
Chameleon: Automatic and Adaptive Tuning for DCQCN
Parameters in RDMA Networks

Ziteng Chen
1
, Menghao Zhang

2,3
, Guanyu Li

4
, Mingwei Xu

2,4,5

1
School of Cyber Science and Engineering, Southeast University

2
Department of Computer Science and Technology, Tsinghua University

3
Kuaishou Technology

4
Institute for Network Sciences and Cyberspace, Tsinghua University

5
Quan Cheng Laboratory

CCS CONCEPTS

• Networks → Transport protocols;

KEYWORDS

Remote Direct Memory Access; Congestion Control

ACM Reference Format:

Ziteng Chen, Menghao Zhang, Guanyu Li, Mingwei Xu. 2023. Chameleon:

Automatic andAdaptive Tuning for DCQCNParameters in RDMANetworks.

In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), September 10, 2023,
New York, NY, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3603269.3610865

1 INTRODUCTION

Datacenter Quantized Congestion Notification (DCQCN) [12] is the

default congestion control algorithm for Mellanox RDMA (Remote

Direct Memory Access) NICs [2] in RoCEv2 (RDMA over Con-

verged Ethernet v2) networks, one of the most widely used NICs in

leading industry companies [4, 5, 7, 9]. In DCQCN, firstly switches

mark packets with ECN (Explicit Congestion Notification) when

the queue length exceeds ECN thresholds, then receivers respond to

ECN-marked packets with CNPs (Congestion Notification Packets),

and finally senders reduce transmission rate when receiving CNPs.

DCQCN has 10+ parameters at both NICs and switches, including

Alpha Update, Rate Increase & Decrease, Notification Point and

ECN thresholds [3], and these parameters have a non-negligible

impact on the network performance. Our experiments also verify

the network performance of common AI (Artificial Intelligence)

training workloads in RoCEv2 networks (e.g., all-to-all collective

communication) is greatly influenced by different DCQCN parame-

ter settings (§3). Therefore, when deploying applications in practice,

the DCQCN parameters need to be carefully tested and tuned to

improve the network performance.

However, current DCQCN parameter setting mainly relies on

manual efforts of experts, which may take several weeks or even

months [8]. First, different workloads have various SLAs (Service

Level Agreement) and properties, including delay, throughput, FCT

(Flow Completion Time), message patterns, RDMA transport types,

This work is supported by the National Natural Science Foundation of China (No.

62221003), China Postdoctoral Science Foundation (2022M720202), and Beijing Post-

doctoral Research Foundation (2022-ZZ-078). Mingwei Xu is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3610865

Leaf

TOR

NIC

Metric
Monitor

Tuning
Algorithm

Controller

input

tuned parameters

Topology

Figure 1: Chameleon overall architecture.

etc. However, the default parameters cannot satisfy different re-

quirements simultaneously. Consequently, operators have to man-

ually tune a specific DCQCN parameter setting for each workload.

Second, a static parameter setting always falls behind dynamic

network environment. Especially, heterogeneous workloads can

coexist and share the network, and be incrementally deployed at

any time. Therefore, operators have to repeat the time-consuming

tuning process in real RoCEv2 networks.

Researchers have proposed some automatic tuning tools for

DCQCN parameters. ACC [11] automatically tunes the switch ECN

thresholds based on runtime information collected from switches,

but ignores DCQCN parameters at NICs. DCQCN+ [6] adjusts the

additive increase step and recovery timer according to the incast

scale, but ignores other parameters and needs significant protocol

modification.Wang et al. [10] adaptively optimizes RDMA transport

types based on message sizes and polling strategies, but overlooks

the DCQCN parameters at both NICs and switches. To summarize,

existing works fail to take DCQCN parameters at both NIC-side

and switch-side into account simultaneously.

Nevertheless, designing an automatic and adaptive tuning tool

for DCQCN parameters is non-trivial. The first challenge is to be

aware of the network dynamics. In an RDMA cluster, heterogeneous

and incremental workloads can occur temporally and spatially, mak-

ing it difficult to get full knowledge of the dynamic traffic patterns

and distributions. Therefore, we need a lightweight and effective

way to monitor and collect necessary runtime metrics at both NICs

and switches, to further adjust DCQCN parameters accordingly. The

second challenge is to automatically tune parameters in an effective

and efficient way. Since DCQCN has 10+ parameters, it is hard to

search the optimal parameter setting directly, given the compli-

cated relationship between parameters and network performance.

Therefore, we need a tuning algorithm, which not only makes a

proper tuning decision adaptive to dynamic network environment,

but also determines the parameters within a short period.

In this poster, we propose Chameleon to tune DCQCN pa-

rameters automatically and adaptively, as depicted in Figure 1.

Chameleon consists of two modules, Runtime Metric Monitor and
Adaptive Tuning Algorithm. The monitor aims at collecting and

monitoring necessary runtime metrics from NICs and switches.

1091

https://doi.org/10.1145/3603269.3610865
https://doi.org/10.1145/3603269.3610865
https://doi.org/10.1145/3603269.3610865
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3610865&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Z. Chen, M. Zhang, G. Li, M. Xu

Based on collected metrics, the algorithm tunes the DCQCN pa-

rameters and dispatches them to NICs and switches. Experiment

results show that Chameleon achieves lower tail FCT and higher

throughput than the default parameter setting [3] and expert setting.

2 CHAMELEON DESIGN

2.1 Runtime Metric Monitor

The Runtime Metric Monitor module is designed to monitor run-

time metrics from NICs and switches. It consists of a centralized

controller, allowing NICs and switches to upload their metric data

periodically. Chameleon establishes TCP connections between the

controller and each host & switch’s control plane to provide reliable

transport. To avoid interference with RDMA traffic, RDMA and TCP

are assigned to different queues by different scheduling policies.

We also consider the controller placement according to network

topology and realtime traffic. Currently, we place the controller to

minimize the aggregated hops to NICs and switches.

We encounter two main challenges when designing the monitor.

The first one is to select the useful metrics. Since there are numer-

ous metrics we can acquire from NICs and switches, monitoring

all of them will cause huge bandwidth and computing overhead.

What’s worse, some metrics are not helpful for reflecting network

status, which may mislead the tuning algorithm to make poor de-

cisions. We observe these numerous metrics can be categorized

into informative and error types: the former represents realtime

performance while the latter records error and exception handling.

Therefore, we currently choose several informative metrics that

indicate end-to-end performance and network congestion scale.

First, NICs launch periodic end-to-end measurements and estimate

runtime throughput and RTT. Second, NICs upload several counter

metrics indicating the number of received PFCs and CNPs, while

switches provide current queue length, generated & received PFCs

and ECN marking rate.

The second challenge is to monitor metrics more efficiently. On

one hand, due to inevitable network jitters, NICs and switches may

obtain some incomplete or unstable raw metrics, which cannot

indicate the real performance accurately. On the other hand, tuning

parameters too frequently is unnecessary, which not only causes

more jitters, but also wastes bandwidth and computing resources.

We notice the local control planes of hosts and switches can provide

computing power for simple data preprocessing and cache. There-

fore, Chameleon employs a layered monitor mechanism: every

small period (e.g., 10ms), hosts and switch control planes first filter

the low-quality raw metrics, then compute some statistics (e.g.,

mean, sketches, gradient), and finally upload them to the controller

for parameter tuning every long period (e.g., 100ms).

2.2 Adaptive Tuning Algorithm

We develop the Adaptive Tuning Algorithmmodule to tune DCQCN

parameters dynamically, which takes collected metrics as input

and outputs the parameters for NICs and switches. For NIC-side

parameters, the algorithm tunes the steps and timers of rate Increase

& Decrease, update period of 𝛼 , CNP generation interval, etc. For

switch-side parameters, the algorithm tunes the ECN thresholds

at each switch, i.e., 𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 . These tuned parameters are

dispatched synchronously to guarantee global fairness.

100 200 300 400 500
FCT (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Default
Expert
Chameleon

30 40 50 60 70
Throughput (Gbps)

0.2
0.4
0.6
0.8
1.0

CD
F Default

Expert
Chameleon

Figure 2: Evaluation Results.

Since DCQCN has 10+ parameters, it is difficult to obtain an

optimal setting in polynomial time. Therefore, we resort to a greedy

algorithm to select and adjust one parameter in each round. We

define𝑚
𝑝

𝑖−1 and𝑚
𝑝

𝑖
as the metrics in the previous round 𝑟𝑖−1 and

current round 𝑟𝑖 when adjusting parameter 𝑝 . We aim at improving

𝑚
𝑝

𝑖
after tuning 𝑝 , for example, higher throughput, lower RTT and

fewer generated PFCs/CNPs. We define 𝑣
𝑝

𝑖
and 𝑠

𝑝

𝑖
as the value and

tuning step for parameter 𝑝 at round 𝑟𝑖 , and the algorithm adjusts

𝑝 by 𝑣
𝑝

𝑖+1 = 𝑣
𝑝

𝑖
± 𝑠𝑝

𝑖
from round 𝑟𝑖 to 𝑟𝑖+1. The tuning step for

each 𝑝 is different, and 𝑠
𝑝

𝑖
gets smaller with increasing rounds. In

principle, the tuning step should get more fine-grained when 𝑝

is approaching the ideal value. Therefore, we set initial 𝑠
𝑝

1
mainly

based on our experience, and let 𝑠
𝑝

𝑖+1 = 𝜆𝑠
𝑝

𝑖
. We notice a tradeoff

between tuning convergence and accuracy with different values of

𝜆, and we empirically set 𝜆 = 0.95 in this poster.

Let’s take an example. Suppose the default tuning direction of

𝑝 is incremental, and we are trying to maximize system perfor-

mance according to collected throughput metrics. If throughput

gets obvious improvement from 𝑟𝑖−1 to 𝑟𝑖 , say
𝑚

𝑝

𝑖
−𝑚𝑝

𝑖−1
𝑚

𝑝

𝑖−1
≥ 𝛽 , the

algorithm will keep 𝑣
𝑝

𝑖+1 = 𝑣
𝑝

𝑖
+ 𝑠𝑝

𝑖
in round 𝑟𝑖+1. If throughput

gets worse, i.e.,𝑚
𝑝

𝑖
< 𝑚

𝑝

𝑖−1, it means the tuning direction for 𝑝 is

wrong, thus the algorithm will decrement 𝑝 after round 𝑟𝑖+1, i.e.,
𝑣
𝑝

𝑖+1 = 𝑣
𝑝

𝑖
− 𝑠𝑝

𝑖
. If throughput gets slight or little improvement for

several rounds, i.e., 0 <
𝑚

𝑝

𝑖
−𝑚𝑝

𝑖−1
𝑚

𝑝

𝑖−1
< 𝛽 , it implies further tuning for

𝑝 is not helpful anymore, and the algorithm will stop tuning 𝑝 and

start with another parameter. The tuning process will stop until

all DCQCN parameters are traversed or the network performance

satisfies operators’ demand.

3 EVALUATION & FUTURE WORK

We implement and evaluate Chameleon based on NS3 [1]. We use a

two-tier clos topology (Figure 1) with 100Gbps link bandwidth and

5𝜇s propagation delay. We launch a 20× 20 all-to-all workload with

100MB flow size, which is common in RDMA-based AI training

clusters. In this scenario, Chameleon completes the parameter de-

cision within 200 rounds, thus the tuning process is finished within

10+ seconds. In terms of FCT and throughput, Chameleon is com-

pared with 2 parameter settings provided by NVIDIA/Mellanox

[3] and by an expert according to his experience. Figure 2 shows

the CDFs of FCT and throughput. Chameleon achieves 19.7% and

13.2% lower tail FCT, and 40.5% and 25.1% larger average through-

put than the default and expert settings, respectively. In future,

we plan to 1) investigate more useful metrics and develop a more

collaborative monitor mechanism; 2) explore the relationship be-

tween different parameters and use more intelligent algorithms for

better tuning convergence and accuracy; 3) implement all details

and conduct more evaluations under different environment settings

and workloads.

1092

Chameleon: Automatic and Adaptive Tuning for

DCQCN Parameters in RDMA Networks ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

REFERENCES

[1] 2020. High Precision Congestion Control. (2020). https://github.com/alibaba-edu/

High-Precision-Congestion-Control

[2] 2022. DCQCN CC Algorithm. (2022). https://enterprise-support.nvidia.com/s/

article/DCQCN-CC-algorithm

[3] 2023. DCQCN Parameters. (2023). https://enterprise-support.nvidia.com/s/

article/dcqcn-parameters

[4] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir

Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,

et al. 2023. Empowering Azure Storage with RDMA. In NSDI.
[5] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen

Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When Cloud Storage

Meets RDMA. In NSDI.
[6] Yixiao Gao, Yuchen Yang, Tian Chen, Jiaqi Zheng, Bing Mao, and Guihai Chen.

2018. Dcqcn+: Taming large-scale incast congestion in rdma over ethernet

networks. In ICNP.
[7] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A unified architecture for accelerating distributed DNN training in hetero-

geneous GPU/CPU clusters. In OSDI.

[8] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:

High precision congestion control. In SIGCOMM.

[9] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,

Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. 2022.

Software-hardware co-design for fast and scalable training of deep learning

recommendation models. In ISCA.
[10] Kai Wang, Fang Dong, Dian Shen, Chengtian Zhang, Jinghui Zhang, and Junzhou

Luo. 2021. Towards tunable RDMA parameter selection at runtime for datacenter

applications. In CSCWD.
[11] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben Xia, Derui Liu, and Weishan

Deng. 2021. ACC: Automatic ECN tuning for high-speed datacenter networks.

In SIGCOMM.

[12] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In

SIGCOMM.

1093

https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://enterprise-support.nvidia.com/s/article/DCQCN-CC-algorithm
https://enterprise-support.nvidia.com/s/article/DCQCN-CC-algorithm
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters

	1 Introduction
	2 Chameleon Design
	2.1 Runtime Metric Monitor
	2.2 Adaptive Tuning Algorithm

	3 Evaluation & Future Work
	References

