
Poster: Co4U: Efficient and Robust HTTP Message Compression
for Edge Computing Networks

Shiguang Zhang1, Jiahao Cao1, Menghao Zhang2, Mingwei Xu1, Wei Han3, Yanbin Zhai3, Zhiming Zhang3
1Tsinghua University 2Beihang University 3ByteDance

CCS CONCEPTS

• Networks → Application layer protocols; • Computer systems

organization→ Distributed architectures; • Information systems

→ Data compression;

KEYWORDS

Edge Computing; Data Compression; HTTP

ACM Reference Format:

Shiguang Zhang, Jiahao Cao, Menghao Zhang, Mingwei Xu, Wei Han,

Yanbin Zhai, Zhiming Zhang. 2024. Poster: Co4U: Efficient and Robust

HTTP Message Compression for Edge Computing Networks . In ACM

SIGCOMM 2024 Conference (ACM SIGCOMM Posters and Demos ’24), Au-

gust 4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3672202.3673753

1 INTRODUCTION

Edge computing networks integrate computing, storage, and net-

work resources at network edge nodes to provide infrastructure

closer to users, enabling faster data processing, transmission, and

service response. An increasing number of companies are embrac-

ing this paradigm, e.g., ByteDance has deployed over 500 edge

nodes [1] to reduce service response time. In these edge computing

networks, most business data transmitted is HTTPmessages, which

consume a significant portion of bandwidth. For example, accord-

ing to ByteDance’s internal reports, HTTP messages account for

over 60% of the network bandwidth. To provide high transmission

quality, companies often use proprietary links to connect numer-

ous edge nodes across different regions. Despite effective, these

proprietary links usually incur high expenses. Therefore, compress-

ing HTTP messages between edge nodes is essential for saving

substantial bandwidth costs.

Currently, various compression algorithms can be used for HTTP

messages, including gzip [6], Brotli [4], Shared Brotli [5], SDCH [3],

and Zstd [2]. Despite these efforts, achieving a high compression

ratio for HTTP messages between edge nodes during transmission

remains challenging. The first challenge is to improve the compres-

sion ratio for a real-time HTTP message, whose limited content

between edge nodes varies and cannot be predicted. Our previous

real-world experiments in ByteDance’s edge nodes demonstrate

This work was supported by the National Natural Science Foundation of China (Grant
62202260 and 62221003) and the Beijing Science and Technology Plan Project (Grant
Z231100010323013). Corresponding Author: Jiahao Cao

ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0717-9/24/08.
https://doi.org/10.1145/3672202.3673753

Table 1: Comparison between compressing a real-time HTTP

message and compressing a large number of aggregated

HTTP messages into a single file.

Algorithms
Average Compression Ratio

Single HTTP Message Aggregated HTTP File

gzip 33.86% 49.51%

Brotli 34.42% 50.04%

Zstd 34.20% 56.33%

SDCH 37.49% 51.43%

that existing lossless compression methods [2–6] generally achieve

unsatisfactory compression ratios for a single HTTP message, typ-

ically less than 40%. Therefore, we need to develop a method to

achieve high compression ratios under these circumstances. The

second challenge is to ensure the robustness of this compression

method. Since the content of HTTP messages between edge nodes

is unpredictable and varies with business needs, the compression

ratio may decrease over time. Therefore, we need a method that can

adjust the compression strategy to accommodate dynamic HTTP

content.

While traditional lossless compression algorithms are unsatis-

factory, we found that aggregating 38,000 past HTTP messages

from ByteDance’s real edge computing networks into a single large

file for compression significantly improved the compression ra-

tio, increasing it from 33% to more than 50%, as shown in Table 1.

Therefore, it may be promising to utilize the common content among

HTTP messages to improve the compression ratio for a real-time

HTTP message.

This paper introduces Co4U, an efficient and robust HTTP mes-

sage compression system for edge computing networks. As shown

in Figure 1, Co4U consists of two main components: one Co4U man-

ager and agents. The agents compress or decompress a real-time

HTTP message based on a pre-trained dictionary that derives from

multiple past HTTP messages. The manager periodically samples

HTTP messages to pre-train a compression dictionary based on

their common content. Meanwhile, it updates and distributes the

dictionary based on compression ratio information and sampled

HTTPmessages for robust compression. Our real-world experiment

results indicate that, compared to existing compression methods,

Co4U achieves at least a 15% improvement in compression ratio

and better robustness for dynamically changing HTTP messages.

2 SYSTEM DESIGN

Pre-trained Compression Dictionary Construction. Based on

our previous findings, one possible method to achieve a high com-

pression ratio for HTTPmessages is to aggregate multiple messages

for compression. However, this approach is impractical in edge com-

puting networks. Different HTTP messages may need to be sent to

different edge nodes via different paths, making it hard to accurately

81

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672202.3673753&domain=pdf&date_stamp=2024-08-05


ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia S. Zhang, and et al.

Compress

Compress
Training HTTP Queue

Edge Nodes

Testing HTTP Queue

New 
Dictionary

Update?

Zstd

Co4U Manager

Zstd

Co4U Agent

Periodic 
Sampling Compression Ratio

Past HTTP Queue

HTTP

HTTP HTTP

HTTP

Old Dictionary Label New Dictionary Label

Figure 1: System Overview of Co4U. Figure 2: Results from Real HTTP Messages.

aggregate HTTPmessages for a specific edge node. Additionally, ag-

gregating multiple HTTP messages for compression can introduce

unacceptable latency.

Fortunately, we found that consecutive HTTP messages within

a period tend to share similar content patterns. Therefore, rather

than aggregating multiple HTTP messages for compression, Co4U

utilizes content patterns in past HTTP messages to pre-train a com-

pression dictionary for incoming HTTP messages. Specifically, the

Co4U manager, deployed on a server outside the edge computing

networks, samples HTTP messages from edge nodes and stores a

portion of the sampled messages in an HTTP cache queue. Using

Zstd’s dictionary training algorithm, the manager generates a com-

pression dictionary from the cached messages. If the dictionary is

deemed useful, the manager distributes it to agents, who then use

the Zstd algorithm with this dictionary to compress or decompress

HTTP messages.

Greedy Dictionary Update. Although the above method can

achieve a high compression ratio for a real-time HTTP message

using a pre-trained compression dictionary, the dictionary cannot

always remain effective in practice. It is inevitable that compression

ratios will decrease due to the unpredictable and dynamic nature

of future HTTP messages. To address this issue, the Co4U manager

continuously retrains and updates the dictionary based on sampled

HTTP messages, ensuring high compression ratios.

This way introduces a new question: when should the dictio-

nary be updated? An intuitive method is to set a compression ratio

threshold 𝑡 . If the current compression ratio is below 𝑡 , the man-

ager would update and distribute a new dictionary. However, this

approach has its issues: if 𝑡 is set too low, the system could become

stuck at a local optimum, missing potential bandwidth compression

gains. Additionally, setting 𝑡 too high could lead to overly frequent

updates without bringing higher gains.

To find the optimal threshold for updating dictionaries, we pro-

pose a simple yet practical solution greedy dictionary update. Specif-

ically, the Co4U manager uses a portion of the sampled messages to

retrain the dictionary, while another portion is used for evaluating

the average compression ratio of the newly re-trained dictionary,

denoted as 𝑅𝑛𝑒𝑤 . If 𝑅𝑛𝑒𝑤 is higher than the compression ratio 𝑅𝑐𝑢𝑟
of the current dictionary used in agents, the manager will distrib-

ute the new dictionary to edge nodes, likely achieving a higher

compression ratio.

Although we can distribute new compression dictionaries uni-

formly to all edge node agents through a manager, some in-flight

HTTPmessages might have been compressed using old dictionaries.

If these old dictionaries are not retained, the agents will not be able

to decompress these HTTP messages correctly. Therefore, we add

an identifier to each compressed HTTP message to represent the

dictionary used, i.e., the SHA-256 hash of the dictionary. When a

compressed HTTP message reaches its destination edge node, the

agent on that node will accordingly select the correct dictionary

for decompression based on the dictionary identifier.

3 EVALUATION & FUTUREWORK

We evaluated the compression ratio and robustness using real HTTP

business data from ByteDance’s edge computing networks. The

data consists of over 1000k HTTP messages, with a total size ex-

ceeding 4.2 GB, and during the collection period, there were two

instances of proactive business transitions.We compared Co4Uwith

existing compression methods. As illustrated in Figure 2, Co4U can

achieve a compression ratio improvement of at least 15% and has

consistently outperformed other methods. Moreover, during busi-

ness transitions, such as the first business switch, Co4U rapidly

increases the compression ratio, while during the second business

switch, Co4U quickly prevents a decrease in the compression ratio.

This demonstrates the effectiveness and robustness of Co4U.

In the future, we plan to: 1) explore better dictionaries or other

compression methods to achieve higher compression ratios; 2) in-

vestigate the optimal timing for dictionary updates under different

circumstances; and 3) design and implement all details, and evaluate

Co4U with more metrics.

REFERENCES
[1] ByteDance. 2023. https://www.volcengine.com/product/veen. (2023).
[2] Facebook. 2016. Zstandard Compression. https://facebook.github.io/zstd/. (2016).
[3] Google. 2008. SDCH: Shared Dictionary Compression over HTTP.

https://chromium.googlesource.com/chromium/src/+/53.0.2744.1/net/sdch/
README.md. (2008).

[4] Google. 2015. Brotli Compression. https://github.com/google/brotli. (2015).
[5] Google. 2023. Shared Brotli. https://chromestatus.com/feature/5124977788977152.

(2023).
[6] GNU Project. 1992. Gzip Compression. https://www.gnu.org/software/gzip/.

(1992).

82


