JANUS: Enabling Expressive and Efficient ACLs
in High-speed RDMA Clouds

Ziteng Chen'*, Menghao Zhang?*, Jiahao Cao®*, Xuzheng Chen®, Qiyang Peng?, Shicheng Wang5,
Guanyu Li%, Mingwei Xu*3!
!Southeast University 2Beihang University 3Tsinghua University “Quan Cheng Laboratory
5Zhejiang University SUnaffiliated

Abstract—RDMA clouds are becoming prevalent, and ACLs
are critical to regulate unauthorized network accesses of RDMA
applications, services, and tenants. However, the unique QP
semantics and high-speed transmission characteristics of RDMA
prevent existing ACL expressions and enforcement mechanisms
from comprehensively and efficiently governing RDMA traffic in
a user-friendly manner. In this paper, we present JANUS, a tai-
lored ACL system for RDMA clouds. JANUS designs specialized
ACL expressions with QP semantics to identify RDMA connec-
tions, and provides a high-level policy language for expressing
sophisticated ACL intents to govern RDMA traffic. JANUS
further leverages DPUs with traffic-aware and architecture-
specific optimizations to enforce ACL policies, enabling line-rate
RDMA inspection and robust policy updates. We implement
an open-source prototype of JANUS with NVIDIA BlueField-3
DPUs. Experiments demonstrate that JANUS provides sufficient
expressivity for governing unauthorized RDMA accesses, and
achieves line-rate throughput in a 200Gbps real-world RDMA
testbed with <5us latency.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) is getting increas-
ing deployment in leading cloud companies for distributed ap-
plications, such as large language model (LLM) training, cloud
storage, and remote procedure calls. This adoption is driven
by RDMA’s ability to deliver line-rate throughput and ultra-
low latency (e.g., >100Gbps and <5pus), offering significant
performance improvements over traditional TCP/IP networks
[11, [2], [3], [4], [5], [6], [7], [8], [9]. Recently, a notable
trend of RDMA is an expansion to cloud environments, where
numerous users can access RDMA services to enjoy high-
performance networking [10], [11], [12], [13].

Despite their promising network performance, RDMA-
based clouds have recently attracted increasing security con-
cerns. Several studies revealed RDMA-specific vulnerabilities
and attacks, such as connection hijack [14], unauthorized
memory access [14], resource exhaustion [12], [13], and
bandwidth degradation [15], [16], posing serious threats to
RDMA clouds. Network access control lists (ACLs) serve as
a widely used mechanism to govern communications in clouds,
as adopted by major providers such as Amazon [17], Google

*Equal contribution.

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026 , San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240721
www.ndss-symposium.org

Cloud [18], Azure [19] and IBM Cloud [20]. ACLs explicitly
specify allow or deny rules based on specific attributes,
such as IP addresses and ports. Following a lightweight and
stateless inspection philosophy, the header of each packet is
examined against the ACL rules [21], [22], and only traffic
that conforms to the defined policies is permitted, allowing
operators to prevent unauthorized accesses to applications,
services, and tenants. However, when introducing ACLs to
RDMA clouds, the distinct characteristics of RDMA prevent
existing ACLs [23], [24], [25], [26], [11], [27], [10], [28] from
achieving the above objective.

To effectively govern the unique semantics and communi-
cation patterns of RDMA cloud traffic, existing ACLs fail to
provide sufficient granularity and expressiveness. Traditional
ACL expressions are mainly represented in a five-tuple format
[23], [24], [25], but they fail to regulate the RDMA traffic
due to its fundamentally different semantics from TCP/IP.
Specifically, RDMA involves more sophisticated state man-
agement and finer-grained communicating types based on
queue pairs (QPs), such as QP creation and destruction along
with diverse QP operations on remote memory region (MR).
Besides, RDMA traffic is disaggregated into control path
for QP lifecycle maintenance, and data path for application
data exchange. Each of them requires independent controls
over distinct packet metadata and QP behaviors. Although
recent studies [26], [11] attempt to impose control over certain
QP states, their governance fails to cover the intricate QP
semantics originated from different traffic paths.

Furthermore, existing ACL enforcement mechanisms are
not well equipped to efficiently handle the full inspection
for RDMA traffic in clouds. Traditional end-host ACLs, such
as iptables [23] and Open vSwitch [24], are enforced in
the OS kernel. However, RDMA data path traffic bypasses
the kernel, preventing them from capturing the data path
packets. Although microkernel-based RDMA solutions (e.g.,
Snap [27] and FreeFlow [10]) can govern RDMA traffic at
a software shim layer, they incur significant CPU overhead
and impose non-negligible performance penalty for traffic
inspection. In-network hardware enforcement schemes (e.g.,
Bedrock [28]) can achieve line-rate ACL throughput. However,
when inspecting intra-host traffic, they must redirect it to
in-network ACL devices, introducing additional latency to
RDMA communication.

We believe an ideal ACL paradigm for RDMA clouds
should satisfy the following three properties: @ Coverage,
which requires ACL expressions to capture fine-grained QP
semantics, and complete enforcement mechanisms with full
inspection for RDMA traffic arising from both intra-/inter-host
and control/data paths. @ Efficiency, which needs to perform
per-packet inspection without compromising RDMA’s line-
rate throughput and ultra-low latency, while minimizing the
system overhead. @ Usability, which demands a transparent
and user-friendly approach to relax the policy definition and
maintenance burden for diverse and elaborate QP behaviors.

In this paper, we present JANUS, a tailored and user-
friendly ACL system for RDMA clouds that combines com-
prehensive RDMA-semantics expressions with efficient policy
enforcement. We point out traditional five-tuple-based ACL
expressions are insufficient to represent the identity of an
RDMA connection, i.e., request entities for denoting the traffic
source and destination, as well as QP behaviors indicating
the associated QP operations, thereby requiring a dedicated
expression to control the QP-semantics permission. JANUS
identifies an RDMA connection by extracting the essential
packet fields related to entity information and QP behaviors
from complex and varying metadata in control and data path
traffic. To simplify policy specification, JANUS introduces a
high-level policy language that enables operators to express
sophisticated ACL intents for controlling RDMA-native traffic
and preventing unauthorized accesses.

JANUS uses a data processing unit (DPU) to efficiently
enforce ACL policies at end-hosts. Located in the criti-
cal path, DPU provides comprehensive coverage on RDMA
traffic, and programmability to offload the ACL enforcer
with transparency and compatibility for RDMA applications.
However, a naive offloading without careful considerations
of RDMA traffic patterns, ACL enforcer characteristics and
DPU architecture can lead to poor performance. Therefore,
we carefully design DPU-specialized optimizations to enable
efficient packet inspection and policy updates for high-speed
RDMA traffic. For efficient usage of DPU’s hierarchical
memory subsystem, we design a cache-friendly data structure
for the ACL ruleset, and develop a feasible usage strategy for
heterogeneous DRAMs to significantly optimize the memory
accesses in high frequency. To fully leverage and orchestrate
DPU’s high parallelism, we develop a dynamic and load-aware
packet steering mechanism, along with batched processing of
doorbell rings to remarkably enhance inspection efficiency.
To ensure robustness during updates, we further optimize the
coordination between the DPU control plane and data plane
to deliver consistent, non-blocking and timely policy updates.

We implement a JANUS prototype on NVIDIA BlueField-
3 DPUs, and make the source code publicly available at
Github [29]. We conduct extensive experiments to evaluate
the expressiveness and enforcement performance of JANUS.
The case studies show that JANUS can effectively define
sophisticated ACL policies in a QP granularity to govern
unauthorized accesses proposed in existing works [14], [15],
[12], [16] with minimal efforts. Specifically, JANUS achieves

\ﬁ—,
[e | [uop | BTH | RETH [Payload| IcRc | Fes |
1

ZjQPN, opcode, PSN, p_key, ‘
Fig. 1: RoCEv2 packet header.

line-rate throughput and 4.33us p99 latency with less than
4% additional resource overhead on DPUs in a 200Gbps
real-world RDMA testbed. Moreover, JANUS significantly
outperforms existing ACL approaches, achieving up to 8.63x
higher throughput than the software-based FreeFlow [10] and
up to 63.1% lower latency than the in-network Bedrock [28].
Ablation studies validate the effectiveness of our specialized
optimizations in improving ACL performance, e.g., the opti-
mized scheduling on heterogeneous DRAMs can increase the
ACL throughput by up to 7.32x.

To the best of our knowledge, JANUS is the first work to
explore tailored ACL expressions for fine-grained QP regu-
lation, coupled with an efficient DPU-based enforcement for
RDMA clouds. The main contributions of this work include:

o We identify the limitations of traditional schemes, and

design specialized ACL expressions, accompanied by a
high-level policy language for RDMA semantics (§1V).

o We design specialized optimizations based on RDMA

traffic patterns and DPU characteristics to achieve line-
rate throughput and ultra-low latency for ACL (§V).

« We open-source and evaluate JANUS, with results demon-

strating its strong expressivity and superior ACL perfor-
mance in a real-world RDMA testbed (§VI).

II. BACKGROUND AND MOTIVATION
A. RDMA Preliminary

RDMA bypasses the TCP/IP stack in the operating systems
and offloads data transmission to RDMA network interface
cards (RNICs), enabling clients to directly access the remote
memory of servers without CPU involvement, which deliv-
ers high-throughput and low-latency networking performance.
RDMA traffic travels through two main paths. The control
path manages QP operations such as creation, destruction, state
transitions, and metadata exchange. The data path uses kernel-
bypass techniques to transmit application data with one-sided
(READ/WRITE), two-sided (SEND/RECV), and other atomic
operations (FAA/CAS) on the target MR associated with QPs,
which greatly improves data transmission performance.

Figure 1 illustrates the packet format of RDMA over
Converged Ethernet version 2 (RoCEv2) [30]. In addition to
basic fields of ETH, IP, UDP, payload and checksums, Ro-
CEv2 traffic includes QP-semantics fields in BTH and RETH
headers, including dOPN denoting the destination QP number
(QPN), VA representing the target virtual memory address,
and opcode for memory access type. Similar QP-semantics
metadata apply to other RDMA implementations [31], [32],
[33], [34], [35], despite their varying packet formats.

B. ACLs for RDMA

Why ACLs are necessary in RDMA clouds? As a fun-
damental network service and control mechanism in leading

production clouds [17], [18], [19], [20], [36], ACLs play
a lightweight and effective role in managing the network
access permissions. By defining policies for specific entities
with allow or deny permissions, ACLs determine whether
each RDMA packet can be transmitted or received, thereby
regulating communications among applications, services and
tenants [21], [22]. Compared to physical region partition for
network tenants [37] and Virtual Extensible LAN (VXLAN)
[38] for layer-2 tenant isolation, ACLs offer more precise,
flexible and fine-grained network control based on the upper-
layer metadata of each packet. ACLs can not only govern
accesses on internal sensitive services of a single tenant, but
also block potential communication between multiple tenants.
As for security aspect, recent studies revealed several dis-
tinct RDMA-specific vulnerabilities and attacks. For example,
ReDMArk [14] unveiled the predictability of QP metadata
(e.g., QPN and rkey), allowing attacker tenants to hijack a con-
nection and conduct unauthorized accesses of benign tenants.
Husky [12] and Harmonic [13] found a resource exhaustion
attack where attackers can launch exhaustive atomic operations
to consume RNIC computing resources. NeVerMore [15] and
LoRDMA [16] pointed out that attackers can launch unautho-
rized QP disconnect requests at the control path, or periodical
bursts to degrade the victim throughput at the data path.
Fortunately, ACLs also serve as one of the feasible approaches
to defend against the potential threats. They allow operators to
define tailored policies that block potential malicious requests
from adversaries, preventing benign users from being exposed
to such attacks. With their capabilities for tenant isolation and
security enhancement, ACLs are therefore essential in multi-
tenant RDMA clouds.sary in multi-tenant RDMA clouds.
Why TCP/IP ACLs are insufficient in RDMA clouds?
Although ACLs show promise in regulating unauthorized
accesses, current expression and enforcement designed for
TCP/IP networks fall short in addressing the unique re-
quirements in RDMA clouds. Firstly, networking equipment
typically adopts ACL expressions based on five-tuple format,
ie., <sip, sport, dip, dport, protocol>, which is
tailored to TCP/IP traffic where each connection is identified
by a five-tuple [39]. However, this format is coarse-grained
and fails to govern complete RDMA connections, whose
fundamental unit is the Queue Pair (QP) and its associated
semantics. For example, consider a sender establishing an
RDMA connection with a receiver. For security reasons, the
operator wishes to restrict the write accesses to the receiver’s
memory region while still allowing read operations. If the
ACL rule is defined using a five-tuple expression without
awareness of QP semantics, it will indiscriminately block
all outgoing RDMA traffic matching the rule—both target
writes and innocent reads—since they share the same
five-tuple metadata. In this example, five-tuple-based ACLs
fail to support fine-grained regulation over specific memory
access behaviors of an individual QP in RDMA scenar-
ios. While certain programmable devices may provide field-
extension capabilities, there has been no thorough exploration
of complete, feasible and efficient ACL expressions tailored

TABLE I: Property analysis for existing ACLs. @, @, and

O denote “yes”, “partially yes”, and “no”, respectively.

ACL system Property Coverage Efficiency Usability
native RDMA [44], [45] 0 N/A o
iptables [23], open vSwitch [46], [24] O O)
VEP [47], AccelNet [48], Sirius [49]) 1))
LITE [26], MasQ [11] O N/A)
Snap [27], FreeFlow [10]] O]
Bedrock [28] O [D

to RDMA environments. Therefore, simple extensions cannot
effectively mitigate existing RDMA-specific threats [14], [15],
[12], [16] without concise yet expressive policies that capture
QP semantics.

Secondly, current ACL enforcers widely used in production-

level TCP/IP clouds are mainly designed to satisfy the TCP/IP
performance with <40Gbps bandwidth and >500us delay
[40], [41]. However, they struggle to keep up with the strin-
gent performance demands of high-speed RDMA clouds with
>100Gbps throughput and <5us latency. Moreover, many of
these enforcers operate at the OS-kernel level to regulate traffic
[1], [2], [42], [43]. This kernel-based enforcement model
cannot capture kernel-bypass RDMA traffic on the data path,
thereby failing to provide the per-packet inspection that ACLs
are intended to deliver.
Expected properties of RDMA ACLs. To achieve access con-
trol on RDMA communication, we believe ideal RDMA ACLs
should offer delicate expression and enforcement capabilities,
guided by the following three key principles:

Coverage: RDMA ACLs need to fully cover RDMA se-
mantics and traffic. An RDMA connection involves the re-
quest entities and associated QP behaviors, necessitating finer-
grained ACL expressions to capture its identity and provide
complete coverage on the unique QP semantics. In addition,
the ACL enforcement should cover all RDMA packets across
the control and data paths, ensuring no traffic is overlooked
due to incomplete packet capture and malicious circumvention.
Especially, we note only regulating the QP states (e.g., creation
and destruction) instead of full coverage of RDMA traffic is
not enough, as it falls short of meeting ACL’s fundamental
objective of per-packet inspection [21], [22]. As a result,
adversaries can exploit this inspection gap to generate packet-
level misbehavior that passes QP creation and destruction
regulation, for example, fabricating arbitrary packet header
fields to hijack a victim connection [14], [15].

Efficiency: RDMA ACLs should offer high efficiency. ACL
enforcer inevitably introduces additional overhead due to per-
packet inspection and frequent policy updates. As RDMA
clouds are equipped with bandwidth over 100Gbps and latency
within Sus, efficient ACL enforcement must impose minimal
overhead to keep pace with high-speed RDMA transmission.
Substantial throughput or latency degradation, along with ex-
cessive resource use by ACLs, are undesirable. This is partic-
ularly critical because RDMA tenants often run performance-
sensitive applications (e.g., LLM training, cloud storage) that
leverage RDMA to accelerate distributed computing. Any
substantial overhead or resource usage introduced by ACL

RDMA

traffic #

4.'_': ‘\.
: A v ARM
NIC RISC-V Cache) PCle sw:tch

Fig. 2: NVIDIA BlueField-3 DPU architecture.

enforcement can significantly degrade the performance of both
RDMA transmission and upper-layer applications, which is
unacceptable in such environments.

Usability: RDMA ACLs must satisfy ease of use. An ACL

enforcer should be transparent to developers and tenants,
avoiding interference with typical development of RDMA
applications. Given RDMA’s more intricate semantics, more-
over, the ACL system should be user-friendly for operators,
relaxing the difficulties of policy formulation on the fine-
grained QP-semantics traffic, and avoiding being overwhelmed
by excessive policy expressions.
Existing ACLs for RDMA. Table I compares the properties
of existing ACLs in RDMA scenarios. Native RDMA has
simple access control supports, e.g., restricting MR access type
in the control path [44], and revoking access privileges with
memory window in the data path [45]. However, they only
impose limited per-QP control over a few memory access
permissions, and also fail to support per-packet inspection
and zero-downtime policy updates. Iptables [23] and Open
vSwitch [46], [24] are incapable of posing permissions on
QP-semantics operations, and their kernel-based enforcement
cannot provide efficient ACL inspection for kernel-bypass
and high-speed RDMA traffic. VFP [47], AccelNet [48] and
Sirius [49] allow offloading ACLs to smartNICs, but only
support traditional TCP/IP expressions without consideration
of the unique QP semantics in RDMA. LITE [26] and MasQ
[11] adopt per-QP regulation to control whether a bound QP
can be established in the kernel driver. Once permitted or
denied, subsequent packets associated with the correspond-
ing QP are no longer inspected. However, the lack of per-
packet inspection violates the fundamental design philosophy
of ACLs [21], [22] and leaves the door open for attackers
to potentially circumvent the initial regulation and carry out
malicious activities after the QP has been established. Snap
[27] and FreeFlow [10] capture RDMA traffic at the software
shim layer, but they consume substantial host resources and
result in poor ACL performance. Bedrock [28] deploys ACLs
in programmable switches to govern data path traffic, but does
not account for control path traffic and introduces extra latency
by “pulling” intra-host traffic to switches for inspection. In
addition, all of them lack a user-friendly interface to relax the
formulating burden of sophisticated ACL policies for diverse
QP behaviors in RDMA clouds.

C. Data Processing Unit

DPU is a programmable NIC with offloading capabilities
for network functions. Without loss of generality, we take

(Multi-

4 Multi-tenant N / Trusted computing base\
tenant

Host

g [ﬁ = ‘\.fwitcheE// 4= g

Unprivileged Legal
- ___=° =")

Case 1

Host Xi N

2\ m
Case 2 g 5 —_——) : ,l\ IX :‘ =
Q . ‘L:\ l)t’ m
Privileged Arbitrary / \
— i 5 \
Host /.’ R
1 m
Case 3 —_——) 4 R ==]
Benign Attacker DPU DPU.
EShiengganecey) s s
_)) \ / L Hosts)

Fig. 3: JANUS threat model.

NVIDIA BlueField-3 DPU as an example to introduce the
DPU architecture as shown in Figure 2. It consists of an on-
path NIC core and a data-path accelerator (DPA), an off-path
ARM CPU, a PCle switch, and memory components. For
compute resources, the DPA is a RISC-V processor offering
190 out of 256 user-available threads, each running at 1.8GHz
computing power, which is suitable to accelerate parallelizable
network functions. Regarding memory resources, the DPA
features a hierarchical memory subsystem, including local
L1, L2 and L3 caches, and 1GB exclusive memory & 16GB
shareable memory at ARM, as well as additional host memory
accessible via PCle switch. Each tier in this hierarchy exhibits
different access performance.

The reasons why we choose DPU for ACL enforcement
are three-fold. Firstly, DPU locates in the critical traffic path,
which not only incurs fewer hops for lower packet processing
latency, but also inherently covers all RDMA packets from
different dimensions, especially 1) kernel-bypassing traffic
missed by traditional kernel-based ACLs for TCP/IP [23],
[24]; 2) intra-host traffic that would require triangle routing in
switch-based ACLs [28]. Secondly, ACL enforcers can be eas-
ily parallelized into independent and stateless packet inspec-
tion, and DPU has the high-parallelism capability to deliver
efficient ACL performance. Finally, as an enhanced RNIC,
DPU supports typical RDMA development with verbs, while
the offloaded network functions can run agnostic to upper-
layer applications without additional modification. These three
reasons make DPU a feasible ACL vantage point with broad
coverage, high efficiency and strong usability.

III. JANUS OVERVIEW

Threat model. As shown in Figure 3, we assume that switches
and DPUs are trusted in a multi-tenant RDMA cloud. The ACL
system aims to enforce packet-level RDMA access control
in a stateless and high-performance manner, with the goal
of preventing unauthorized access by allowing or dropping
packets at the DPU. We consider attackers capable of crafting
malicious RDMA packets or leveraging existing tools [14],
[15], [12] to initiate RDMA connections. In a multi-tenant
RDMA cloud, we consider three spatial attacker distributions
following existing studies [28], [14]: (1) an unprivileged
attacker with exclusive control of a host, capable of sending
syntactically legal packets such as frequent QP creation and
destruction; (2) a privileged attacker with root access on an

User-defined polic;
. f (it —— RDMA traffic
policy p { . .
predicate = match(... ~ZZ Plane interaction
action = allow/deny === ACL policy
}
N
Server DPU DPU Server
ARM| *—— 4 P 2 ARM
‘ : 4 A4 ‘
Control Data ...| | Data Control
Host 1 Plane Plane Plane Plane Host n
v T J Vet \
/ Sseo L \\
J Temant1 T~ Tenant2 .-~ Tenantn
IR N - I N = L - N >
Emre) By (=g

Fig. 4: JANUS overview.

isolated host, able to forge arbitrary RDMA packet metadata
and inject fraudulent traffic, including forged congestion sig-
nals; and (3) an unprivileged attacker co-located with benign
tenants, attempting to interfere with RDMA transmissions by
exploiting shared host resources.

System overview. Figure 4 presents the JANUS overview,
which includes a centralized controller and multiple distributed
end-hosts, each equipped with a DPU. Similar to PortCatcher
[50], JANUS works in a user-defined manner, allowing the
trusted cloud operator to use JANUS expressions and pol-
icy language to define ACL policies for governing RDMA
communications. The controller interprets the policies into
specific rules, and pushes them to the target DPUs to enforce
the policies. Each DPU runs the ACL enforcer, where the
control plane governs the policy management and updates,
while the data plane performs stateless and high-performance
ACL inspection in a per-packet manner. For each sent and
received RDMA packet, the DPU parses the header metadata
and performs lookups to determine whether the packet should
be allowed or rejected. If allowed, the packet proceeds with
normal operations on the target MR; otherwise, it is discarded.

IV. JANUS EXPRESSION

This section unveils the shortcomings of applying five-
tuple ACL expressions to RDMA scenarios. Based on the
analysis of RDMA semantics, we propose RDMA-specific
ACL expressions with necessary packet fields, and a high-level
policy language to satisfy coverage and usability properties.

A. Why JANUS Needs New Expressions?

Why traditional expressions fail? Traditional ACL expres-
sions typically use a five-tuple format designed for TCP/IP
networks. However, due to limited expressivity, these expres-
sions fall short of supporting comprehensive and fine-grained
regulation for RDMA traffic. The fundamental limitation stems
from RDMA’s unique QP semantics. Different from TCP/IP
using five-tuple to describe a connection, the basic transmis-
sion unit of RDMA is QP, i.e., how a source QP at sender
operates the target remote MR of a destination QP at receiver.
For example, data path packets are characterized by a sender
QP’s reads or writes towards a target MR of a receiver QP,
whereas control path packets are specified by QP initialization
and state management between a pair of sender and receiver.

TABLE II: Packet fields in JANUS expressions.

Entity fields QP-semantics fields
RoCEv2 | Infiniband | Control path (CM) | Data path
sIP sLID type dQPN

dIpP dLID 10PN opcode
sport sGID dQPN VA
dport dGID

Therefore, the identity of an RDMA connection should be
represented by request entities to indicate request initiator and
responder, as well as associated QP behaviors defining the QP-
relevant semantics. Due to the lack of QP expressivity, five-
tuple-based expressions in TCP/IP scenario are insufficient for
specifying fine-grained policies for diverse QP behaviors in
RDMA traffic, thereby failing to impose access control over
a complete RDMA connection.
Required expressivity and design challenges. Analogous to
how a five-tuple identifies a TCP/IP connection, we point out
that an ideal ACL expression should also be capable of identi-
fying an RDMA connection. For one thing, JANUS expressions
should cover the entities of request initiator and responder to
localize the source and destination pair. For another, JANUS
expressions are required to encompass the QP semantics—
identifying what operations and MRs are performed by which
QPs—enabling fine-grained access control over QP behaviors.
We encounter two primary challenges when satisfying the
above expressivity requirements. The first challenge is to jus-
tify which RDMA packet fields should be included in JANUS
expressions. Although an RDMA packet header contains many
metadata serving different purposes and functions, only those
fields representing the identity of an RDMA connection are
essential for ACL governance, while the remaining fields fall
outside the scope. This is similar to TCP/IP scenario, because
many application-layer fields in TCP/IP packets, such as
sequence number, TTL and TOS, do not denote the five-tuple
identity of a TCP/IP connection, such that they are excluded
from TCP/IP ACL expressions. Therefore, we need to justify a
minimal yet complete set of header fields capturing the RDMA
connection identity to be included in JANUS expressions.
The second challenge is to relax the usage of JANUS
expressions. Given the complexity of QP semantics, it is non-
trivial to define and delegate sophisticated intents with multiple
policies to govern diverse and fine-grained QP behaviors
across numerous applications, services and tenants in a large-
scale RDMA cloud. Consequently, JANUS expressions should
offer a user-friendly interface to lower the barrier for ACL
policy definition.

B. Specialized Expression for RDMA

To address the first challenge, we thoroughly analyze the
characteristics and justify packet metadata of RDMA traffic
to determine the minimal yet complete header fields in JANUS
expressions. For the second challenge, we develop a high-level
policy language that simplifies policy formulation to achieve
fine-grained access control for RDMA clouds.

1) Which Fields are Necessary?:

Predicate: P ::=match(fov) | match(f € S) | match(f € [v1,v2])
P& P|P|P|'P

Action: A ::=allow | deny
Policy: C ::=policy id { predicate = P ; action=A}
Apply: S = apply(p1 [, p2, -+-])

Fig. 5: Language syntax of JANUS.

Control path traffic. RDMA control path manages the QP
states, necessitating JANUS expressions to involve the packet
fields related to specific QP connect and disconnect requests
from which pair of nodes. Firstly, the entity fields denoting
the source and destination information, such as IP addresses
+ ports in RoCEv2, and GIDs/LIDs in Infiniband, are nec-
essary to express the entities of requester and responder.
Secondly, the QP-semantics fields capturing the target QP
and associated request types, such as QPN for indexing a
QP, (Dis)ConnectRequest & (Dis)ConnectReply
for QP management in CM protocol [51], denote the basic QP
state management. These two kinds of fields together represent
and constitute the identity of an RDMA connection from the
control path.

We also note control path packets contain other fields
irrelevant to its identity, such as srqg to mark shared receive
queues, initial packet sequence numbers (PSNs) for in-order
transmission during QP creation. However, these metadata
belong to application-layer information tightly coupled with
RDMA applications, and they do not express the identity of
RDMA connection. Therefore, they fall outside the scope of
JANUS governance, which is similar to five-tuple expressions
excluding the application-layer fields in TCP/IP packets.
Data path trafficc. RDMA data path handles application
data transmission, with packets specifying how a sender QP
operates on a target MR address of receiver QP at the remote
side. Similar to control path packets, the entity fields denoting
the request source and destination are crucial to represent
the entity information of a data path connection. Meanwhile,
the QP-semantics fields, including dQPN, opcode and VA
for memory address, denote how a particular QP operates on
a specific MR address, which signify the QP behaviors of
remote memory accesses. Other header fields, such as rkey
for memory authentication, DMA size for correctness, PSN
for in-order transmission, and checksums for data integrity, are
mainly for application-level availability and reliability, rather
than expressing the identity of RDMA connections, such that
they are not incorporated in JANUS.

Required header fields. Based on traffic characteristics and
semantics analysis, Table II summarizes the minimum yet
complete set of packet header fields to express the identity
of RDMA connections arising from control and data paths,
respectively. They are classified into entity fields and QP-
semantics fields, allowing JANUS to describe an RDMA
connection and define policies for fine-grained permission
regulation. We can prove by elimination that these packet
fields are the minimum necessary set to identify an RDMA
connection. For example, if we exclude dQPN, the expressions
fail to index and localize a particular QP, resulting in loss of

QP semantics. In Infiniband scenario, if GID is not included,

| the expressions fall short of denoting the request sender and

receiver, leading to entity metadata loss. Similar analysis also
applies for other packet fields in Table II.

2) High-level Policy Language:

The JANUS policy language. To facilitate the regulation
and assignment of intricate ACL policies, we refer to ex-
isting efforts developing domain specific language to govern
or secure particular scenarios [25], [52], [53], and propose
the language syntax based on the included header fields.
As shown in Figure 5, Predicate describes the logical
conditions that determine whether an RDMA packet satisfies
a combination of matching rules, including exact match of a
specific value or membership checking, as well as range match
within a given numerical range. Operators can involve multiple
packet fields to be matched simultaneously, including entity
fields and QP-semantics fields in the control and data paths.
Action specifies the access control with allow and deny
permissions. Policy defines the composition of a specific
ACL policy, i.e., to-be-matched packet fields denoted by a
target predicate and associated action, to determine the
permission of matched condition. Apply activates the policy
combination made by operators. In general, JANUS language
largely adopts the similar design principles as existing efforts,
but incrementally introduces a critical contribution that several
RDMA-specific fields (in Table II) can be involved in a
predicate. For example, JANUS empowers operators to regulate
Infiniband networks with sGID and dGID in the entity fields,
as well as comprehensive QP behaviors using QP-semantics
fields, distinguishing JANUS from current expressions and
languages that are mainly designed for TCP/IP networks
without supports of RDMA semantics.

An example in JANUS language. Operators at the centralized
controller can define and delegate their ACL intents in JANUS
language to govern accesses of RDMA applications, services
and tenants in a user-defined manner. Figure 6 illustrates
an example to control RoCEv2 communication for a tenant
using JANUS language. Suppose the operators only allow node
10.0.1.101 to access the RDMA service at node 10.0.1.105. In
this case, an ACL intent with four policies can be implemented
in three steps: @ For the control path, policy p; allows
the request types of ConnectRequest for creation and
ConnectReply for destruction for QPs indexed at 200
and 500 from 10.0.1.101 towards 10.0.1.105, while other QP
creation requests within 10.0.1.0/24 are denied by policy ps;
@ For the data path, policy ps ensures only 10.0.1.101 with
two specific QPs of 200 and 500 can read the restricted MR
address range of 10.0.1.105, while other memory operation
types from 10.0.1.101 and all requests from 10.0.1.0/24 are
rejected by policy p4; @ Finally, we apply four policies to
finish a high-level ACL governance. Other regulating examples
for unauthorized accesses are provided in the Appendix due
to space limitations.

policy pl {
predicate = match(sip = 10.0.1.101) & match(dip = 10.0.1.105) &
match (sport = any) & match(dport = 4791) &
match (type in {ConnectRequest, ConnectReply}) &
match (10PN = any) & match(dQPN in {200, 500})
action = allow

}

policy p2 {
predicate = match(sip = 10.0.1.0/24) & match(dip = 10.0.1.105) &
match (sport = any) & match(dport = 4791) &
match (type in {ConnectRequest, ConnectReply}) &
match (10PN = any) & match(dQPN = any)
action = deny

)

policy p3 {
predicate = match(sip = 10.0.1.101) & match(dip = 10.0.1.105) &
match (sport = any) & match(dport = 4791) &
match (dQPN in {200, 500}) & match(opcode in {READ}) &
match (VA in [0x00001000, 0x00002000])
action = deny

)

policy pd {
predicate = match(sip = 10.0.1.0/24) & match(dip = 10.0.1.105) &
match (sport = any) & match(dport = 4791) &
match (dQPN = any) & match(opcode = any) &
match (VA in [0, inf])
action = deny

}

apply (pl, p2, p3, p4)

Fig. 6: An example of using JANUS language to regulate
RoCEv2 communication. For both control and data path, oper-
ators can define an intricate intent consisting of multiple policy
instances, with predicates involving multiple target fields in
Table II and the values to be matched against, associated with
an allow or deny action. Finally, operators can activate all
policy instances.

V. JANUS ENFORCEMENT

This section presents how to enforce ACLs with per-packet
inspection and runtime updates on DPUs. Generally, RDMA
clouds pose two basic requirements on ACL enforcement.
Firstly, characterized by line-rate throughput and ultra-low
latency, RDMA necessitates an efficient ACL enforcer to avoid
degradation on high-speed RDMA transmission. Secondly,
operators can generate frequent ACL updates for many RDMA
applications, services and tenants, requiring us to ensure policy
consistency, timely updates and uninterrupted inspection at
runtime. To satisfy the requirements, JANUS enforces the ACL
function on NVIDIA BlueField-3 DPUs [54] with several
system optimizations in different aspects. We note JANUS
prototype is implemented on NVIDIA BlueField-3 DPU for
research purposes, but the design and optimizations are gen-
eralizable to other smartNICs (e.g., Intel E2200 IPU [55],
Marvell OCTEON TX2 [56]) sharing a similar architecture
with BlueField-3—an ARM CPU for policy management and
a RISC-V accelerator for parallel computing.

A. Enforcement Overview

Figure 7 demonstrates JANUS enforcement overview. Given
that an ACL enforcer can be inherently parallelized into
multiple independent and lightweight per-packet checks, and
that the DPA offers such parallelism, JANUS employs the DPA
as the data plane to perform efficient per-packet inspection.
In contrast, policy updates in the ACL enforcer are more
complex, triggered less frequently but involving higher com-
putational overhead. Therefore, JANUS delegates these updates

DPA as Data Plane

i ——— - ==

I’ § V-C Compute-optimized, | § V-B Memory-optimized |
: Mechanism n Mechanism |
1
! 0 1 1
1 ->| Thread 1 1 & Complete table [
o IS s |
[} 1
1 @ \ : T \Update value; T
I |_|;I> 1! | 2 1
| RDMA | Thread 2 ré*u 121 = value, o, 1
1 packets: I : : :
1 [N ; 1 1 1
: '-=| Threadn [O, 15 - value, r, I
N e e e o o o e o o ‘ l\ ______________ ,'
‘‘Runtime |N InvokeRPCat)
ARM as ' load \| idle thread § V-D Robust |
Control ! e ;) Update
s —— Mechanism |
Plane \ ACLrules 27Vt policy ,I

Fig. 7: JANUS enforcement overview.

to the ARM CPU, which serves as the control plane. After
defining high-level ACL intents using JANUS expressions
and language, the control plane on ARM first receives the
latest policy from the centralized controller. Then, the policy
is converted into fixed-size rules, waiting for insertion into
the data plane with insert, delete and modify primi-
tives. The DPA, a multi-thread RISC-V processor, examines
each received RDMA packet according to the policies. The
complete ruleset is stored in heterogeneous DRAM. Each
received RDMA packet is steered to a specific thread for
ACL lookup: packets failing the permission check are dropped,
while permitted packets proceed to subsequent processing.

As we mentioned in §II-C, the NVIDIA BlueField-3 DPU
is capable of offloading an ACL enforcer. However, meet-
ing the requirements for efficient packet inspection and ro-
bust policy updates on the DPU remains non-trivial. Firstly,
characterized by parallelized computation and heterogeneous
memory, DPU exhibits varying packet lookup performance
with different data structures, hardware usage schemes, and
resource scheduling strategies. This necessitates a memory-
optimized and compute-efficient ACL enforcement, tailored
to DPU specifications and RDMA traffic patterns, to enable
high-performance packet inspection. Secondly, completing an
update on the DPU involves interactions between the control
plane and data plane. However, due to non-negligible overhead
during this process, update delays and policy inconsistencies
may arise. More critically, a target thread on the DPA must
pause ongoing packet lookups to communicate with the ARM
core, resulting in unexpected suspensions. Therefore, a robust
mechanism is required to ensure consistent and timely updates
without interrupting ongoing ACL inspections. Last but not
least, RDMA is highly sensitive to out-of-order delivery [57],
[58], as it lacks the packet retransmission and reordering mech-
anisms widely adopted in TCP/IP networks [59]. Therefore,
when utilizing and scheduling DPU resources, it is crucial
to maintain in-order lookup for each RDMA packet without
compromising high-speed RDMA transmission.

Based on the above analysis, JANUS introduces several

Low hot rule occupation!
11l .
cacheline
LY BLET BT MLEP) DRAM
RDMA = =====mee_ N Complete table
packets [— | _________ - fetch ____ value, 1,
- ————— e e e
hit ’ miss value, r
ACL inspection Cache
4 LRU kick-out value, 1,
Hot rule
re | r r
coidrue Lraltsl ol
cacheline
(a) Naive hash table

Hot rule Ve n N
Exclusive r - - Complete table
Cold rule Hot rules: I i - at DRAM
— -
“ZZZ Software LRU f I value, 1 LRU rules: | Iy rq rs value;
;_, Hardware LRU - 4» ’ So valuey T

<. i
L1 cache * value, >

Thread i
Thread j

L2/3 cache

Replace Replace
l— fZ—
-7 7
== Shareable value,,

+ value; 1
’ N valuew Hot rules: | Tg ry re value, g

L1cache™ ..

RDMA DRAM

1
1
packets __a
————)
1
1
-

ACL inspection

valuey r3

value, Gy
LRU rules: = Iy ry r,

(b) Hierarchical hash table

Fig. 8: Cache-friendly hash table.

system-level optimizations tailored for DPUs. It incorporates
a cache-friendly hash table along with efficient scheduling for
heterogeneous DRAM to optimize frequent memory accesses
(§V-B). To orchestrate the parallelized compute resources,
JANUS adopts dynamic load-aware packet steering and batched
doorbell rings (§V-C). JANUS also supports consistent, non-
blocking and batched updates of ACL rules to ensure system
robustness during policy changes (§V-D).

B. Memory-optimized Mechanism

NVIDIA BlueField-3 DPU has a hierarchical memory sub-
system. The DPA contains local L1, L2, and L3 caches: each
thread has an exclusive 1KB L1 cache, and all threads share
the L2 and L3 caches with capacities of 1.5MB and 3MB,
respectively. In addition, the DPA can access multiple DRAM
components, including a 1GB DPA main memory, 16GB ARM
memory, and massive host memory, each exhibiting diverse
access performance [60]. For instance, the access latency from
a DPA thread to the exclusive L1 cache, the shared L2/3
caches, the DPA main memory, and the ARM memory are
12.8ns, 40ns, 69ns and 318ns, respectively. Meanwhile, the
memory read bandwidth from a DPA thread to the DPA,
ARM, and host DRAMs are 9.8GB/s, 20GB/s and 7.2GB/s,
respectively. Since ACL involves very frequent reads on the
ruleset, designing a memory-optimized mechanism is essential
with consideration on packet inspecting logic, RDMA traffic
patterns, and DPU memory characteristics.

Cache-friendly hash table. Traffic locality, where bursty
packets from the same RDMA connection arrive within a small
period, is common in RDMA networks [1], [2], [61], [7],
[58]. In this situation, certain hot ACL rules can be frequently
accessed over a period of time, making it beneficial to place
them in faster caches to improve memory access performance.
BlueField-3 DPU has a hardware-native cache replacement
strategy, i.e., the DPA cache automatically fetches frequently
used content from main memory, and discards the stale content
using a least-recently-used (LRU) approach. A naive data
structure is to store all ACL rules in one complete table at
main memory, and relies on the native cache replacement to
update L1, L2, and L3 caches, but this naive scheme results
in a low cache hitting rate. As illustrated in Figure 8(a), cache
replacement works at the granularity of a cacheline (64B by
default), while each ACL rule occupies much less capacity
(16B in this example). In this case, when a hot rule r; is
inserted into the cache, several address-adjacent but cold rules

in main memory (rz, r3 and ry4) are also brought in as part
of the same cacheline. This reduces the proportion of “real”
hot rules in the DPA caches, since the cold rules that are not
accessed frequently also account for a non-negligible share,
ultimately lowering the cache hitting rate.

To improve the cache hitting rate, JANUS designs a cache-
friendly data structure by disaggregating the hot & cold ACL
rules with two-tier hash tables, which is shown in Figure 8(b).
The complete table stores all rules in the shareable memory,
and several small tables locate in the local thread memory,
each of which is sized at 1KB and is exclusively accessed by
the local thread for recording the local hot rules. To maintain
the hotness of small tables, JANUS develops a software LRU
algorithm to update each local small table: before a new
rule is inserted, JANUS evicts the LRU rule to the complete
table, whose position is replaced with the new hot rule. When
inspecting a packet permission, JANUS follows a hierarchical
table lookup order: if the relevant rule is found in the small
table, the lookup stops; otherwise, it proceeds to search the
complete table, then inserts the matched rule to the target local
table. Under skewed traffic conditions, most ACL lookups can
be finished at the small local tables with a low likelihood to
access the shareable complete table. With frequent accesses on
the small table memory, the hardware LRU strategy updates
each L1 cache by fetching the contents in the local small table,
with cacheline comprising of “real” hot rules maintained by
software LRU algorithm. Therefore, each local L1 cache is
populated with more “real” hot rules, thereby increasing the
cache hitting rate.

Efficient scheduling on heterogeneous DRAMs. In addition
to local cache at DPA threads, how to optimize the usage
on heterogeneous DRAMs also remains essential for ACL
lookup performance. Generally, two main data structures re-
quire careful DRAM scheduling: 1) ring buffer to send and
receive packets, and 2) the complete hash table with numerous
ACL rules. We consider their placement on heterogeneous
DRAM by considering the ACL lookup and DPU memory
characteristics. Firstly, we place the ring buffer for receiving
packets at the ARM DRAM. The reason is that fetching
massive data from the ring buffer is a bandwidth-sensitive op-
eration, and ARM DRAM offers significantly higher memory
bandwidth than the DPA memory and is located closer than
host memory. Secondly, we place the complete hash table in
the DPA DRAM. This is because ACL lookup requires very

timely lookup results with frequent memory reads, and the
DPA DRAM has lower access memory latency than other
DRAM components due to closer locations to DPA threads.
With optimized scheduling of heterogeneous DRAMs, JANUS
achieves high bandwidth to fetch data from the ring buffer,
along with low access latency for responsive lookups for high-
speed RDMA networks.

C. Compute-optimized Mechanism

ACL inspection involves frequent computation, including

hashing operations and value matching of header fields against
specific rules. It thus becomes necessary to orchestrate the
DPU compute resources efficiently.
Dynamic load-aware packet steering. Due to the wimpy
computing power of one single thread, a straightforward
approach is to leverage DPA’s parallelism to conduct packet
inspection. However, under parallelism settings, with an in-
coming new packet, we need to determine which thread to
inspect this packet efficiently. BlueField-3 DPU is equipped
with a hardwired packet steerer, allowing the DPA to schedule
an arrival packet to a specific thread according to its packet
metadata. A naive strategy is to scatter each packet to a random
thread, and with more arrival of packets, the load gradually
converges and becomes balanced among threads. Nevertheless,
this random approach can lead to out-of-order transmission
[57], [58], where earlier-arriving packets being dispatched to
overloaded threads, while later packets are assigned to less-
loaded threads, resulting in the latter being processed ahead
of the former. To avoid out-of-order RDMA transmission, one
can make static configuration to steer packets of the same
RDMA connection to a fixed thread and inspect them in a first-
in-first-out manner. However, the static steering method is load
unaware. In an extreme situation, many RDMA connections
are steered to the same thread, resulting in skewed thread
utilization and significant load imbalance, which disrupts the
throughput and latency performance.

Therefore, we develop a dynamic and load-aware steering
strategy to load-balance multiple threads by their runtime
loads. Periodically, each thread in the DPA reports their
runtime load to the control plane. The ARM CPU analyzes the
traffic load distribution, and uses a heuristic approach to adjust
the steering configuration for later incoming RDMA connec-
tions. In Figure 9, for example, with existing connections fi,
f2 and f3, thread k is overloaded with longest queue length,
and we should avoid new arrival connections to be steered to
thread k. For the new connection f4, consequently, the control
plane changes the steering configuration by greedily assigning
fa to thread 7 with the least runtime load. With this approach,
JANUS maintains load balance among multiple threads, opti-
mizing queuing delay and overall inspection throughput.
Batching doorbell rings. In the naive implementation, when
a packet is received in the ring buffer, the NIC triggers a
hardware doorbell to inform the DPA to handle the packet.
After the DPA processes the packet, it updates the record of
software doorbells. However, it is very costly to update the
software doorbell for each packet, especially with a traffic pat-

Cdn [[[CTNewfs
HW Steer ,/'
’
Q ¢Eﬁ___g_lj, Thread j
N,

4 \
\
H AN _[1 g Thread k
EENEEE

-
———
———

Packets

f1 thread k Most-loaded Thread load
distribution
f2 thread j least-loaded
east-loade s
f3 threadi 4 Control ARM
fa thread k->i Plane 2

Fig. 9: Dynamic load-aware steering.

tern dominated by bursty packets, leading to poor throughput.
Therefore, JANUS adopts a batched approach: instead of a per-
packet manner, JANUS triggers a software doorbell update only
after the DPA completes inspections for n packet (customized
by developers). The batching mechanism can greatly reduce
doorbell rings and improve throughput performance.

D. Robust Update Mechanism

In a large-scale RDMA cloud, policy updates can happen
very frequently, necessitating a robust update mechanism with
optimized coordination between the DPU control plane and
data plane, in order to avoid policy inconsistency, update
untimeliness and lookup suspension.

Consistent update. With multiple rules to be inserted, a naive
update mechanism is a one-by-one approach that inserts then
immediately activates each rule subsequently. However, this
approach can generate transitional states because only a partial
of rules are completed while the remaining are not, resulting in
different versions of ACL intents and inconsistent inspection
for RDMA traffic. To address this, we employ an atomic
mechanism with version control for consistent update. We
maintain a shadow hash table buffer with version. During
an update, the data plane still sticks to the main hash table
for inspection, and simultaneously modifies the shadow hash
table buffer. Only when the update is completed will JANUS
increment version, and let all threads turn to the shadow buffer
to apply the latest ACL policies. This is useful to guarantee
atomicity especially when a sophisticated ACL update is
comprised of multiple policies.

Non-blocking batched update. To update the ruleset in the
data plane, BlueField-3 DPU allows ARM to invoke a remote
procedure call (RPC) to communicate with a thread in the
DPA. A naive update mechanism would have ARM application
invoke an RPC associated with the latest rule towards a DPA
thread and modify the shareable hash table in the DPA. How-
ever, RPC invocation works in a blocking manner to preempt
the target thread, such that the running packet inspection at
this thread has to be suspended and waits for resume until the
RPC communication finishes. The suspension period depends
on RPC execution overhead, including context switch and
coordination between ARM and the DPA, which typically lasts
for tens of microseconds. The non-negligible suspension can
aggravate the update latency and degrade ACL throughput.

TABLE III: JANUS enforcement settings.

Settings Naive Optimized
Category
Parallelism 128
Ruleset size 300K x 16B
Traffic skewness 80%
ringbuf @DPA ringbuf@ ARM
DRAM usage rule@ARM rule@DPA
Data structure Simple Cache-friendly
Packet steering Static Dynamic + load-aware
Doorbell batch size 1 8
Policy update Blocl?ing Non—blf)cking
Inconsistent Consistent
Update batch 1 100

To provide more timely and efficient updates, we develop a
batched and non-blocking mechanism. Firstly, JANUS allows
ARM to insert a batch of latest policies to the DPA hash table
with one single RPC invocation, rather than invoking a new
RPC per each update, thereby reducing the RPC invocation.
Secondly, under parallelism configuration, we experimentally
notice that fully utilizing all 190 available threads is not the
optimal setting in a BlueField-3 DPU, which always exhibits
poorer performance than partial parallelism (e.g., 128 threads
shown in §VI-C). Based on this observation, we design a non-
blocking mechanism: we reserve a subset of DPA threads only
responsible for updating the complete table with RPC execu-
tion, and leave the remaining threads dedicated to running the
ACL inspection without preemption by RPC invocation. This
mechanism ensures that packet inspection and policy updates
do not interfere with each other by RPC, meanwhile achieving
the sweet point of ACL efficiency.

VI. EVALUATION

We evaluate JANUS to answer the following three key ques-
tions: (1) how expressive is JANUS to define ACL regulation
with easy usage (§VI-B)? (2) how efficient is per-packet
inspection and policy update performance (§VI-C)? (3) how
necessary is the proposed optimizations for JANUS (§VI-D)?

A. Experimental Setups

Experiment environment. We develop JANUS with NVIDIA
DOCA 2.5 [62] in the NVIDIA B3220 BlueField-3 DPU [54],
which is equipped with two 200Gbps ports. Two DPUs are de-
ployed on Dell R7525 servers, and are connected directly with
a 200Gbps link. We generate RoCEv?2 traffic in both control
path and data path with two types of realistic workloads in
RDMA clouds. The first workload is an LLM training job in
RDMA clusters [7], [63], which is composed of elephant flows
with large packets (payload > 1KB). The second workload is a
key-value (KV) query workload [64], which is a highly skewed
traffic pattern with dynamic request sizes ranging from 88B
to 1480B.

Baseline and design comparison. For ACL expressivity,
we use open-sourced tools [14], [15], [12], [16] to generate
malicious traffic, and evaluate JANUS for how to regulate
various RDMA unauthorized accesses in JANUS language. For
ACL enforcement, we refer to a public ACL ruleset collected
from 12 real-world providers [65], and generate a ruleset
with 300,000 synthetic rules with additional QP semantics,

10

with each consuming 16 bytes and being inserted to DPUs
for packet lookup. Before deploying rules to target DPUs,
operators at the centralized controller can use existing network
verifiers [36], [66], [67], [68] to resolve potential conflicts and
ensure ACL correctness. Given that this issue falls outside the
main scope of this work, we add a more detailed discussion
in Section VIIL.

We compare the overall ACL performance and system
overhead between the optimized JANUS, naive JANUS (i.e.,
without optimizations in §V) and non-JANUS (i.e., RDMA
mode without ACLs) settings, as well as two ACL schemes
of software enforcement (e.g., FreeFlow [10]) and in-network
enforcement (e.g., Bedrock [28]). We also conduct several ab-
lation studies to validate the effectiveness of each optimization
proposed in §V. The enforcement settings are given in Table
III with source codes available at Github [29].

B. Policy Expressiveness

Table IV compares JANUS with existing ACL schemes
to reject six kinds of unauthorized accesses, and lists the
policies and lines of code (LoCs) expressed in JANUS lan-
guage. Compared to FreeFlow [10] that only regulates control
path traffic at the shim layer, and Bedrock [28] that only
governs the data path traffic at in-network switches, JANUS
expressions with QP-semantics fields can block comprehensive
misbehaving RDMA requests initiated from various sources,
and enables definition of sophisticated ACL policies in a user-
friendly manner, thus providing better coverage and usability
than existing schemes. We give a brief introduction to three
ACL intents as follows, with the remaining intent descriptions
and all detailed policy codes in JANUS language given in the
Appendix. The results prove JANUS can serve as one of the
feasible solutions for security enhancement in RDMA clouds.
PU exhaustion by atomic verbs. It aims to exhaust the RNIC
processing units by generating many atomic operations on the
remote memory in the data path. To block the exhaustion
requests, a feasible ACL intent can consist of three policies:
1) only allow the atomic verb traffic from trusted senders
associated with QPNs; 2) drop all atomic verbs from other
nodes by default; 3) reject QP creation requests applying for
CAS/FARA operation types. The intent takes 32 LoCs as Figure
14 shows in Appendix.

QP connect exhaustion. It aims to exhaust the RNIC cache
and file descriptors within kernel by issuing overwhelming
gp_connect requests in the control path. To block them, we
can: 1) deny the QP creation requests from blacklist entities;
2) allow the clients to create QPs by default. It takes 17 LoCs
shown in Figure 15 in Appendix.

Unauthorized MR access. A tenant aims to conduct unau-
thorized access on a remote MR belonging to other tenants in
the data path. The operators can reject the unauthorized traffic
by: 1) dropping control and data path traffic from other tenants
by their entity fields; 2) only allowing RDMA accesses from
trusted entities and associated QP behaviors from the tenant’s
devices. This intent takes 28 LoCs in Figure 18 in Appendix.

TABLE IV: Comparison of existing ACLs against unauthorized accesses.

. ACL schemes
Unauthorized access - —
FreeFlow [10] Bedrock [28] JANUS policy description JANUS LoCs
1. allow atomic from whitelist entities and QPs
PU exhaustion by atomic verbs [12] X v 2. deny all traffic with atomic opcode by default 32
3. deny QP connect for CAS/FAA from blacklist
QP connect exhaustion [14] % X 1. deny QP connect requests from blac.k11§t nodes 17
2. allow QP connect requests from whitelist
Fraud QP disconnect [15] X X 1. allow QP dlscF)nnect requests from Wh{tellSt 19
2. deny all QP disconnect requests by default
Packet injection [14] X X 1. allow matched packets of entities and QPNs 2%
2. deny unmatched packets by default
. 1. deny all traffic from other tenants
Unauthorized MR access [14] X v — — 28
2. allow trusted transmission within the tenant

TABLE V: Comparison of performance and system overhead.

Performance metrics System overhead
Throughput (Gbps) | P99 latency (ps) Compute utilization Memory utilization
. LLM: 195 LLM: 4.33 LLM: 97.71% (DPA) & 0.92% (ARM)
optimized JANUS KV: 102 KV: 4.5 KV: 99.53% (DPA) & 0.96% (ARM) 0.4% (DPA) & 0.3% (ARM)
LLM: 197 LLM: 3.64 LLM: 93.65% (DPA) & 0.94% (ARM)
-J 0.19% (DPA) & 0.1% (ARM
non-IANUS KV: 121 KV: 3.65 KV: 99.24% (DPA) & 0.92% (ARM) 9% (DPA) b (ARM)
FreeFlow [10]]I;I;,Mllz‘;f LI](“\I\//:[" 5672%3 Dedicated CPU core at 100% N/A
LLM: 1 LLM: 7. RAM: 15.97
Bedrock [28] 8 06 N/A S 5.97%
KV: 19.2 KV: 7.05 TCAM: 74.98%

C. Overall Enforcement Performance

Overall comparison. Table V compares the optimized JANUS
with non-JANUS, as well as FreeFlow and Bedrock in terms
of ACL performance and system overhead. Compared with
non-JANUS in original RDMA, the additional ACL enforcer of
optimized JANUS does not introduce obvious performance loss
and system overhead to DPU hardware. In LLM workloads,
for example, optimized JANUS exhibits almost same 200Gbps
line-rate throughput as non-JANUS, and incurs only 4.33us la-
tency, satisfying the line-rate throughput and ultra-low latency
requirements in RDMA. Meanwhile, optimized JANUS also
introduces little overhead on the DPA and ARM for compute
and memory resources, which only incrementally incurs about
4% DPA occupation and 0.3% memory consumption over the
non-JANUS scheme, proving the deployability of enforcing
ACLs at DPUs.

Compared with other ACL schemes, JANUS shows per-
formance and overhead advantages. It is obvious FreeFlow
achieves much lower throughput and higher latency than
optimized JANUS, and dedicates a CPU core to capture RDMA
traffic with 100% utilization, proving that software schemes
are difficult to satisfy the performance and cost-efficiency
requirements. Although Bedrock realizes line-rate inspection
for LLM workload, it almost doubles the per-packet latency as
it “pulls” the intra-host RDMA traffic to switches for permis-
sion checks, and delivers poor performance for KV workload
dominated by small packets. Our results show that end-host
DPUs provide superior, cost-effective ACL enforcement in
RDMA clouds.

Parallelism degree. Figure 10(a) compares the ACL through-
put of naive and optimized JANUS with different parallelism

11

degrees. Generally, with increasing numbers of threads, the
throughput of JANUS under different workloads rise cor-
respondingly, and optimized JANUS performs much better
than naive JANUS by up to 4.8x. Although difficult to
achieve line-rate throughput with KV workload (this is because
of BlueField-3’s limited capability to process overwhelming
small packets), our optimized JANUS still performs 12.52x
better than the naive scheme without optimizations.

It is also noticeable that when parallelism degree reaches
190 (i.e., full usage of all available threads), the ACL through-
put performance shows a subtle performance degradation com-
pared to using 128 threads. This motivates us to design a non-
blocking update mechanism mentioned in §V-D. For example,
we can use 128 threads to achieve the optimal inspecting
throughput, meanwhile reserve the remaining 62 threads to
execute RPCs for policy updates, thereby delivering efficient
packet inspection and policy updates simultaneously.

Ruleset size. Figure 10(b) illustrates the ACL throughput with
different ruleset sizes. With more rules being inserted, the
optimized JANUS shows a stable throughput with KV and
LLM workloads, but the naive JANUS encounters a throughput
degradation especially with KV workload. The reasons are
two-fold: 1) due to the hash algorithm, both schemes need
only O(1) memory accesses to localize the matched rule,
thereby maintaining a relatively stable lookup performance;
2) optimized JANUS with cache-friendly data structure makes
most hot rules hit in the local L1 cache, while the naive scheme
can encounter frequent cache misses and resorts to DRAM
with worse access performance. The results prove JANUS’s
scalability to ACL ruleset sizes.

Policy update scale. Figure 10(c) compares the update com-

w

1 2 4 8 16 32

Number of threads

64 128 190

(a) Parallelism setting

Fig. 10
pletion time with various update scales. It is obvious that
with more rules to update, naive JANUS exhibits a linear
growth, while optimized JANUS maintains very low and stable
update completion time. This is because optimized JANUS
with batching mechanism can reduce RPC invocations from
the control plane, while the naive scheme needs to invoke
multiple RPCs equal to the numbers of inserted rules. This
proves JANUS’s adaptability to frequent and composite ACL
updates in practical clouds.

D. Ablation Study

1) Memory-optimized Mechanism:
Cache-friendly hash table. Figure 11(a)-(c) show the
throughput advantages of a cache-friendly hash table design
in different settings. In Figure 11(a), as the traffic skewness
rises, the cache-friendly design shows a higher throughput than
the naive scheme without cache-friendly data structure. For
instance, under a KV workload, when the traffic skewness
increases from 50% to 95%, the ACL throughput with and
without the cache-friendly design increases by 22.2% and
1.78%, respectively. It proves that despite additional mainte-
nance (e.g., hierarchical tables with software LRU algorithm),
a cache-friendly data structure leads to higher hitting rate of
DPU caches and benefits more from higher traffic skewness.

Figure 11(b) explores the size of an exclusive small table
for each local thread. When the small table size exceeds a
threshold (e.g., 64 rules in our implementation), the ACL
throughput starts to decline. Especially under a KV workload
with much more frequent reads on the ruleset, the ACL
throughput drops by 13.1%. This is because when the small
table size is larger than the L1 cache size, the small table
content cannot be entirely cached in each exclusive L1 cache,
such that some hot rules are more likely to be placed at slower
L2/3 cache, leading to a suboptimal L1 cache hitting rate.
Therefore, an optimal size for each small table should not be
larger than the size of local L1 cache.

Figure 11(c) compares the cumulative distribution function
(CDF) of per-packet latency with and without a cache-friendly
hash table. It is obvious the latency performance with a cache-
friendly design can outperform the naive scheme by 36.8% in
the average case and 32.2% in the worse case. The reason is
that a cache-friendly hash table can improve the proportion of
hot rules within the L1 cache than the naive scheme, leading to
a higher L1 cache hitting rate. Therefore, a cache-friendly data
structure is helpful and necessary to reduce the lookup latency
for each packet and satisfy the ultra-low latency requirement of
RDMA. Meanwhile, we also note that JANUS still introduces
~5us latency at the 99th percentile. While it satisfies the

64 256 1K 4K 16K 64K 128K 256K 512K 1M
Number of ruleset

(b) Ruleset size
: Overall ACL performance under different settings.

12

& 200 7 £ 8000
8 — Naive (KV) 5180 — Naive (V) — Naive (LLM) < — Naive
= 1501 Optimized (KV) % 140 Optimized (KV) == Optimized (LLM) g 6000 Optimized
2 100{ = Naive (LLM) 2 100 g 4000
S 5o/ — Optimized (LLM) S 6o 3 2000
S ©
3 — g g
2 o £ 20 5 0i: - : ‘ :
= © 1 10 100 200 500

Number of update rules

(c) Policy update

latency requirement of RDMA, there is still room for further
optimization. We believe with further hardware optimization,
JANUS’s latency can be improved in future DPUs.
Heterogeneous DRAM scheduling. Figure 11(d) presents
ACL throughput with different scheduling schemes of hetero-
geneous DRAMs for the ring buffer and ruleset. Obviously,
when scheduling ring buffer at ARM’s DRAM and ruleset
at DPA’s DRAM, the ACL throughput outperforms other
scheduling schemes by at most 7.32x and 3.11x for KV
workload and LLM workload, respectively. The reasons are:
1) fetching data from the ring buffer is bandwidth-sensitive
operation, and ARM DRAM provides much higher memory
bandwidth than the DPA DRAM; 2) the closer DPA DRAM
can provide lower memory access latency with timely respon-
siveness for ACL lookup under very frequent ruleset reads.
Therefore, a DRAM scheduling scheme of “ringbuf@ARM-
ruleset@DPA” is more feasible in this scenario.
2) Compute-optimized Mechanism:

Dynamic load-aware steering. We use a static steering
configuration where different RDMA connections are steered
randomly to 128 threads at the DPA. Because the size of
these connections are highly skewed, we find 60 out of 128
threads are heavily overloaded, while the other 68 threads are
relatively idle. As optimization, our load-aware scheme can
dynamically adjust the runtime steering configuration to load-
balance multiple threads. Figure 12(a) compares the through-
put with and without a load-aware steering. JANUS optimizes
the ACL throughput by steering new arrival connections
from overloaded threads to least-loaded threads according to
their runtime load distribution, which outperforms the static
scheme by 74.35% and 72.9% for KV workload and LLM
workload, respectively. We also evaluate the load imbalance
among multiple threads with and without load-aware steering,
which is computed by w. Figure 12(b) shows
that JANUS reroutes new connections from overloaded to
least-loaded threads, reducing imbalance by 25.7 % for KV
workloads and 34.2 % for LLM workloads. The results prove
that a dynamic and load-aware packet steering can alleviate
the load imbalance and improve the overall ACL throughput.
Batch doorbell rings. We evaluate the throughput with vary-
ing doorbell batch sizes as Figure 12(c) shows. Generally,
a larger doorbell batch size is beneficial to higher ACL
throughput by reducing the PCle bandwidth consumption.
For example, when the batch size reaches 32, the lookup
throughput improves by 33.3% and 36.7% than no doorbell
batches (i.e., batch size = 1) under KV workload and LLM
workload, respectively. We also note it is not feasible to

p:
=R
=Y
o o

= wj/o cache-friendly (KV)
w/ cache-friendly (KV)

= wj/o cache-friendly (LLM)

= w/ cache-friendly (LLM)

i
N
o

—— KV workload

100 LLM workload

©
1=

Throughput (G

o
=}

1.0
KV workload
0.8 LLM workload

0.6 O 100
w O

Coa

—— w/o cache-friendly
w/ cache-friendly

0.2

Throughput (Gbps)

0.0

50 60 70 80 90 95 8 16 32
Traffic skewness (%)

Rules in small table

64 128

(a) RDMA traffic skewness (b) Small table size

4 6 8

ringbuf@ARM ringbuf@DPA ringbuf@ARM ringbuf@DPA
Latency (us) gbuf@ gbuf@! gbuf@: gbuf@!

table@DPA table@DPA table@ARM table@ARM

(c) Packet processing latency (d) DRAM usage

Fig. 11: Ablation study on memory-optimized mechanism.

I w/ load-aware
w/o load-aware

~
o

—— KV workload
LLM workload

=
w
o

O
o

Throughput (Gbps)

u
o

2 4 8 16 32

2 2.00

5125 B v/ load-aware 5o

= 132 w/o load-aware 82175
©

2 S 1.50

< 50 33

3 25 £E125

£ o0 1.

00
KV workload LLM workload KV workload

(a) Throughput

(b) Throughput imbalance

LLM workload Doorbell batch size

(c) Doorbell batch size

Fig. 12: Ablation study on compute-optimized mechanism.

set the batch size too large, as a larger batch size can lead
to higher packet processing latency for each packet, thereby
degrading the ACL inspection performance. To achieve the
tradeoff between throughput and latency, a batch size with 8
is recommended in JANUS implementation.
3) Robust Update Mechanism:

Consistent update. With insertion of consecutive 100 rules
to reject the target RDMA traffic, Figure 13(a) presents the
runtime throughput with and without a consistent update
mechanism. It is obvious they present varying throughput de-
cline trends. Without consistent updates, there exist transitional
states that only a partial of traffic is blocked but the remaining
maintains permitted, such that the runtime throughput shows
a slowly decreasing trend until all 100 rules are inserted
completely. Instead, JANUS with consistent update ensures
atomicity: only when all rules are updated will the new policy
take effect, such that the runtime throughput suddenly drops to
zero when all updates complete atomically, thereby eliminating
any potential incomplete or delayed updates.

Non-blocking update. Figure 13(b) and (c) compare the
runtime throughput of an inspecting thread during 100 and
200 consecutive updates, respectively. When the control plane
invokes RPCs to insert rules into the data plane, the naive
scheme without a non-blocking update mechanism has to
suspend the target thread that performs packet lookup to
execute the RPC process, making its throughput drop to nearly
0. Instead, with the non-blocking scheme by executing RPC at
the reserved threads, the packet inspecting logic is not influ-
enced and maintains stable lookup throughput during updates.
With more updates, the performance advantage gets larger
since the naive scheme needs linear-growing RPC invocations.
These results confirm the non-blocking update mechanism’s
effectiveness, especially under frequent RDMA cloud updates.

E. Security Analysis

Generally, JANUS achieves two security goals. Firstly, with
ACL expressions in QP semantics and enforcing point at the
critical path, JANUS delivers fine-grained governance on all
traffic under RDMA semantics from various sources, includ-

13

ing control path packets for QP state management and data
path packets that are transmitted in a kernel-bypass manner.
Therefore, the existing attacks related to unauthorized QP-
granularity accesses can be blocked by JANUS with specified
ACL rules. Secondly, with consideration of RDMA traffic
pattern as well as tailored system-level optimizations on DPU
memory and compute resources, JANUS achieves per-packet
inspection and policy updates in 200Gbps throughput and
<Sus latency, without compromising RDMA’s superior perfor-
mance. The analysis and experimental results prove JANUS’s
feasibility and practicality in real-world RDMA clouds.

As shown in the threat model (Figure 3), the JANUS enforcer
is deployed on a trusted DPU to ensure that attackers cannot
tamper with the ACL enforcement, thereby preventing poten-
tial circumvention or modification of the packet inspection
logic. Furthermore, following the models in PortCatcher [50],
JANUS only allows the trusted operators to make policies
and deploy them to target DPUs at end-hosts, ensuring the
reliability and security of ACL rules.

VII. DISCUSSION

Deployability of JANUS. Currently, we use programmable
DPUs to enforce the ACL function. Though satisfying the
coverage, efficiency and usability properties, the DPU-based
enforcement scheme also introduces inevitable hardware de-
ployment requirement to RDMA clouds. In fact, a better
enforcement location is the RNIC itself: if the ACL en-
forcer is hardwired at RNIC processing units, it becomes
a more easy-deployable and cost-efficient manner for large-
scale deployment in cloud infrastructure. In addition to DPUs,
we note there is other specialized hardware which has the
potential to offload the ACL enforcer. For example, several
smartNICs, such as Netronome Agilio series [69] and AMD
Alveo series [70], allow developers to offload hardwired eBPF
primitives, which hold the potentials to deliver performant
ACL inspection, although they sacrifice the usability property
of compatibility and transparency. While current enforcement
still has some limitations, we hope the philosophy of JANUS

w v J > Aot 4l 2 ey u " SELAAL L AR

2200 = Naive (KV) 5 12507 T - g 1250 T e

9 150 Consistent (KV) = 10004 = 1000

2 100{ — = Naive (LLM) 3 7507 emeviviee | 3 7907 e e

a2 T \ = Consistent (LLM) £ 500 . = 500 5

o o == Naive (KV) == Naive (LLM) o == Naive (KV) == Naive (LLM)

3 50 § 250 Non-blocking (KV) = = Non-blocking (LLM) § 250 Non-blocking (KV) = Non-blocking (LLM)

‘,-5‘ 0l i - - - - - . = i i £ ol _t— - - - —
0 375 750 1125 1500 1875 2250 0 600 1200 1800 2400 3000 0 600 1200 1800 2400 3000

Time (ms) Time (ms) Time (ms)

(a) Consistent updates

(b) 100 consecutive updates

(c) 200 consecutive updates

Fig. 13: Ablation study on robust update mechanism.

can inspire future development of next-generation RNICs with
native ACL support.

ACLs for security enhancement. JANUS is designed to
govern unauthorized accesses, which is empowered to block
malicious requests aiming for disrupt the RDMA clouds. We
highlight that ACLs serve as one of the most effective solutions
for security enhancement, but are not the only scheme for
addressing the security issues. Besides JANUS, we also note
there are several works trying to improve the security of
RDMA networks. For example, researchers secure the RNIC
resource and performance isolation, such as cache and pro-
cessing units [12], [13], to prevent a tenant’s RNIC resource
from illegal contention by malicious tenants. In fact, existing
efforts tend to focus on specific security issues individually,
and seek to resolve each of them at a hardware or system
level. In contrast, JANUS is a general ACL system tailored for
RDMA clouds, which enables operators to govern malicious
request generation as needed. We believe both solutions can
contribute to a safer environment, and a powerful combination
with JANUS and each individual enhancement is promising for
future multi-tenant RDMA clouds.

ACL correctness and management. Due to sophisticated
expressions, JANUS imposes more scrutiny and overhead to
design and update policies to achieve desired reachability,
consistency and correctness in a production-scale RDMA
cloud. We note that current TCP/IP-based network verifiers
[36], [66], [67], [68] can be transferable to RDMA ACLs to
address the above three challenges, since JANUS expressions
are based on general operators with incremental QP-semantics
fields to five-tuple. By analyzing the formalized relationship
between ACL updates, therefore, network verifiers can detect
and fix the violations when using JANUS expressions with
specialized RDMA fields.

VIII. RELATED WORK

Besides the most relevant works discussed in Section II-B,
our work is also inspired by the following topics.
Expressions and policy languages. There are many domain-
specific ACL expressions and languages to ease the policy
regulation in various networking scenarios. For example, Rip-
ple [52], Poseidon [25] and Jagen [71] allow operators to
customize DDoS defense policies with extension of Spark-
like primitives in programmable switches in P4 programming
abstract. Marple [72], Sonata [73] and Cerberus [74] provide
high-level language with complicated primitives for operators
to measure runtime anomaly within the network. PBS [53] and
RDMI [75] define declarative languages to enable policies for

14

BYOD and memory introspection tasks, respectively. Though
providing effective and user-friendly regulation on traditional
TCP/IP traffic, none of these works involve the RDMA-
specific semantics, which motivates us to design a domain-
specific expressions tailored for RDMA networks.
Offloading network functions to DPUs. There is an increas-
ing trend of offloading network functions to DPUs to accel-
erate various network applications, e.g., distributed storage
[76]1, [77], [78], [79], [80], Al training [81], [82], networking
persistency & flexibility [83], [43], and multi-tendency support
[84]. Although they unveil DPU’s capability for different
network functions, they lack specialized optimization on the
unique characteristics and requirements of RDMA ACLs, and
cannot be directly migrated to our scenarios with satisfactory
transmission performance for RDMA.

IX. ETHICAL CONSIDERATION

No ethical consideration is raised in this paper. The ex-
periments are conducted within our private RDMA testbed
with all devices in our control. The malicious RDMA traffic
is generated by open-sourced tools, including ReDMArk [14],
NeVerMore [15], Husky [12] and LoRDMA [16].

X. CONCLUSION

This paper unveils why existing ACL expressions and
enforcement fail in RDMA clouds, and proposes JANUS, an
RDMA-tailored ACL system that satisfies the coverage, effi-
ciency and usability properties. JANUS considers the RDMA-
native semantics, and designs expressions as well as a policy
language for easier regulation on the comprehensive QP be-
haviors. JANUS enforces ACLs in DPUs, and develops several
optimizations on DPU resources for efficient packet inspection
and policy updates. We implement JANUS, with experiment
results showing JANUS’s powerful expressivity for RDMA
traffic and efficient enforcement with line-rate throughput and
ultra-low latency in a 200Gbps RDMA testbed.

ACKNOWLEDGMENT

We thank the anonymous NDSS reviewers for their valu-
able comments. This work is supported in part by the Na-
tional Natural Science Foundation of China (Grant 62221003,
62202260, 62402025), Shandong Provincial Natural Science
Foundation, China (Grant ZR2024L.ZHO11), the Research
Project of Provincial Laboratory of Shandong, China (Grant
SYS202201), the Research Project of Quan Cheng Laboratory,
China (Grant QCL20250108), and the Fundamental Research
Funds for the Central Universities. Jiahao Cao and Mingwei
Xu are the corresponding authors.

[1]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

REFERENCES

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in SIGCOMM, 2015.

C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in SIGCOMM, 2016.

Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan et al., “When cloud storage meets rdma,” in NSDI, 2021.

W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl, A. Bhagat,
G. Bhaskara, T. Brokhman, L. Cao, A. Cheema et al., “Empowering
azure storage with rdma,” in NSDI, 2023.

Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng,
X. Li, C. Xie, S. Nong et al., “Megascale: Scaling large language model
training to more than 10,000 gpus,” in NSDI, 2024.

K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao, C. Wang, P. Wang, P. Zhang, X. Zeng, Z. Yao, E. Zhai, and
D. Cai, “Alibaba hpn: A data center network for large language model
training,” in SIGCOMM, 2024.

A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang et al., “Rdma over ethernet
for distributed training at meta scale,” in SIGCOMM, 2024.

W. Liu, K. Qian, Z. Li, F. Qian, T. Xu, Y. Liu, Y. Guan, S. Zhu,
H. Xu, L. Xi et al., “Mitigating scalability walls of rdma-based container
networks,” in NSDI, 2025.

Z. Wang, X. Wei, J. Gu, H. Xie, R. Chen, and H. Chen, “Odrp: On-
demand remote paging with programmable rdma,” in NSDI, 2025.

D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan, “Freeflow: Software-based virtual rdma net-
working for containerized clouds,” in NSDI, 2019.

Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang, and K. Zheng,
“Masq: Rdma for virtual private cloud,” in SIGCOMM, 2020.

X. Kong, J. Chen, W. Bai, Y. Xu, M. Elhaddad, S. Raindel, J. Padhye,
A. R. Lebeck, and D. Zhuo, “Understanding rdma microarchitecture
resources for performance isolation,” in NSDI, 2023.

J. Lou, X. Kong, J. Huang, W. Bai, N. S. Kim, and D. Zhuo, “Harmonic:
Hardware-assisted rdma performance isolation for public clouds,” in
NSDI, 2024.

B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler, “Redmark:
Bypassing rdma security mechanisms,” in USENIX Security, 2021.

K. Taranov, B. Rothenberger, D. De Sensi, A. Perrig, and T. Hoefler,
“Nevermore: Exploiting rdma mistakes in nvme-of storage applications,”
in CCS, 2022.

S. Wang, M. Zhang, Y. Du, Z. Chen, Z. Wang, M. Xu, R. Xie, and
J. Yang, “Lordma: A new low-rate dos attack in rdma networks,” in
NDSS, 2024.

“Access control list (acl) overview,” 2025. [Online]. Available: https:
//docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
“Access control policy,” 2025. [Online]. Available: https://cloud.google
.com/apigee/docs/api-platform/reference/policies/access-control-policy
“Overview of azure network security,” 2025. [Online]. Available:
https://learn.microsoft.com/en-us/azure/security/fundamentals/networ
k-overview#network-access-control

“About network acls,” 2025. [Online]. Available: https://cloud.ibm.co
m/docs/vpc?topic=vpc-using-acls

M. Jethanandani, S. Agarwal, L. Huang, and D. Blair, “Yang data model
for network access control lists (acls),” RFC 8519, 2019.

M. Boucadair and T. Reddy.K, “Distributed denial-of-service open threat
signaling (dots) data channel specification,” RFC 8783, 2020.
“iptables,” 2025. [Online]. Available: https://www.netfilter.org/projects
/iptables/index.html

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in NSDI, 2015.

M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in NDSS, 2020.

S.-Y. Tsai and Y. Zhang, “Lite kernel rdma support for datacenter
applications,” in SOSP, 2017.

M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli,
M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble et al., “Snap: A
microkernel approach to host networking,” in SOSP, 2019.

15

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]
[47]

[48]

[49]

[50]
[51]

[52]

(53]

J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen, “Bedrock:
Programmable network support for secure rdma systems,” in USENIX
Security, 2022.

“Janus enforcement on nvidia bluefield-3 dpu,” 2025.
Available: https://github.com/czt8888/janus-bf3

InfiniBand Trade Association, “InfiniBand Architecture Specification
Release 1.2.1 Annex A17: RoCEv2,” https://cw.infinibandta.org/do
cument/dl/7781, 2014.
“Infiniband trade association,”
/Iwww.infinibandta.org
“Understanding iwarp: Delivering low latency to ethernet,” 2018.
[Online]. Available: https://www.intel.com/content/dam/support/us/en/
documents/network/sb/understanding_iwarp_final.pdf

L. Shalev, H. Ayoub, N. Bshara, and E. Sabbag, “A cloud-optimized
transport protocol for elastic and scalable hpc,” IEEE Micro, vol. 40,
no. 6, pp. 67-73, 2020.

D. Gibson, H. Hariharan, E. Lance, M. McLaren, B. Montazeri,
A. Singh, S. Wang, H. M. Wassel, Z. Wu, S. Yoo et al., “Aquila: A
unified, low-latency fabric for datacenter networks,” in NSDI, 2022.

Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. Ports, Y. Wang,
R. Wang, C. Tai, and N. S. Kim, “Rambda: Rdma-driven acceleration
framework for memory-intensive pus-scale datacenter applications,” in
HPCA, 2023.

B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang et al., “Safely and automatically updating in-network
acl configurations with intent language,” in SIGCOMM, 2019.
“Security practices in aws multi-tenant saas environments,” 2025.
[Online]. Available: https://aws.amazon.com/jp/blogs/security/securit
y-practices-in-aws-multi-tenant-saas-environments

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over
layer 3 networks,” RFC 7348, 2014.

P. Matthews, I. van Beijnum, and M. Bagnulo, “Stateful nat64: Network
address and protocol translation from ipv6 clients to ipv4 servers,” RFC
6146, 2011.

R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in SoCC,
2012.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen ef al., “Pingmesh: A large-scale system for
data center network latency measurement and analysis,” in SIGCOMM,
2015.

Z. Yu, B. Su, W. Bai, S. Raindel, V. Braverman, and X. Jin, “Under-
standing the micro-behaviors of hardware offloaded network stacks with
lumina,” in SIGCOMM, 2023.

C. Zhao, J. Min, M. Liu, and A. Krishnamurthy, “White-boxing rdma
with packet-granular software control,” in NSDI, 2025.

“ibv_reg_mr,” 2025. [Online]. Available: https://www.rdmamojo.com/2
012/09/07/ibv_reg_mr

“Optimized memory access,” 2025. [Online]. Available: https:
//docs.nvidia.com/networking/display/mlnxofedv522230/optimized+m
emory-+access

“Open vswitch,” 2025. [Online]. Available: https://www.openvswitch.
org

D. Firestone, “Vfp: A virtual switch platform for host sdn in the public
cloud,” in NSDI, 2017.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking: Smartnics in the public cloud,” in NSDI, 2018.
D. Bansal, G. DeGrace, R. Tewari, M. Zygmunt, J. Grantham, S. Gai,
M. Baldi, K. Doddapaneni, A. Selvarajan, A. Arumugam et al., “Dis-
aggregating stateful network functions,” in NSDI, 2023.

C. Jung, S. Kim, R. Jang, D. Mohaisen, and D. Nyang, “A scalable and
dynamic acl system for in-network defense,” in CCS, 2022.

C. Lever, “Rfc 8797: Remote direct memory access-connection manager
(rdma-cm) private data for rpc-over-rdma version 1,” 2020.

J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries,” in USENIX Security,
2021.

S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards sdn-
defined programmable byod (bring your own device) security.” in NDSS,
2016.

[Online].

2024. [Online]. Available: https:

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]
[69]

[70]

[71]

[72]

[73]

[74]
[75]

[76]

(771

[78]

[79]

“Nvidia bluefield-3 dpu,” 2025. [Online]. Available: https://www.nvidia
.com/content/dam/en-zz/Solutions/Data- Center/documents/datasheet-n
vidia-bluefield-3-dpu.pdf

P. Fleming, C. Chang, D. Collier, A. Singhai, S. Doyle, E. Louzoun,
D. Lee, V. Ayyavu, S. Livne, R. Hathaway et al., “Intel® ipu €2200:
Second generation infrastructure processing unit (ipu),” in HCS, 2025.
“Marvell octeon tx2 cn913x product brief,” 2025. [Online]. Available:
https://www.marvell.com/content/dam/marvell/en/public-collateral/em
bedded- processors/marvell-infrastructure-processors-octeon-tx2-cn913
x-product-brief.pdf

R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, “Revisiting network support for rdma,” in
SIGCOMM, 2018.

Z. Wang, X. Wan, L. Li, Y. Sun, P. Xie, X. Wei, Q. Ning, J. Zhang,
and K. Chen, “Fast, scalable, and accurate rate limiter for rdma nics,”
in SIGCOMM, 2024.

S. Floyd, H. Balakrishnan, and M. Allman, “Enhancing tcp’s loss
recovery using limited transmit,” RFC 3042, 2001.

X. Chen, J. Zhang, T. Fu, Y. Shen, S. Ma, K. Qian, L. Zhu, C. Shi,
Y. Zhang, M. Liu, and Z. Wang, “Demystifying datapath accelerator
enhanced off-path smartnic,” in ICNP, 2024.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in SIGCOMM, 2019.

“Doca documentation v2.5.0 1Its,” 2025. [Online]. Available: https:
//docs.nvidia.com/doca/archive/doca-v2-5-0/index.html

X. Wang, Q. Li, Y. Xu, G. Lu, D. Li, L. Chen, H. Zhou, L. Zheng,
S. Zhang, Y. Zhu, Y. Liu, P. Zhang, K. Qian, K. He, J. Gao, E. Zhai,
D. Cai, and B. Fu, “Simai: Unifying architecture design and performance
tunning for large-scale large language model training with scalability and
precision,” in NSDI, 2025.

S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve a
billion requests per second throughput on a single key-value store server
platform,” in ISCA, 2015.

D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, 2007.

D. Guo, S. Chen, K. Gao, Q. Xiang, Y. Zhang, and Y. R. Yang, “Flash:
fast, consistent data plane verification for large-scale network settings,”
in SIGCOMM, 2022.

P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and H. Li,
“Differential network analysis,” in NSDI, 2022.

Z. Li, P. Zhang, Y. Zhang, and H. Yang, “Ndd: A decision diagram for
network verification,” in NSDI, 2025.

“Agilio cx smartnics,” 2025. [Online]. Available: https://netronome.co
m/agilio-smartnics

“Amd alveo snl000 smartnic accelerator card,” 2025. [Online].
Available: https://www.amd.com/en/products/accelerators/alveo/sn1000/
a-sn1022-p4.html

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jagen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in USENIX Security, 2021.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in SIGCOMM, 2017.

A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
SIGCOMM, 2018.

H. Zhou and G. Gu, “Cerberus: Enabling efficient and effective in-
network monitoring on programmable switches,” in S&P, 2024.

H. Liu, J. Xing, Y. Huang, D. Zhuo, S. Devadas, and A. Chen, “Remote
direct memory introspection,” in USENIX Security, 2023.

J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kosti¢, Y. Kwon, S. Peter,
and E. Witchel, “Linefs: Efficient smartnic offload of a distributed file
system with pipeline parallelism,” in SOSP, 2021.

T. Kim, D. M. Ng, J. Gong, Y. Kwon, M. Yu, and K. Park, “Rearchi-
tecting the tcp stack for i/o-offloaded content delivery,” in NSDI, 2023.
J. Zhang, H. Huang, L. Zhu, S. Ma, D. Rong, Y. Hou, M. Sun, C. Gu,
P. Cheng, C. Shi et al., “Smartds: Middle-tier-centric smartnic enabling
application-aware message split for disaggregated block storage,” in
ISCA, 2023.

Q. Zhang, P. Bernstein, B. Chandramouli, J. Hu, and Y. Zheng, “Dds:
Dpu-optimized disaggregated storage,” in VLDB, 2024.

(81]

[82]

[83]

[84]

[80] J. Shu, K. Qian, E. Zhai, X. Liu, and X. Jin, “Burstable cloud block

storage with data processing units,” in OSDI, 2024.

Y. Xiao, D. Z. Tootaghaj, A. Dhakal, L. Cao, P. Sharma, and A. Kuz-
manovic, “Conspirator: Smartnic-aided control plane for distributed ml
workloads,” in ATC, 2024.

M. Khalilov, S. Di Girolamo, M. Chrapek, R. Nudelman, G. Bloch,
and T. Hoefler, “Network-offloaded bandwidth-optimal broadcast and
allgather for distributed ai,” in SC, 2024.

A. Psistakis, F. Chaix, and J. Torrellas, “Minos: Distributed consistency
and persistency protocol implementation & offloading to smartnics,” in
HPCA, 2024.

M. Khalilov, M. Chrapek, S. Shen, A. Vezzu, T. Benz, S. Di Girolamo,
T. Schneider, D. De Sensi, L. Benini, and T. Hoefler, “Osmosis: Enabling
multi-tenancy in datacenter smartnics,” in ATC, 2024.

APPENDIX

apply (p5,

policy p5 {
predicate = match(sGID in {100,

200}) & match(dGID = 500) &
match (type in {ConnectRequest, ConnectReply}) &
match (1QPN = any) & match(dQPN = any)

action = allow

policy p6 {
predicate = match(sGID = any) & match(dGID = 500) &

match (type in {ConnectRequest, ConnectReply}) &
match (1QPN = any) & match(dOPN = any)
action = deny

policy p7 {
predicate = match(sGID in {100,

200}) & match(dGID = 500) &
match (dQPN in {300, 400}) & match(opcode in {CAS,
match (VA in [0x00001000, 0x00002000])

action = allow

FAA}) &

policy p8 {
predicate = match(sGID = any) & match(dGID = 500) &

match (dOPN = any) & match (opcode in {CAS,
match (VA in [0, inf])
action = deny

FAA}) &

p6, p7, p8)

Fig. 14: Govern atomic operations.

policy p9 {
predicate = match(sip in 10.0.4.0/24) &

match (type in {ConnectRequest, ConnectReply}) &
match (1QPN = any) & match(dQPN = any)
action = deny

policy pl0 {
predicate = match(sip = any) &

match (type in {ConnectRequest, ConnectReply}) &
match (1QPN = any) & match(dQPN = any)
action = allow

apply (p9, p10)

Fig. 15: Govern QP connect requests.

apply (policyll,

policy pll {
predicate = match(sip = 10.0.1.101) & match(sport = any) &

match(dip = 10.0.1.105) & match(dport = 4791) &

match (type in {DisconnectRequest, DisconnectReply}) &

match (1PN in {300, 400, 500}) & match(dQPN in {200,
action = allow

600})

policy pl2 {
predicate = match(sip = 10.0.1.101) & match(sport = any) &

match(dip = 10.0.1.105) & match(dport = 4791) &
match (type in {DisconnectRequest, DisconnectReply}) &
match (1QPN = any) & match (dQPN = any)

action = deny

policyl2)

16

Fig. 16: Regulate QP disconnect requests.

policy pl3 {
predicate = match(sip = 10.0.5.109) & match(sport = any) &
match(dip = 10.0.1.10) & match(dport = 4791) &
match (dQPN in {500, 550}) & match(opcode = WRITE) &
match (VA in [0x00001000, 0x00002000])
action = allow

}

policy pl3 {
predicate = match(sip = 10.0.5.104) & match(sport = any) &
match(dip = 10.0.1.10) & match(dport = 4791) &
match (dQOPN = 600) & match(opcode = WRITE) &
match (VA in [0x00003000, 0x00005000])
action = allow

)

policy pl4 {
predicate = match(sip = 10.0.5.0/24) & match(sport = any) &
match(dip = 10.0.1.10) & match(dport = 4791) &
match (dQPN = any) & match (opcode = WRITE) &
match (VA in [0, inf])
action = deny

apply (p12, pl3, pl4)

Fig. 17: Regulate packet injection.

policy pl5 {
predicate = match(sip = 10.0.10.100) & match(sport = any) &
match (dip = 10.0.10.10) & match(dport = 4791) &
match (dOPN in {30, 50, 70}) & match(opcode = READ) &
match (VA in [0x00002000, 0x00003000])
action = allow

}

policy pl6 {
predicate = match(sip = 10.0.10.200) & match(sport = any) &
match(dip = 10.0.10.10) & match(dport = 4791) &
match (dQPN in {80, 120}) & match(opcode = WRITE) &
match (VA in [0x00004000, 0x00005000])
action = allow

)

policy pl7 {
predicate = match(sip = 10.0.10.0/8) & match(sport = any) &
match(dip = 10.0.10.10) & match(dport = 4791) &
match (dQPN = any) & match(opcode in {WRITE, READ}) &
match (VA in [0, inf])
action = deny

Janus.apply (p15, pl6, pl7)

Fig. 18: Govern unauthorized MR access.

Fraud QP disconnect. It aims to disconnect a victim’s QP
by unauthorized QP disconnect requests with CM protocol.
A feasible regulation strategy in the control path can be
shown in Figure 16: 1) allow the QP disconnect requests
from whitelist clients with associated legal QPNs; 2) deny
the disconnect requests from untrusted endpoints and QPNs.
The above policies take 19 LoC with JANUS.

Packet injection. It aims to inject unauthorized data to a
destination MR of the server. A practical governance in the
data path is illustrative in Figure 17: 1) allow the trusted
client with QPs from whitelist to launch WRITE operations on
specific MR address; 2) deny other WRITE requests towards
the rest of the MR address. The above ACL intent takes 26
LoC with JANUS.

17

