switching ASICs. The real time PFC status of each port
is already supported by many RDMA switches. Hawkeye only
requires two additional components. First, the PFC causality data,
including the causality structure (Figure 3) and port-level telemetry,
requires additional registers with constant size, which is bounded
by the number of switch ports. Second, Hawkeye enhances the
flow-level telemetry with PFC-aware data, such as PFC impact
on each flow. Such modification only requires a new data field in
the telemetry recording system. As current switches are becoming
more plentiful in resource and embracing greater programmability,
especially considering the trend of white-box customized switches,
we believe that Hawkeye is fully implementable to next-generation
commodity switches.
Partial Deployment of Hawkeye. Hawkeye contains two core
components: 1) the PFC causality analysis mechanism to trace
the PFC spreading path; 2) the PFC-aware flow telemetry to an-
alyze queue contention between flows and PFC impact on each
flow, both of which are crucial to locate the root causes. If only a
part of switches deploy Hawkeye, such as ToR switches, the PFC
tracing will be interrupted at a non-Hawkeye switch, making it
difficult to correlate victim flows with root causes even though
a certain switch’s telemetry may have recorded them. We give a
feasible partial deployment option. Assume that all switches sup-
port PFC causality analysis, but we only deploy flow telemetry
on some hot-spot switches, e.g., ToR switches, where a lot of flow
contention such as incast frequently occurs. In this case, the PFC
spreading causality can be completely traced, and a significant
percentage of the root causes located in ToR switches can also be
covered. However, diagnosis effectiveness is still inevitably com-
promised. For instance, some root causes like ECMP imbalance [66]
or routing problems [27, 67] occurring on leaf/spine switches, are
consequently uncovered.
Parameter setting on different network environment. Hawk-
eye empirically adjusts the parameters for different network work-
loads, to achieve a good trade-off between accuracy and overhead.

The major parameters in Hawkeye, as mentioned in §4.2, is the
epoch size and detection threshold. A shorter epoch size can cap-
ture flow interactions more accurately, helping to identify flow
contention and major contributors. However, too short epoch size
requires much more epochs to be maintained at the switch so that
the telemetry will not be flushed quickly, causing higher memory
usage and telemetry size. For detection threshold, taking latency as
an example metric, it is important to consider the network’s scale
and application requirements. Typically, for latency-sensitive appli-
cations, the detection threshold is usually 2-4 times the maximum
RTT (determined by the maximum hop count). A sensitive detec-
tion threshold can quickly trigger diagnosis, while causes higher
diagnosis frequency.

6 Related Work

Besides the most relevant works we discussed early, our work is
also inspired by the following topics.
Performance anomaly in intra-host networks. Many stud-
ies observe the intra-host network is becoming an RDMA per-
formance bottleneck. Collie [35] explores the anomaly space to
find performance anomalies in intra-host networks. Husky [34]
presents a test suite to evaluate performance isolation in RNICs.
Hostping [42]diagnoses the performance bottleneck in intra-host
networks using loopback traffic. Lumina [71] proposes a test tool to
evaluate the performance of RNIC network stacks. However, there
are relatively fewer studies effectively diagnosing inter-host RDMA
NPAs, as analyzed in §2.3, and we bridges this gap via Hawkeye.
Programmable network. Programmable networks, represented
by programmable switches and SmartNICs, have been widely used
to accelerate various applications in network monitoring [22, 39,
47, 79], traffic analysis [58, 64, 73, 77], queue measurement [10, 37],
traffic control [3, 25, 38, 75], and security [33, 43, 74]. Inspired
by them, Hawkeye leverages programmable switches to support
PFC-aware telemetry logging, PFC causality tracing and telemetry
collection.
Provenance-based diagnosis. There is a body of studies that
leverage provenance to trace event causality relationship [8] and
diagnose security threats or performance issues. ForenGuard [61]
monitors the provenance of runtime activities in SDN. Unicorn [23]
leverages the provenance of system executions to detect APT (Ad-
vanced Persistent Threat). SpiderMon [66] and PrintQueue [37]
construct flow-level and packet-level provenance, respectively, to
identify queue contention contributors. DTaP [78] and Zeno [68]
construct time-aware event provenance and diagnose performance
issues in distributed systems. Hawkeye takes PFC causality into
provenance consideration to diagnose RDMA NPAs.

7 Conclusion

RDMA network performance anomalies present new complexities
due to the cascading congestion of PFC and make existing solutions
less effective. We propose Hawkeye to bridge the gap. It provides
fine-grained PFC visibility through a multi-granularity PFC-aware
telemetry system, a fast in-network PFC causality tracing mecha-
nism to efficiently collect causal telemetry, and a precise diagnosis
algorithm based on the heterogeneous provenance graph. Our eval-
uations demonstrate Hawkeye can accurately detect and diagnose
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RDMA network performance anomalies with low overhead. We
hope Hawkeye can inspire new paradigms for anomaly diagnosis
in RDMA networks.
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