
Filtering Spoofed IP Traffic Using Switching ASICs∗

Jiasong Bai, Jun Bi, Menghao Zhang, Guanyu Li
Institute for Network Sciences and Cyberspace, Tsinghua University

Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

CCS CONCEPTS

• Security andprivacy→Network security; •Networks

→ Network architectures;

KEYWORDS

Programmable Switch, Spoofed IP Traffic, Hop-Count Filter
ACM Reference Format:

Jiasong Bai, Jun Bi, Menghao Zhang, Guanyu Li. 2018. Filtering
Spoofed IP Traffic Using Switching ASICs. In Posters-Demos ’18:
Posters and Demos, August 20–25, 2018, Budapest, Hungary. ACM,
NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3234200.3234205

1 INTRODUCTION

Spoofed IP traffic remains a significant threat to the Internet.
Although an attacker can forge any field in the IP header,
she/he cannot falsify the number of hops an IP packet takes to
reach its destination. Based on this, some previous works pro-
pose hop-count based defense mechanisms to filter spoofed
IP traffic (e.g., TCP, UDP, ICMP) with an IP-to-hop-count
(IP2HC) mapping table [3, 5]. To guarantee the correctness,
the table should only be updated by legitimate packets, i.e.,
TCP connections with established states. Since the monitor-
ing of TCP establishment procedures can only be conducted
in hosts under traditional networks, these defense mech-
anisms are all located in end systems. Therefore, spoofed
packets cannot be filtered until they arrive at the targeted
server, making end hosts still suffer.
The advent of the programmable data plane allows of-

floading intelligence into the network, providing opportuni-
ties to conduct the TCP connection monitoring in switches.
∗Supported by National Key R&D Program of China (2017YFB0801701),
the National Science Foundation of China (No.61472213) and CERNET
Innovation Project (NGII20160123). Jun Bi is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5915-3/18/08.
https://doi.org/10.1145/3234200.3234205

In this poster, we present NetHCF, an in-network spoofed
traffic filtering system. By building the IP2HC table in key
switches and filtering spoofed packets with switching ASICs,
NetHCF can provide bandwidth protection for legitimate
traffic and save computation and storage resources for end
servers. Benefit from the high performance of the switching
ASICs, NetHCF is able to examine every packet to update the
IP2HC table without sampling, and perform spoofed packets
detection and filtering at line rate.

Despite these great benefits, applying the traditional tech-
niques of HCF into a single switch is non-trivial. Several
challenges must be carefully addressed:

First, fitting the whole IP2HC table in limited SRAM and
keeping the false positive rate acceptable. It is impossible
to store the IP2HC table at the granularity of each IP ad-
dress (232 bytes (4GB)) in limited switch SRAM ((50∼100MB)
[4]), and a hash-based space compression has to be adopted.
Given a specific storage size, the more mappings are added,
the larger the false positive rate becomes as the probability
of collision rises. To address this, we adopt multiple hash
functions to map a source IP to multiple entries with a 32-bit
bitmap and give the theoretical analysis accordingly (§2.1).

Second, recording limited mappings and updating the
IP2HC table timely. With new mappings generated all the
time, some mappings have to be removed timely, otherwise
the false positive rate will increase. Typically we hope to
remove mappings with a lower probability to be accessed in
the following time. We design an efficient update procedure
to remove the out-dated mappings in the IP2HC table (§2.2).

Besides, we clarify two running states of NetHCF to iden-
tify the attack scenarios (§2.3), and give a preliminary im-
plementation and evaluation to demonstrate that NetHCF
provides effective filtering with only minor overheads (§3).

2 NETHCF DESIGN

2.1 IP2HC Table

The IP2HC table is the core module of NetHCF. It com-
presses the address space from 232 to 223, and each entry
maintains a 32-bit bitmap to record all possible hop-count
values. Although not recorded directly, the hop-count can be
easily inferred by subtracting the final TTL from the initial
TTL[1, 3]. Inspired by bloom filter, we use k hash functions to
map an IP address to different entries. The i-th bit of the j-th
entry is set to 1 when a legitimate packet with i hop-count

https://doi.org/10.1145/3234200.3234205
https://doi.org/10.1145/3234200.3234205


Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary Jiasong Bai, Jun Bi, Menghao Zhang, Guanyu Li

0 00 0 0 0 0 0…

1 00 0 0 0 0 0…

2 00 0 0 0 0 0…

!!" − $ 00 0 0 0 0 0…

…

32 bits

(a) Table Structure.

0 1 0
1 0 0
2 1 0
3 0 0
4 1 0
5 0 0

i i’
New

1 1
1 1
1 0
0 0
1 1
0 0

i i’

1 1
1 1
0 0
0 0
1 1
0 0

i i’
Record Update

(b) Update Procedure.

Figure 1: IP2HC Table.

�

��	�

���


��
��
�

����

�
�

	���

��

����

����

����


���

�����

�����

�

��

�
�	

�

�
��
��

Normal																																																				Attack

����
� ������
�� ������
������

��
 �����
 ��
 �����


Figure 2: Bandwidth Protection.

gets hashed to j by one or more hash functions. When a TCP
connection is established, it gets hashed by all k functions,
and corresponding bits are set to 1. For a few packets with
hc bigger than 32, they can be stored in the hc%32 location.
As depicted in Figure 1(a), a table takes 228 bits or 32 MB,
fitted for most commodity switches [4].
There will be false positives for IP2HC, when a forged

packet with wrong hop-count happens to be hashed to bits
already set as 1. Given an IP2HC table withm entries and k
hash functions, after inserting n mappings (n =

∑31
i=0 ni , ni

stands for number of packets with i hops), the probability
that a specific bit i is still 0 is p = (1 − 1

m )kni ≈ e−kni /m . The
probability of a false positive is

f = (1−p)k = (1−e−kni /m)k = ekln(1−e
−kni /m ) = e

−m
ni

ln(x )ln(1−x )

f gets minimized when

x = 1 − e−kni /m =
1
2
⇒ k =

m

ni
ln2 ⇒ f = (1/2)

m
ni
ln2

Set k as 7, we have f < 0.01 for ni < 8.5 × 105. Considering
ni is the number of mappings sharing the same hc value i , we
have n = 32 ∗ ni . Given am size table with k hash functions,
NetHCF can work at a relatively low false positive rate f to
keep less than n mappings.

2.2 Update IP2HC Table

Considering the access locality, the mappings which have not
been accessed in the past period are less likely to be visited
in the future. During an update, these mappings should be
deleted first. We double the bitmap to catch the time-related
information since it is missed in the IP2HC table. To help
clarify the update procedure, we use a table withm equals
6, k equals 2 to give a brief overview in Figure 1(b), i stands
for front i-th bits and i ′ stands for cache i-th bits used for
matching.

The IP2HC table is updated periodically. At the beginning
of each period, the cache bits are cleared (New stage). During
the period (Record stage), a cache bit is set to 1 when (1) the
front bit of this entry is accessed by a normal packet (2) a
new IP with i hc is hashed to this entry. As shown in Figure
1(b), if a packet with i hops is hashed to 0 and 4 entry, the
two front bits are accessed, then the cache bits of entry 0 and

4 are set to 1. Meantime, if a new source IP is hashed to 0 and
1 entry, both front and cache bits of these two entries are
set to 1. At the end of each period (Update stage), values of
cache bits are copied to front bits, then cache bits get cleared
and continue to perform the above operations (New stage).
The frequency of update should be set according to n value
and the emerging speed of new source IPs.
2.3 Learning and Filtering State

There are two states of NetHCF according to whether to
discard spoofed packets. In both states, NetHCF monitors
handshake messages to maintain a TCPSession table [2]. For
connections passing three handshakes, NetHCF removes
them from the TCPSession table and updates IP2HC to record
new mappings. Incoming packets are hashed by k functions
to check whether they have correct hop-count values. For
spoofed packets which fail the IP2HC check, NetHCF ignores
them in learning state while discards them in filtering state.
To switch between two states, we count the number of

spoofed packets in a short period to decide whether to fil-
ter the spoofed packets. When the number exceeds a high
thresholdThiдh , NetHCF enters the filtering state and begins
to drop the spoofed packets. And if the number goes lower
than a low thresholdTlow , NetHCF returns to learning state
and passes all packets to the server.

3 EVALUATION AND FUTUREWORKS

We implement a prototype1 of NetHCF in bmv2 in 400 lines
of P4. As depicted in Figure 2, under normal circumstances,
NetHCF mistakes a few normal packets as spoofed ones for
the sake of hash collisions in the TCPSession table. Since
NetHCF passes all packets in learning state, the communi-
cation will not get influenced. Under attack circumstances,
NetHCF is able to recognize and drop most spoofed packets
with 2.82% of false positive rate. Our prototype only imple-
ments one hash function for IP2HC, the false positive rate
can be decreased by applying more hash functions as the
analysis in Section 2.1. In future, wewill implement all details
and conduct more evaluations, and consider more compli-
cated challenges such as network-wide coordination, TCP
connections with asymmetric paths, etc.
1https://github.com/ZhangMenghao/Anti-spoof



Filtering Spoofed IP Traffic Using Switching ASICs Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary

REFERENCES

[1] Noah Davids. 2018. default TTL values. http://noahdavids.org/self_
published/TTL_values.html. (2018).

[2] Cheng-Hung He and et al. 2018. A Zero Flow Entry Expiration Timeout
P4 Switch. In SOSR. ACM, 19.

[3] Cheng Jin and et al. 2003. Hop-count filtering: an effective defense
against spoofed DDoS traffic. In CCS. ACM, 30–41.

[4] Barefoot Networks. 2018. Tofino. https://barefootnetworks.com/
products/brief-tofino/. (2018).

[5] Haining Wang, Cheng Jin, and Kang G Shin. 2007. Defense against
spoofed IP traffic using hop-count filtering. ToN 15, 1 (2007), 40–53.

http://noahdavids.org/self_published/TTL_values.html
http://noahdavids.org/self_published/TTL_values.html
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/

	1 Introduction
	2 NetHCF Design
	2.1 IP2HC Table
	2.2 Update IP2HC Table
	2.3 Learning and Filtering State

	3 Evaluation and Future Works
	References

