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Abstract. Software-Defined Networking (SDN) continues to be
deployed spanning from enterprise data centers to cloud computing with
emerging of various SDN-enabled hardware switches. In this paper, we
present Control Plane Reflection Attacks to exploit the limited process-
ing capability of SDN-enabled hardware switches. The reflection attacks
adopt direct and indirect data plane events to force the control plane to
issue massive expensive control messages towards SDN switches. More-
over, we propose a two-phase probing-triggering attack strategy to make
the reflection attacks much more efficient, stealthy and powerful. Exper-
iments on a testbed with physical OpenFlow switches demonstrate that
the attacks can lead to catastrophic results such as hurting establish-
ment of new flows and even disruption of connections between SDN con-
troller and switches. To mitigate such attacks, we propose a novel defense
framework called SWGuard. In particular, SWGuard detects anomalies
of downlink messages and prioritizes these messages based on a novel
monitoring granularity, i.e., host-application pair (HAP). Implementa-
tions and evaluations demonstrate that SWGuard can effectively reduce
the latency for legitimate hosts and applications under Control Plane
Reflection Attacks with only minor overheads.

Keywords: Software-Defined Networking
Timing-based side channel attacks · Denial of service attacks

1 Introduction

Software-Defined Networking (SDN) has enabled flexible and dynamic network
functionalities with a novel programming paradigm. By separating the control
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plane from the data plane, control logics of different network functionalities are
implemented on top of the logically centralized controller as applications. Typ-
ical SDN applications are implemented as event-driven programs which receive
information directly or indirectly from switches and distribute the processing
decisions of packets to switches accordingly. These applications enable SDN to
adapt to data plane dynamics quickly and make responses to the application
policies timely. A wide range of network functionalities are implemented in this
way, allowing SDN-enabled switches to behave as firewall, load balancing, net-
work address translation, L2/L3 routing and so on.

Despite the substantial benefits, the deployment of SDN has encountered sev-
eral problems. In particular, a major limitation is the control message process-
ing capability on SDN-enabled hardware switches of various brands (e.g., IBM
RackSwitch, Juniper Junos MX-Series, Brocade NetIron CES 2000 Series, Pica8
Series, Hewlett-Packard Series), constrained by multiple factors. First, CPUs
of hardware switches are usually relatively wimpy [8,31] for financial reasons,
which restricts the message parsing and processing capability of software proto-
col agents in switches. Second and more importantly, flow tables in most com-
modity hardware OpenFlow switches use Ternary Content Addressable Mem-
ory (TCAM) to achieve wire-speed packet processing, which only allows limited
flow table update rate (only supporting 100–200 flow rule updates per second
[5,12,13,16,29,31,33]) and small flow table space (ranging from hundreds to
a few thousand [8,16,18]) due to manufacturing cost and power consumption.
These limitations have slowed down network updates and hurt network visibil-
ity, which further constrain the control plane applications with dynamic policies
significantly [15].

In this paper, we systematically study the event processing logic of the SDN
control plane and locate two types of data plane events which could reflect expen-
sive control messages towards the data plane, i.e., direct data plane events (e.g.,
Packet-In messages) and indirect data plane events (e.g., Statistics Query/Reply
messages). By manipulating those data plane events, we present two novel
Control Plane Reflection Attacks in SDN, i.e., Table-miss Striking Attack and
Counter Manipulation Attack, which can exploit the limited processing capabil-
ity for control messages of SDN-enabled hardware switches. Moreover, in order to
improve accuracy and efficiency of Control Plane Reflection Attacks, we propose
a two-phase attack strategy, i.e., probing phase and triggering phase, inspired
by timing-based side channel attacks. Control Plane Reflection Attacks are able
to adjust attack stream patterns adaptively and cleverly, thus could gain a great
increment of downlink messages1. Extensive experiments with a physical testbed
demonstrate that the attack vectors are highly effective and the attack effects
are pretty obvious.

In order to mitigate Control Plane Reflection Attacks, we present a novel
and effective defense framework, namely SWGuard. SWGuard proposes a new
monitoring granularity, host-application pair (HAP) to detect downlink message

1 For brevity, we denote the messages from the data plane to the control plane as
uplink messages, and the messages vice versa as downlink messages.
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anomalies, and prioritizes downlink messages when downlink channel congests.
In this way, SWGuard is able to satisfy the latency requirements of different
hosts and applications under the reflection attacks.

To summarize, our main contributions in this paper include:

– We systematically study the event processing logic of SDN applications and
further locate two types of data plane events, i.e., direct/indirect events,
which could be manipulated to reflect expensive control messages towards
SDN switches.

– We present two novel Control Plane Reflection Attacks, Table-miss Strik-
ing Attack and Counter Manipulation Attack, to exploit limited processing
capability of hardware switches. Moreover, we develop a two-phase attack
strategy to launch such attacks in an efficient, stealthy and powerful way.
The experiments with a physical SDN testbed exhibit their harmful effects.

– We present a defense solution, called SWGuard, with an efficient priority
assignment and scheduling algorithm based on the novel abstraction of host-
application pair (HAP). Implementations and evaluations demonstrate that
SWGuard provides effective protection for legitimate hosts and applications
with only minor overheads.

The remainder of this paper is structured as follows. Section 2 introduces the
background that motivates this work. Section 3 illustrates the details of Control
Plane Reflection Attacks and Sect. 4 proves the harmful effects with a physical
testbed. We present our SWGuard defense framework in Sect. 5 and make some
discussions in Sect. 6. Related works are illustrated in Sect. 7, and the paper is
concluded in Sect. 8.

2 Background

Processing Logic of Data Plane Events. SDN introduces the open net-
work programming interface and accelerates the growth of network applications,
which enable network to dynamically adjust network configurations based on
certain data plane events. These events could be categorized into the following
two types: direct data plane events such as Packet-In messages, where the event
variations are reported to the controller from the data plane directly, and indi-
rect data plane events such as Statistics Query/Reply messages, where the event
variations are obtained through a query and reply procedure at the controller. In
the first case, the controller installs a default table-miss flow rule on the switch.
When a packet arrives at the switch and does not match any other flow rule, the
switch will forward the packet to the control plane for further processing. Then
the controller makes decisions for the packet based on the logics of the appli-
cations, and assigns new flow rules to the switch to handle subsequent packets
with the same match fields. In the second case, the controller first installs a
counting flow rule reactively or proactively on the switch for a measurement
purpose. When a packet matches the counting flow rule in the flow table, the
specific counter increments with packet number and packet bytes. To obtain the
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status of the data plane, the controller polls the flow counter values for statis-
tics periodically and performs different operations according to the analysis of
statistics. A large number of control plane applications combine these two kinds
of data plane events to compose complicated network functions, which further
achieve advanced packet processing.

Usage Study of Data Plane Events. Based on the event-driven program-
ming paradigm, a large number of control plane applications emerge in both
academia and industry. In academia, since the publication of OpenFlow [23],
many research ideas have been proposed to fully leverage the benefits of direct
and indirect data plane events. While the direct data plane events are needed by
almost all applications, the indirect data plane events are also widely included.
In particular, we have categorized these indirect event-driven applications into
three types, applications which help improve optimization, monitoring and secu-
rity of network. Please see our technical report [36] for details. Although each
of them has different purposes, all of these works are deeply involved in the
utilization of the indirect data plane events, obtaining a large number of traffic
features and switch attributes. Meanwhile, these indirect data plane events con-
tribute a large part of communication between applications and switches. SDN
applications have also experienced great development in industry recently. The
mainstream SDN platforms (e.g. Open Daylight, ONOS, Floodlight) foster open
and prosperous markets for control plane softwares, which provide a great range
of applications with a composition of the direct and indirect data plane events.
Meanwhile, since these applications are obtained from a great variety of sources,
their quality could not be guaranteed and their logics may contain various flaws
or vulnerabilities. In particular, we have investigated all mainstream SDN con-
trollers, and discovered that indirect event-driven applications occupy a large
part of application markets in these open source controller platforms. Due to
the page limit, please see the application summary in our technique report [36].

Limitations of SDN-enabled Hardware Switches. Compared with the
rapid growth of packet processing capability in logically centralized and phys-
ically distributed network operating systems (e.g., Onix [17], Hyperflow [30],
Kandoo [11]) and controller frameworks (e.g., Open Daylight, ONOS), the down-
link message processing capability of SDN-enabled hardware switches evolves
much slower. State-of-the-art SDN-enabled hardware switches [24] only sup-
port 8192 flow entries. To make matters worse, the capability to update the
entries in TCAM is pretty limited, usually less than 200 updates per second
[5,12,13,15,16,29,31,33]. According to our experiment on Pica8 P-3922, the
maximum update rate is about 150 entries per second. We observe that the
downlink channel in switches is the dominant resource in SDN architecture that
must be carefully managed to fully leverage the benefits of SDN applications.
However, existing SDN architecture does not provide such a mechanism to pro-
tect the downlink channel in the switches that it is vulnerable to Control Plane
Reflection Attacks.
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3 Control Plane Reflection Attacks

In this section, we first provide our threat model and then describe the details of
two Control Plane Reflection Attacks including Table-miss Striking Attack and
Counter Manipulation Attack.

3.1 Threat Model

We assume an adversary could possess one or more hosts or virtual machines
(e.g., via malware infection) in the SDN-based network. The adversary can utilize
his/her controlled hosts or virtual machines to initiate probe packets, monitor
their responses, and generate attack traffic. However, we do not assume the
adversary can compromise the controller, applications or switches. In addition,
we assume the connections between the controller and switches are well protected
by TLS/SSL.

3.2 Control Plane Reflection Attacks

Control Plane Reflection Attacks are much more stealthy and sophisticated than
previous straightforward DoS attacks against SDN infrastructure, and generally
consist of two phases, i.e., probing phase and triggering phase. During the prob-
ing phase, the attacker uses timing probing packets, test packets and data plane
stream to learn the configurations of control plane applications and their involve-
ments in direct/indirect data plane events. With several trials, the attacker is
able to determine the conditions that the control plane application adopts to
issue new flow rule update messages. Upon the information obtained from prob-
ing phase, the attacker can carefully craft the patterns of attack packet stream
(e.g., header space, packet interval) to deliberately trigger the control plane to
issue numerous flow rule update messages in a short interval to paralyze the
hardware switches. We detail two vectors of Control Plane Reflection Attacks as
follows.

Table-miss Striking Attack. Table-miss Striking Attack is an enhanced attack
vector from previous Data-to-control Plane Saturation Attack [9,27,28,32].
Instead of leveraging a random packet generation method to carry out the attack,
Table-miss Striking Attack adopts a more accurate and cost-efficient manner by
utilizing probing and triggering phases.

The probing phase is to learn confidential information of the SDN control
plane to guide the patterns of attack packet stream. The attacker could first
probe the usage of the direct data plane events (e.g., Packet-In, Packet-Out,
Flow-Mod) by using various low-rate probing packets whose packet headers are
filled with deliberately faked values. The attacker can send these probing packets
to the SDN-based network and observe the responses accordingly, thus the round
trip time (RTT) for each probing packet could be obtained. If several packets
with the same packet header get different RTT values, especially, the first packet
goes through a long delay while the other packets get relatively quick responses,



166 M. Zhang et al.

we can conclude that the first packet is directed to the controller and the other
packets are forwarded directly in the data plane, which indicates that the specific
packet header matches no flow rules in the switch and invokes Packet-In and
Flow-Mod messages. Then the attacker could change one of the header fields with
the variable-controlling approach. With no more than 42 trials2, the attacker is
able to determine which header fields are sensitive to the controller, i.e., the
grain for routing. Then the attacker could carefully craft attack packet stream
based on probed grains to deliberately trigger the expensive downlink messages.

Counter Manipulation Attack. Compared with Table-miss Striking Attack,
Counter Manipulation Attack is much more sophisticated, which is based on
the indirect data plane events (e.g., Statistics Query/Reply messages). In order
to accurately infer the usage of the indirect data plane events, three types of
packet streams are required, i.e., timing probing packets, test packets and data
plane stream. The timing probing packets are inspired by the time pings in [29],
which must involve the switch software agent and get the responses accordingly.
However, we believe that they have a wider range of choices. The test packets are
a sequence of packets which should put extra loads to the software agent of the
switch, and must be issued at an appropriate rate for the accuracy of probing.
The data plane stream is a series of stream templates, and should directly go
through the data plane (i.e., do not trigger table-miss entry in the flow table of
the switch), which is intended to obtain more advanced information such as the
specific conditions which trigger indirect event-driven applications.

Timing probing packets are used to measure the workload of software agent of
a switch, which should satisfy three properties: first, they should go to the control
plane by hitting the table-miss flow rule in the switch, and trigger the operations
of the corresponding applications (e.g., Flow-Mod or Packet-Out). Second, each
of them must evoke a response from the SDN-based network, so the attacker
could compute the RTT for each timing probing. Third, they should be sent
in an extremely low rate (10 pps is enough), and put as low loads as possible
to the switch software agent. We consider there are many options for timing
probing packets, e.g., ARP request/reply, ICMP request/reply, TCP SYN or
UDP. For layer 2, we consider ARP request is an ideal choice since the SDN
control plane must be involved in the processing of ARP request/reply. We note
that sometimes the broadcast ARP request will be processed in the switches.
However, the corresponding ARP reply is a unicast packet so that the control
plane involvement is inevitable if the destination MAC (i.e., the source MAC
address of the ARP Request) has not been dealt by the controller before. As
a result, the attacker could use spoofed source MAC address to deliberately
pollute the device management service of the controller as well as incur the
involvement of the controller. In some layer 2 network, it is not possible to
send packets with random source MAC addresses due to pre-authorized network
access control policies. To address this, the attacker could resort to the flow
rule time-out mechanism of OpenFlow. The attacker would select N benign
2 The latest OpenFlow specification only support 42 header fields, which constrains

the field the controller could use to compose different forwarding policies.
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hosts and send ARP request to them to get the responses. N should satisfy
that N > R ∗ T , where R denotes the probing rate and T denotes the flow-
rule time-out value3. For Layer 3, ICMP is a straightforward choice, since its
RTT calculation has been abstracted as ping command already. The attacker
should choose a number of benign hosts to send ICMP packets and get the
corresponding responses. As for layer 4, TCP and UDP are both feasible when
a layer 4 forwarding policy is configured in the control plane. According to RFC
792 [26], when a source host transmits a probing packet to a port which is likely
closed at the destination host, the destination is supposed to reply an ICMP port
unreachable message to the source. Similarly, RFC 793 [25] requires that each
TCP SYN packet should be responded with a TCP SYN/ACK packet (opened
port) or TCP RST packet (closed port) accordingly. With the probing packet
returned with the corresponding response, the RTT could be calculated and the
time-based patterns could be obtained.

Test packets are used to strengthen the effects of timing probing packets
by adding extra loads to the software agent of the switch. For the purpose,
we consider test packets with a random destination IP address and broadcast
destination MAC address are ideal choices. By hitting the table-miss entry, each
of them would be directed to the controller. Then the SDN controller will issue
Packet-Out message to directly forward the test packet. As a result, the aim of
burdening switch software agent is achieved.

Template
Name

Coordinate Axis Variables

Data plane 
stream with 
steady rate

(v, p)

Data plane 
stream with 
0-1 rate

(v, t, p)

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

Fig. 1. Templates for data plane stream.

Data plane stream is a series of
templates, which should go directly
through the data plane to obtain
more advanced information such as
the specific conditions for indirect
event-driven applications. We pro-
vide two templates here, as shown in
Fig. 1. The first template has a steady
rate v, packet size p, which is mainly
used to probe volume-based statistic
calculation and control method. The
second has a rate distribution like a
jump function, where three variables
(v, t, p) determine the shape of this
template as well as the size of each
packet, which is often used to probe
the rate-based strategy.

The insight of probing phase of Counter Manipulation Attack lies in that
different kinds of downlink messages have diverse expenses for the downlink
channel. Among the interaction approaches between the applications and the
data plane, there are mainly three types of downlink messages, i.e., Flow-Mod,
Statistics Query and Packet-Out. Flow-Mod is the most expensive one among

3 As R is less than 10 usually, and T is set as a small value in most controllers (e.g. 5
in Floodlight), thus N cannot be a large number.
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them, since it not only consumes the CPU of switch agent to parse the mes-
sage, but also involves the ASIC API to insert the new flow rules4. Statistics
Query comes at the second, for it needs the involvement of both switch agent
CPU for packet parsing and ASIC API for statistic querying. These two types of
messages are extremely expensive when the occupation of flow table is high on
the switch. Packet-Out is rather lightweight, since it only involves the CPU of
switch protocol agent to perform the corresponding action encapsulated in the
packet. As these three types of downlink messages incur different loads for the
switch, the latencies of timing probing packets will vary when the switch encoun-
ters different message types. Thus, the attacker could learn whether the control
plane issue a Flow-Mod, or a Statistics Query, or a Packet-Out. As for the indi-
rect data plane events, the statistic queries are usually conducted periodically
by the applications. As a result, each of these queries would incur a small rise
for the RTTs of timing probing packets, which would reveal the period of appli-
cation’s statistic query. If a subsequent Flow-Mod is issued by the controller,
there would be a higher rise of RTT just following the RTT for Statistics Query,
which is named as double-peak phenomenon. Based on the special phenomenon,
the attacker could even infer what statistic calculation methods the application
takes, such as volume-based or rate-based. With several trails of two data plane
stream templates above (t is set as the period of statistic messages, which has
been obtained above) and the variations of v and p in a binary search approach,
the attacker could quickly obtain the concrete conditions (volume/rate values,
number-based or byte-based) that trigger the expensive downlink messages. The
confidential information such as statistic query period, the exact conditions (vol-
ume/rate values, packet number-based or byte-based) that trigger the downlink
messages, helps the attacker permute the packet interval and packet size of each
flow, to deliberately manipulate the counter value to the critical value, thus each
flow would trigger a Flow-Mod in every period. By initiating a large number of
flows, Flow-Mod of equal number would be triggered every period, making the
hardware switch suffer extremely.

4 Attack Evaluation

In this section, we demonstrate our experimental results of Control Plane Reflec-
tion Attacks with a physical testbed. The evaluations are divided into two
parts. First, we conduct our experiments for Table-miss Striking Attack and
Counter Manipulation Attack separately, to show the effectiveness of Control
Plane Reflection Attacks. Second, we perform some benchmarks to provide low-
level details of our proposed attacks.

4.1 Experiment Setup

To demonstrate the feasibility of Control Plane Reflection Attacks, we set up
an experimental scenario as shown in Fig. 2. We choose several representative
4 Moving old flow entry to make room for the new flow rule is an important reason to

make this operation expensive and time-consuming.
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Fig. 2. A typical attack scenario. Fig. 3. Attack experiment setups.

applications, and run them separately on the SDN controller. Flow tables in
the switch are divided into two pipelines, Counting Table for the indirect data
plane event, Forwarding Table for the direct data plane events. Each pipeline
contains multiple flow entries for the two data plane events, and flow tables
of each pipeline are independent and separated, which is the state-of-the-art
approach for multiple application implementations today [20,29].

Reactive Routing is the most common application integrated into most of
the popular controller platforms. It monitors Packet-In messages with a default
table-miss in Forwarding Table, and computes and installs a path for the hosts
of the given source and destination addresses with an appropriate grain. When
one table-miss occurs, 2N downlink Flow-Mod messages would be issued to the
data plane, where N is the length of the routing path.

Flow Monitoring is another common application in SDN-based networks. It
is generally implemented with a Counting Table which counts the number and
the bytes of a flow or multiple flows. The controller polls the statistics of the
Counting Table periodically, conducts analysis on the collected data, and makes
decisions with the analysis results. Further, we extend our Flow Monitoring
sketch into four indirect data plane events driven applications, Heavy hitter
[22], Microburst [10], PIAS [1] and DDoS Detection [34]. The implementa-
tion details are illustrated in our technical report [36].

Our evaluations are conducted on a physical OpenFlow Switch, i.e., Pica8 P-
3290, since it is widely used in academia/industry and supports many advanced
OpenFlow data plane features, such as multiple pipelines and almost full Open-
Flow specifications (from version 1.0 to 1.4). The experimental topology, as
shown in Fig. 3, includes four machines (i.e., h1, h2, s1, and s2) connected to the
hardware switch and a server running Floodlight Controller. The HTTP service
is run on s1 and s2 separately. We consider h2 is a benign client of the HTTP
service and h1 is controlled by the attacker to launch the reflection attack. All
the tested applications discussed above are hosted in the Floodlight controller. In
our experiments, Reactive Routing adopts a five-tuples grained forwarding policy,
and four Flow Monitoring-based applications query the data plane switch every
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2 s, and conduct the corresponding control (e.g., issue one Flow-Mod message)
according to their logic separately.

4.2 Attack Feasibility and Effects

In this subsection, we conduct the experiments for Table-miss Striking Attack
and Counter Manipulation Attack separately, and show a detailed procedure for
probing phase and triggering phase.

Table-miss Striking Attack. For the Reactive Routing application, when we
launch a new flow, the first packet is inclined to get a high RTT, and the following
several packets would get low RTTs. Since there are only three hosts on our
testbed and ping could launch only one new flow between each host pair, we
resort to UDP probing packets to cope with this problem. We compute the time
difference between the request and reply to obtain the RTT. As depicted in
Fig. 4(a), we let h1 transmit 10 UDP probing packets to a destination port and
then change the destination port. The RTT for the first packet of each flow is
quite distinct from that of the other packets. When we change any field pertained
to five-tuples, the similar results would be obtained. The modification to other
packet fields would always lead to a quick response. All the phenomena indicate
that five-tuples grained forwarding policy is adopted by the Reactive Routing.

With the inference of forwarding grain, the attacker is able to carefully craft
a stream of packets whose header spaces vary according to the grain. In this
way, each attack packet could strike the default table-miss in the switch, thus
triggering Packet-In and Flow-Mod in the control channel. Data-to-control Plane
Saturation Attack resorts to a random packet generation approach, making the
attack not so cost-efficient for the attacker. As we can see in Fig. 4(b), Table-miss
Striking Attack is much more efficient than Data-to-control Plane Saturation
Attack. Further, we also compare the RTTs and bandwidth for normal users
under the saturation attack and the striking attack. As shown in Fig. 5, the
striking attack could easily obtain a higher RTT and a lower bandwidth usage
for normal users with the same attack expense, which demonstrates that our
Table-miss Striking Attack is much more cost-efficient and powerful.

Counter Manipulation Attack. For the Flow Monitoring-based applications,
we first supply a steady rate of test packets at 300 packets per second (pps)5,
which would put appropriate loads on the control plane as required in [29]. The
rate of timing probing packets is set as 10 pps. The results for four applications
are similar, as shown in Fig. 6(a). As we could conclude, Flow Monitoring-based
applications poll the switch for statistics every 2 s. In particular, the double
peaks in red rectangle (double-peak phenomenon) denote two expensive downlink
messages are issued successively. The first peak is attributed to the periodical
Statistics Query message, while the second is caused by the Flow-Mod message
for the control purpose. We make this inference because both Flow-Mod and

5 300 pps is a pretty secure rate, since a legitimate host could issue packets at thousand
of pps under normal circumstance.
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(a) RTTs for Reactive Routing. (b) Reactive Routing attack efficiency.

Fig. 4. Attack feasibility and efficiency for Table-miss Striking Attack.

(a) RTTs for normal users under the sat-
uration attack and the striking attack.

(b) Bandwidth for normal users under the
saturation attack and the striking attack.

Fig. 5. RTTs and bandwidth for normal users under the saturation attack and the
striking attack.

Statistics Query are much more expensive than Packet-Out while they two have
a similar expense for the downlink channel.

Furthermore, more confidential information could be obtained with the joint
trials and analysis of data plane stream and double-peak phenomenon. If the
attacker obtains a series of successive double-peak phenomenon (as shown in
Fig. 6(b) with the input of data plane stream template1, where v is a big value,
and obtains a series of intermittent double-peak phenomenon (Fig. 6(c) with
template2, where v is also a big value, she/he could determine that packet num-
ber volume-based statistic calculation method is adopted. This is because packet
number volume-based statistic calculation approach is sensitive to stream with
a high pps. The other three cases are also listed in Table 1. From this table, we
can conclude the concrete statistic calculation approach the application adopts.
Furthermore, with the variations of v and p, the attacker could infer the critical
value of volume or rate. In addition, we can verify our inference with a lot of
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(a) Timing probe RTTs for Flow Moni-
toring-based applications.

(b) Timing probe RTTs patterns 1.

(c) Timing probe RTTs patterns 2. (d) Timing probe RTTs pattern 3.

Fig. 6. Timing-based patterns for Counter Manipulation Attack.

other ways, not only the proposed two data plane stream templates as shown
above. We are planning to develop more representative templates in our future
works. In particular, we test our four indirect event driven applications, and find
them fall into the distribution in Table 2. This is consistent with the policies of
each application, which demonstrates the effectiveness of our probing phase.

With the results and information (query period, packet number/byte-based,
volume/rate values) obtained from the probing phase, we move to the second
step and start to commit our Counter Manipulation Attack. We select one appli-
cation, PIAS, setting its priority as 3 levels, and initiate 10 new flows per second.
We carefully set the sent bytes of each flow in each period (2 s), which is bigger
than the critical value we probed. As a consequence, a number of Flow-Mod
messages are issued to the switch when statistic query/reply occurs. As shown
in Fig. 7, the number of Flow-Mod messages could increase as high as 60 at the
end of each period. This would incur pretty high loads to the software agent
of the switch at this moment. Even in some cases, when the attacker controls
thousands of flows intentionally and manipulates all the flow to reach the criti-
cal values simultaneously, thousands of Flow-Mod messages are directed to the
switch, which would cause catastrophic results such as the disruption of connec-
tions between the controller and the switches.
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Table 1. Relationship between data plane stream and double-peak phenomenon.

Volume-based Rate-based

Packet number Template1(v↑, p) → patterns 1 Template1(v↑, p) → patterns 3

Template2(v↑, p) → patterns 2 Template2(v↑, p) → patterns 1

Packet byte Template1(v, p↑) → patterns 1 Template1(v, p↑) → patterns 3

Template2(v, p↑) → patterns 2 Template2(v, p↑) → patterns 1

Table 2. Distribution of the four indirect event driven applications.

Volume-based Rate-based

Packet number Microburst -

Packet byte Heavy Hitter
PIAS
DDoS Detection

DDoS Detection

4.3 Attack Fundamentals and Analysis

In this subsection, we study more about low-level details of Control Plane Reflec-
tion Attacks.

Test Packet Rate and Test Packet Type. Fig. 8 shows the timing probe
RTTs as the rate of test packets varies where the controller is configured to
issue a Flow-Mod message for each test packet. Figure 9 shows the timing probe
RTTs as Statistics Query rate varies. Figure 10 shows the timing probe RTTs
as the rate of test packets varies where the controller processes each test packet
with a Packet-Out message. As we can conclude from these figures, different
downlink messages have diverse expenses for the downlink channel, and all of
the three scenarios encounter a significant nonlinear jump. In particular, when
the controller generates Flow-Mod message for each test packet, the RTTs can
reach 1000 times higher at approximately 50 pps. For Statistics Query messages,
the RTTs are about 100 times at 100 pps. And for Packet-Out messages, the
RTTs double 100 times at about 500 pps. Meanwhile, we measure the resource
usage of the hardware switch and the controller, and find that the CPU usage of
the switch could reach above 90% at the point of the nonlinear jump, while the
memory usage of the switch, the CPU and memory usage of the control server
is relatively low (at most 30%). In addition, we have a conservation with the
Pica8 team via email, and obtain that the switch control actions (e.g. Flow-Mod,
Statistics Query) must contend for the limited bus bandwidth between a switch’s
CPU and ASIC, and insertion of a new flow rule requires the rearrangement of
rules in TCAM, which lead to the results that the expense of Flow-Mod ≥
Statistics Query � Packet-Out.
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Fig. 7. Attack effect Fig. 8. Timing probe RTTs as Flow-
Mod rate varies.

Fig. 9. Timing probe RTTs as statis-
tic query rate varies.

Fig. 10. Timing probe RTTs as
Packet-Out rate varies.

The Impact of Background Traffic. The background traffic has two impacts
for the Control Plane Reflection Attacks. First, it may affect the accuracy of
probing phase. In fact, a moderate rate of background traffic would not weaken
the effectiveness of the probing. Conversely, it amplifies the probing effect. The
reason behind this is that the effect of background traffic is somewhat like the
role played by test packets, and it would put some baseline loads to the switch
protocol agent, which would make the probing more accurate. An excessively
high rate of background traffic would certainly lower the probing accuracy, since
there is already a high load for the protocol agent of the switch. As a consequence,
the loads incurred by Statistics Query would not cause the obvious and periodical
peaks for the RTTs of timing probing packets, instead, the patterns may become
random and irregular. However, in such cases, the switch is already suffering, thus
the aim of the attack has already been achieved. Second, the background traffic
may also affect the trigger phase. Actually, this influence is positive, too. The
existence of the background traffic would inevitably bring about some downlink
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messages to the control channel, which would boost the effects of Control Plane
Reflection Attacks.

5 Defense Approach

5.1 Countermeasure Analysis

The control plane reflection attack is deeply rooted in SDN architecture since the
performance of existing commodity SDN-enabled hardware switches could not
suffice the need of the SDN applications. A straightforward method to mitigate
this attack is limiting the use of dynamic features for network applications, never-
theless, this comes at the expense of less fine-grained control, visibility, and flexi-
bility in traffic management, as evidently required in [4,14,31]. Another straight-
forward defense approach is limiting the downlink message transmission rate
directly in the controller, preventing the switches from being overwhelmed. How-
ever, the exact downlink message processing capabilities for different switches
vary, even for a specific switch, the rate control in the controller cannot precisely
guarantee underload or overload for the remote switch6, making the unified con-
trol inaccurate and complicated. Adding some latency to random downlink mes-
sages seems feasible, which can make the patterns/policies of direct/indirect data
plane events difficult to sniff and obtain. Nevertheless, this technique increases
the total latency for the overall downlink messages, and would inevitably violate
the latency requirements of some latency-sensitive downlink messages, making
it high cost and infeasible.

To address the challenges above, we propose SWGuard to mitigate the reflec-
tion attack and fulfill the requirements of different downlink messages. Our basic
idea is to discriminate good from evil, and prioritize downlink messages with dis-
crimination results. To this end, we propose a multi-queue scheduling strategy, to
achieve different latency for different downlink messages. The scheduling strategy
is based on the statistics of downlink messages in a novel granularity during the
past period, which takes both fairness and efficiency into consideration. When
the downlink channel is becoming congested, the malicious downlink messages
are inclined to be put into a low-priority scheduling queue and the requirements
of good messages are more likely to be satisfied.

5.2 SWGuard: A Priority-Based Scheduler on Switch

The architecture of SWGuard is shown in Fig. 11. SWGuard mainly redesigns
two components of SDN architecture. On the switch side, it changes the existing
software protocol agent to multi-queue based structure, and schedules different
downlink messages with their types and priorities. On the controller side, it
adds a Behavior Monitor module as a basic service, which collects the downlink
message events and assigns different priorities to different messages dynamically.
6 There may be several hops between the switch and the controller, and the network

condition is unpredictable.
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Fig. 11. SWGuard framework design.

Multi-queue Based Software Protocol Agent. In order to prioritize the
downlink messages, we redesign the software protocol agents of the existing
switches. A naive approach is to modify the existing single queue model directly
into priority-based multi-queue model, and enqueue all the downlink messages
into different queues with their priorities and dequeue at different scheduling
rates. However, the types of downlink messages vary, and different message types
have diverse requirements, for example, if Handshake messages and Modify State
messages are put into the same queue, the latency requirement of the former may
be delayed by the latter so that the handshakes between the controller and the
switches could not be established timely.

To this end, we summarize the downlink messages into the following four
categories: (1) Modify State Messages (MSM), (2) Statistic Query Messages
(SQM), (3) Configuration Messages (CM), and (4) Consistency Required Mes-
sages (CRM), and design a Classifier to classify the downlink messages into
different queues accordingly. The first two types are related to the behaviors of
hosts and applications, so we design a multi-queue for each of them. The multi-
queue consists of three levels (quick, slow, block), and each level is designed for
the corresponding priority. The third type serves for basic services of the con-
troller (e.g., Handshake, LLDP), while the detail of the last type is illustrated
in Sect. 5.2, and both of them inherit from the original single queue. Classifier
makes use of ofp header field in OpenFlow Header to distinguish message type,
and a 2-bit packet metadata to obtain priority.

With the downlink messages in the queues, a Scheduler is designed to dequeue
the messages with a scheduling algorithm. In order not to overwhelm the capa-
bility of ASCI/Forwarding Engine, a Finish Signal should be sent back to the
Scheduler once a Modify State/Statistic Query message is processed. Then the
Scheduler knows whether to dequeue a next message of the same type from
queues. We design a time-based scheduling algorithm, setting different strides
for different queues. For the last two queues (Configuration Messages, Consis-
tence Required Messages), the stride is set as 0, which means whenever there
is a message, it would be dequeued immediately. For the first two multi-queues,
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the stride for the queue of quick level is set as 0, for that of slow level is set as
a small time interval, while for that of block level is set as a relatively bigger
value. With the principles illustrated above, we design the scheduling algorithm
as Algorithm 1.

Algorithm 1. The Scheduling Algorithm for Protocol Agent.
// Initialization

foreach que ∈ queues do
set que.stride;
que.time = getcurrenttime();

// Enter the Scheduler thread

while true do
foreach que ∈ queues do

if que.stride ≤ getcurrenttime() − que.time then
if que.empty() == false then

que.time = getcurrenttime();
que.dequeue();

else
que.time = getcurrenttime();

Behavior Monitor. In order to distinguish different downlink messages with
different priorities, an appropriate Monitoring granularity is in urgent need. Pre-
vious approaches mainly conduct the monitoring with the granularity of source
host [3,34], and react to the anomalies on the statistics. However, in the control
plane reflection attacks, these approaches are no longer valid and effective. For
example, if we only take the features of the data plane traffic into consideration,
and schedule with the statistics of source hosts [35], it would inevitably violate
the heterogeneous requirements of various applications.

To address this challenge, we propose the novel abstraction of Host-
Application Pair (HAP), and use it as the basic granularity for monitoring and
statistics. These two dimensions are easy to be obtained from the uplink mes-
sages and the configurations of the controller. Considering K applications exist
on the control plane, their requirements for downlink messages are represented
as vector a0 = 〈a1, a2, . . . aK〉, and N hosts/users in the data plane, correspond-
ing requirements vector h0 = 〈h1, h2, . . . hN 〉. a0 and h0 are both set by the
network operators, depending on the property of the applications and the pay
of hosts/users. Thus the expected resource allocation matrix is R0 = a0

T · h0.
And the expected resource allocation ratio matrix is I0 = R0∑K

k=1
∑N

n=1 akhn
. Dur-

ing the past period (T seconds), the statistics of HAP is represented as resource
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occupation matrix R =

⎛
⎜⎜⎜⎝

r11 r12 . . . r1N
r21 r22 . . . r2N
...

...
. . .

...
rK1 rK2 . . . rKN

⎞
⎟⎟⎟⎠. And the sum of the elements in

R is denoted as Sum =
∑K

k=1

∑N
n=1 rkn. Suppose the maximum capability of

downlink channel in T seconds is Sum0, Sum
Sum0

denotes the resource utilization
rate of the downlink channel. In order to save resources of the control channel,
we design our SWGuard system as attack-driven, which means when Sum

Sum0
< α,

SWGuard is in sleep state except for Event Collector. All the downlink messages
flow through the third queue (queue for Configuration Messages). α is a danger
value between 0 and 1, set by the network operators.

When the reflection attacks are detected, the Priority Composition Module
is wakened and starts to calculate the penalty coefficient of each HAP, βkn =
rkn−iknSum0

rkn
. ikn, rkn denote the corresponding element in matrix I0,R. If βkn

is negative, we set it as 0. Then we use two thresholds (thh, thl) to map the
penalty coefficient βkn into priority (00, 01 or 10) and tag a 2-bit field into
packet metadata to encapsulate priority.

Policy Consistency. Multi-queue based software protocol agent may violate
the consistency of some downlink messages. For example, some control messages
need to be sent in a particular order for correctness reasons, however, in this
multi-queue based software agent, if a previous arriving message is put into a
queue with high load while a later arriving message is put into a queue with low
load, the order to maintain correctness may be violated.

To address this issue, we design a coordination mechanism between the
Behavior Monitor and Classifier in software protocol agent. If a series of down-
link messages require consistency, they are supposed to reuse the 2-bit priority
packet metadata (fill it with 11) in the packet header to express their intents.
Then the Classifier in the software protocol agent will check the label to learn
whether the message has the consistency demand. If consistency demand is con-
firmed, this message will be scheduled to the queue for consistency required
messages.

5.3 Defense Evaluation

We implement the prototype of SWGuard system, including Behavior Monitor
and Software Protocol Agent, on Floodlight [6] and Open vSwitch [7] with about
4000 Lines of Code. We use Open vSwitch and set corresponding thresholds to
limit its control channel throughput, making its flow rule update rate (130 pps)
and flow table size (2000) analogous to the hardware switches.

To demonstrate the defense effect of SWGuard, we use the average value of
flow rule installation/statistic query latencies of normal users/applications as the
representative metric, which is named as Event Response Time in our figures. As
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Fig. 12. Defense effect. Fig. 13. Defense overhead.

shown in Fig. 127, with native system, event response time becomes extremely
large when the rate of downlink messages is above 110 packets per second. While
with SWGuard, event response time is nearly unchanged. All of these are due
to the limited capability of SDN-enabled switches for processing downlink mes-
sages. The experimental results illustrate that our SWGuard provides effective
protection for both the flow rule installation and statistics query.

For the overheads of SWGuard, we measure the latency introduced by
SWGuard. Compared with native OpenFlow, packets in SWGuard need to go
through two extra components, Event Collector of Behavior Monitor and Config-
uration Message queue of Software Protocol Agent under normal circumstance,
since other components are in sleep state when no attack is detected. When an
attack happens, packets must pass a full path in Behavior Monitor and Soft-
ware Protocol Agent. As shown in Fig. 13, the latency is almost the same for
native OpenFlow and SWGuard under normal circumstance. Even under attacks,
Behavior Monitor and Software Protocol Agent only incur a latency less than
100 us. All of these demonstrate that SWGuard only brings about a negligible
delay for the control channel messages.

6 Discussion

Emerging Programmable Data Planes: Current prototypes, attacks and
defenses are based on OpenFlow-based hardware switches. We believe the core
idea of Control Plane Reflection Attacks is applicable to the emerging gener-
ation of programmable data planes, e.g. P4 and RMT chips [2], because these
platforms also use traditional TCAM-based flow tables and Control Plane Reflec-
tion Attacks address a property of TCAM that is invariant to underlying TCAM
design.

Generality of the SWGuard System: SWGuard is also applicable for no-
adversary circumstances, such as flash crowds of downlink messages under nor-
mal conditions. By prioritizing the downlink messages, SWGuard can provide
7 Since this experiment is conducted on the software environment, the nonlinear jump

point is a little different from the previous hardware experimental results.
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lower latencies for more important messages under the congestion status of con-
trol channel.

Source Address Forgery Problem: One concern is that an attacker may
forge another host’s source address to pollute the HAP statistics of other hosts.
Nevertheless, in SWGuard, we can also harness the edge switch port to identify a
host. As the header fields of the upstream messages are assigned by the hardware
switch, the attacker is not able to forge or change this field.

7 Related Work

DoS Attacks Against SDN: Shin et al. [28] first proposes the concept of
Data-to-control Plane Saturation Attack against SDN. To mitigate this dedi-
cated DoS attack, AVANT-GUARD [27] introduces connection migration and
actuating triggers to extend the data plane functions. However, it is applica-
ble to TCP protocol only. Further, a protocol-independent defense framework,
FloodGuard [32], pre-installs proactive flow rules to reduce table-miss packets,
and forwards table-miss packets to additional data plane caches. To gain the
benefit of no hardware modification and addition, FloodDefender [9] offloads
table-miss packets to neighbor switches and filters out attack traffic with two-
phase filtering. Control Plane Reflection Attacks distinguish themselves from
previous works in both attack methods and attack effects. On one hand, the
saturation attack uses a pretty straightforward attack method that attacker just
floods arbitrary attack traffic to trigger the direct data plane events while the
reflection attacks resort to more advanced and sophisticated techniques, and a
two-phase probing-trigger approach is specially developed to exploit both direct
and indirect data plane events. On the other hand, since the simplicity of the
saturation attack, it is not hard to capture the attack, thus it could have limited
attack effects. By contrary, the reflection attacks are much more stealthy and
the same attack expenses of the attacker could cause more obvious attack effects
for victims. Scotch [31] alleviates the communication bottleneck between control
plane and data plane leveraging a pool of vSwitches distributed across the net-
work, and it shares the same observation that SDN-enabled hardware switches
have a very limited capacity for control channel communications.

Timing-Based Side Channel Attacks: Side channel attacks have long existed
in computer systems, and they are usually used to leak the secret information
(e.g. secret cryptographic keys) of dedicated systems. Publications more related
to our work are various works applying side channel attacks to SDN. Shin et
al. [28] presents an SDN scanner which could determine whether a network is
using SDN or not. Leng et al. [19] proposes to measure the response time of
requests to obtain the approximate capacity of switch’s flow table. Sonchack
et al. [29] demonstrates an inference attack to time the control plane, which
could be used to infer host communication patterns, ACL entries and network
monitoring policies. Liu et al. [21] permits the attacker to select the best probes
with a Markov model to infer the recent occurrence of a target flow. Our attack



Control Plane Reflection Attacks 181

methods are somewhat inspired by these previous works. However, all of them
only focus on the direct data plane events, and remain at a low level to infer the
existence of network policies/device configurations. To the best of our knowledge,
our work proposes the exploitation of indirect data plane events for the first time
and take the next step that we not only take the existence into consideration, but
also obtain more concrete policies and policy thresholds to promote the attack
effects.

8 Conclusion

In this paper, we present Control Plane Reflection Attacks to exploit the limited
processing capability of SDN-enabled hardware switches by using direct and
indirect data plane events. Moreover, we develop a two-phase attack strategy
to make such attacks efficient, stealthy and powerful. The experiments showcase
the reflection attacks can cause extremely harmful effects with acceptable attack
expenses. To mitigate reflection attacks, we propose a novel defense solution,
called SWGuard, by detecting anomalies of control messages and prioritizing
them based on the host-application pair. The evaluation results of SWGuard
demonstrate its effectiveness under reflection attacks with minor overheads.
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