
CAVER: Enhancing RDMA Load Balancing by
Hunting Less-Congested Paths

Haotian Deng
1
, Yuan Yang

1
, Menghao Zhang

2
, Mingwei Xu

1

1
Tsinghua University

2
Beihang University

CCS CONCEPTS

• Networks→ Data path algorithms; Programmable networks.

KEYWORDS

Remote Direct Memory Access; In-Network Load Balancing; Pro-

grammable Switches;

ACM Reference Format:

Haotian Deng, Yuan Yang, Menghao Zhang, Mingwei Xu. 2024. CAVER:

Enhancing RDMA Load Balancing by Hunting Less-Congested Paths. In

ACM SIGCOMM 2024 Conference (ACM SIGCOMM Posters and Demos ’24),
August 4–8, 2024, Sydney, NSW, Australia.ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3672202.3673729

1 INTRODUCTION

Remote Direct Memory Access (RDMA) has become a prevailing

technology for modern data centers (DCs) to achieve high through-

put and low latency [8]. Many DCs have adopted RDMA over

Converged Ethernet v2 (RoCEv2) [3] to provide superior perfor-

mance for emerging application paradigms such as cloud storage

[4] and distributed deep learning [11]. Network load balancing (LB)

plays a critical role in optimizing the DC network performance.

There is a large body of literature studying LB for traditional DCs

[1, 2, 6, 7, 9], as it is well-known that the widely-used ECMP [12] has

a limited LB performance. However, RDMA operates in a different

manner compared to traditional TCP-based data transmission, and

existing studies for traditional DCs do not well fit RDMA-enabled

DCs. For example, RDMA is very sensitive to out-of-order packets

which may lead to significant throughput degradation, and also,

RDMA flow can hardly be partitioned into flowlets. Thus, existing

packet-level LB approaches [6, 7] and flowlet-level LB approaches

[2] perform poorly in RDMA-enabled DCs.

Researchers have realized that a key for good LB performance is

to find out which path/link is congested, and LB decisions should

be congestion aware. Thus, efforts are made on finding and using

congestion signals (in both traditional DCs and RDMA-enabled

DCs) [15]. For instance, CONGA [2] detects path congestion degrees

leveraging flows being transmitted. The information is sent back

to the source Top of Rack (ToR) switch, based on which routing

This work was supported by the National Key Research and Development Program

of China under Grant 2022YFB2901300, the National Natural Science Foundation of

China under Grant 62221003, and the Beijing Science and Technology Plan Project

under Grant Z231100010323013.

ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0717-9/24/08.

https://doi.org/10.1145/3672202.3673729

decisions are made for subsequent flows. ConWeave [17] detects

congestion by observing packet Round-Trip Times (RTTs), and

a rerouting method is proposed to mitigate congestion. Proteus

[10] combines multiple metrics to detect congestion more precisely.

However, existing approaches still have a key limitation. That is,

the path space is not fully explored by the flows traversing a ToR

switch. In particular, the total number of available paths between a

source-destination pair increases rapidly with the network scale

and number of layers, while existing approaches can only detect

the congestion degrees for only a small portion of these paths. Thus,

a number of paths that are less congested will be overlooked when

routing subsequent flows or rerouting existing flows. Furthermore,

the widely-used bond scenario exacerbates the problem, where

a host connects to two ToR switches and paths that may not be

detected will increase.

To resolve these challenges, in this paper, we propose CAVER,

a Congestion-Aware LB approach for RDMA with VEctoR proto-

col. CAVER leverages acknowledgement (ACK) packets to realize

a vector protocol to hunt less-congested paths for each source-

destination pair in real time. In RoCEv2, each data packet will

trigger an ACK packet to guarantee that no packet loss occurs.

Therefore, it is reasonable to assume that plenty of ACK packets are

traversing all links in the network at any time. A switch can thus

announce local congestion condition info to neighboring switches

by piggybacks using the ACK packets. More specifically, a switch

tells a neighboring switch the least-congested path to a certain desti-

nation. Then, the neighboring switch computes the least-congested

path for itself based on the received paths, and announces the re-

sults, similar to traditional vector routing protocols such as RIP [14]

and BGP [16]. CAVER can guarantee loop-freeness and converge

quickly in just one RTT. As a result, a source ToR switch is aware of

the least-congested path to a certain destination, and all packets of

the incoming flow will be forwarded along the least-congested path

using source routing, so as to guarantee stability and avoid routing

oscillation. Then, the least-congested path is updated for the next

incoming flow. We implement CAVER with the NS3 simulator,

and conduct experiments with real traffic traces [13]. The results

show that CAVER can decrease the average flow completion time

(FCT) slowdown by up to 15% and 10% compared with ECMP and

ConWeave, respectively.

2 CAVER DESIGN

Figure 1 depicts the overview of CAVER. Most of the CAVER func-

tionalities reside at the source ToR switch, including a Flow Table

to conduct source routing and a Path Congestion Table to maintain

path congestion metrics. Functionalities at other switches are rela-

tively simple, mainly with a Path Congestion Table to record and

deliver the path congestion metrics. Considering RDMA is sensi-

tive to out-of-order packets and it is rare to see flowlets in RDMA

39

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3672202.3673729
https://doi.org/10.1145/3672202.3673729
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672202.3673729&domain=pdf&date_stamp=2024-08-05

ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia H. Deng, Y. Yang, M. Zhang, M. Xu

Dst Path CE

H3 L2-T6-H3 3

FLow Path

1 L2-T6-H3

2 L1-T6-H3

ECMP

Path Congestion Table

Flow Table

H1

Dst Path CE

H3 T6-H3 3

Path Congestion Table

DATA

ACK

L1 L2

H3→H1

Path: L2-T6-H3

CE:3

0
T6

1

Port
CE:1

Port
CE:1

0 0

0 1 2 3 4 5

Port
CE:3

Port
CE:1

Port
CE:1

Port
CE:1

Dst Path CE

H3 H3 3

Path Congestion Table

T5-H3 1

L2-T5-H3 1

H2 H3

T1 T3 T4 T5T2

H3→H2
Path: T5-H3

CE:1

H3→
H1

Path: T6-H3

CE:3LB
Decision

Figure 1: CAVER overview.

1 10 100
Flow Size (KB)

1.4

1.6

1.8

2.0

2.2

Av
g.

 F
CT

 S
lo

wd
ow

n

ECMP
ConWeave
CAVER

Figure 2: Evaluation Results.

flows [17], CAVER uses flow-level routing, where the packets of a

flow are transported through the same path.

For the first packet of a flow, LB decision is made based on the

Path Congestion Table at the source ToR switch, which maintains

the least-congested path and corresponding congestion extent (CE)

for each destination. The least-congested path is then added to the

Flow Table, to instruct subsequent packets of the flow to traverse

the same path. To save the switch memory, CAVER uses the hash

value of the 5-tuple as the key for the Flow Table. Although hashing

collisions are inevitable, this only makes a few flows lost some LB

opportunities and does not incur any correctness issues. If a packet

does not match the Flow Table and the Congestion Table, it implies

that the CE has not been recorded for any path to the destination,

and CAVER resorts to ECMP.

At the core of CAVER is updating the Path Congestion Table,

where ACK packet of each data packet is leveraged to piggyback

the congestion metrics from destination host to source ToR switch

hop by hop, which is detailed below.

Update the Path Congestion Table. CAVER leverages the Dis-

counting Rate Estimator (DRE) at each switch port to estimate CE in

a way similar to CONGA [2], so as to update the Path Congestion

Table. The DRE is increased for each data packet by the packet

size in bytes, and is decreased periodically with a multiplicative

factor 𝛼 between 0 and 1: 𝐷𝑅𝐸 ← 𝐷𝑅𝐸 × (1 − 𝛼). Each data packet

triggers an ACK packet in RoCEv2, which is forwarded back to the

source ToR switch with ECMP. CAVER employs the ACK packet

to piggyback the path congestion metrics (including a path field

and a CE field) to the source ToR switch hop by hop. The point

is that ACK packets of different flows terminated at a destination

cooperate to compute the least-congested path to the destination

following our vector protocol. We use the example in Figure 1 to

illustrate the process.

We first consider the green flow in Figure 1. When an ACK

packet arrives at destination ToR switch T6, the switch obtains

the port CE value based on DRE at the ingress port, and updates

the Path Congestion Table with source IP as the key. In particular,

T6 records in the Path Congestion Table that the least-congested

path to reach destination H3 is through port 0 with a CE value of

3. Then path T6-H3 and CE value 3 is carried by the ACK packet

which is forwarded to the next hop, i.e., L2. L2 adds itself into the

carried path and computes the maximum CE value along the path.

If the resulting path is the least-congested path to the destination,

L2 records the path and corresponding CE in the Path Congestion

Table. Then, the ACK packet carries the current least-congested

path (i.e., L2-T6-H3) and corresponding CE value (i.e., 3), and is

forwarded to T1. Finally, with similar steps, T1 stores the least-

congested path and corresponding CE value in the Path Congestion

Table. Note that the CE value carried by the ACK packets of the

same flow may change. In such a case, the switches along the path

need to update the Path Congestion Tables accordingly.

Now let us consider the red flow in Figure 1 which arrives later

than the green flow. Similarly, an ACK packet is sent from T5 to

L2, carrying path T5-H3 and CE value 1. When this packet arrives

at L2, L2 finds that the path for this in-port is less congested, so

the Path Congestion Table needs to update accordingly. That is,

path T5-H3 substitutes path T6-H3 as the least-congested path to

reach H3, with the smaller CE value 1. It is worth noting that in

CAVER, ACK packets can always piggyback the least-congested

path from local switch to neighboring switch. Thus, the new path

(i.e., L2-T5-H3) and the new CE value (i.e., 1) will be announced

to both T1 and T4 by ACK packets of the green flow and the red

flow respectively (which are not illustrated in Figure 1). Finally,

the Path Congestion Table of T1 is updated to use path L2-T5-H3

with CE value 1. Newly incoming flows at T1 can query the Path

Congestion Table to obtain the least-congested path. Note that after

an incoming flow chooses the current least-congested path, the

new least-congested path will be ready within one RTT, because

the least-congested path is carried by every ACK packet.

3 EVALUATION AND FUTUREWORK

We implement a prototype of CAVER based on NS3, which is pub-

licly available at Github [5]. We use a three-tier fat-tree (k = 4)

topology and 8 servers, each server connect to two ToR switches

(i.e., bond) in the same pod. Each link has a bandwidth of 100Gbps.

We use the AliCloud storage workloads [13] in the simulation. We

use FCT slowdown as metric, i.e., a flow’s actual FCT normalized by

the base FCT when the network has no other traffic. As shown in

Figure 2, compared with ECMP and ConWeave, CAVER decreases

the average FCT slowdown by up to 15% and 10% respectively.

In future, we plan to optimize the mechanisms and resource

utilization of CAVER, implement all the details with programmable

switches, and conduct extensive evaluations under different envi-

ronment settings and workloads.

40

CAVER: Enhancing RDMA Load Balancing by Hunting Less-Congested Paths ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES

[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data

center networks.. In Nsdi, Vol. 10. San Jose, USA, 89–92.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,

Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware

load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503–514.

[3] InfiniBand Trade Association. 2020. InfiniBand Architecture Specification Release

1.4 Annex A17: RoCEv2.

[4] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir

Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,

et al. 2023. Empowering azure storage with {RDMA}. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 49–67.

[5] CAVER. 2024. CAVER-NS3. https://github.com/denght23/CAVER.git.

[6] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella. 2013.

On the impact of packet spraying in data center networks. In 2013 proceedings
ieee infocom. IEEE, 2130–2138.

[7] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin

Firoozshahian. 2017. Drill: Micro load balancing for low-latency data center

networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 225–238.

[8] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-

hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In

Proceedings of the 2016 ACM SIGCOMM Conference. 202–215.

[9] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya

Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks.

ACM SIGCOMM Computer Communication Review 45, 4 (2015), 465–478.

[10] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo, Hong Xu,

Jiawei Huang, and Kai Chen. 2023. Enabling load balancing for lossless datacen-

ters. In 2023 IEEE 31st International Conference on Network Protocols (ICNP). IEEE,
1–11.

[11] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A unified architecture for accelerating distributed {DNN} training in

heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463–479.

[12] Petr Lapukhov, Ariff Premji, and Jon Mitchell. 2016. Use of BGP for Routing in
Large-Scale Data Centers. RFC 7938. RFC Editor.

[13] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:

High precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[14] Gary Malkin. 1998. RIP version 2. Technical Report.
[15] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam

Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul

Kabbani. 2022. PLB: congestion signals are simple and effective for network load

balancing. In Proceedings of the ACM SIGCOMM 2022 Conference. 207–218.
[16] Yakov Rekhter, Tony Li, and Susan Hares. 2006. A border gateway protocol 4

(BGP-4). Technical Report.
[17] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon

Chan. 2023. Network Load Balancing with In-network Reordering Support for

RDMA. In Proceedings of the ACM SIGCOMM 2023 Conference. 816–831.

41

https://github.com/denght23/CAVER.git

	1 Introduction
	2 CAVER Design
	3 Evaluation and future work
	References

