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Abstract—RDMA is being widely used from private data
center applications to multi-tenant clouds, which makes RDMA
security gain tremendous attention. However, existing RDMA
security studies mainly focus on the security of RDMA systems,
and the security of the coupled traffic control mechanisms
(represented by PFC and DCQCN) in RDMA networks is largely
overlooked. In this paper, through extensive experiments and
analysis, we demonstrate that concurrent short-duration bursts
can cause drastic performance loss on flows across multiple
hops via the interaction between PFC and DCQCN. And we
also summarize the vulnerabilities between the performance loss
and the burst peak rate, as well as the duration. Based on
these vulnerabilities, we propose the LoRDMA attack, a low-
rate DoS attack against RDMA traffic control mechanisms. By
monitoring RTT as the feedback signal, LoRDMA can adaptively
1) coordinate the bots to different target switch ports to cover
more victim flows efficiently; 2) schedule the burst parameters
to cause significant performance loss efficiently. We conduct
and evaluate the LoRDMA attack at both ns-3 simulations and
a cloud RDMA cluster. The results show that compared to
existing attacks, the LoRDMA attack achieves higher victim
flow coverage and performance loss with much lower attack
traffic and detectability. And the communication performance of
typical distributed machine learning training applications (NCCL
Tests) in the cloud RDMA cluster can be degraded from 18.23%
to 56.12% under the LoRDMA attack.

I. INTRODUCTION

The advent of RoCEv2 (RDMA over Converged Ethernet
Version 2) [34], [26] has led to a significant increase in the
adoption of RDMA (Remote Direct Memory Access) in data
centers. In RDMA, network clients can access the memory
of network servers directly by using the “remote memory”
abstraction. With RDMA-enabled network interface cards
(RNICs), the remote memory access bypasses the CPU and
the network stack in operating systems (OS) without any extra
data copy, achieving a significant performance improvement.
This performance benefit has been brought to a number of data
center applications, especially distributed machine learning
training tasks and distributed storage clusters [67], [16], [39],
[101], [41], [10], [40], [60], [23], [8], [100], [56], [103], [11],
[105], [37], [21], [7], [5]. And currently it is becoming a trend

to expand RDMA from private high-performance computing
clusters to public multi-tenant clouds [3], [4], [91].

However, the deployment of RDMA from private data
centers to public multi-tenant clouds has put RDMA secu-
rity under greater scrutiny. The OS-bypassing and protocol-
offloading paradigm of RDMA offers substantial performance
advantages, but it typically comes at the cost of security. On
the one hand, OS bypassing disables the traditional softwarized
security mechanism in operating systems and exposes server
memory to remote clients without CPU mediation [83]. On the
other hand, protocol offloading prefers a simplified transport
protocol design due to the limited computation and memory
resources in the RNIC, and has to rely on the hop-by-
hop flow control (e.g., PFC (Priority-based Flow Control))
to eliminate packet loss and guarantee high performance.
Therefore, RDMA faces a full range of security challenges,
from confidentiality, integrity, to availability. While there are
many recent studies [80], [96], [94], [90], [83], [38] that
focus on the security of RDMA systems, the security of the
underlying traffic control mechanisms, i.e., the hop-by-hop
flow control (e.g., PFC [33]) and the end-to-end congestion
control (e.g., DCQCN (Datacenter QCN) [116]) in RDMA
networks, is largely overlooked.

In this paper, we investigate the security of traffic control
mechanisms in RDMA networks with extensive experiments
and theoretical analysis. Conventional wisdom usually uses
the end-to-end congestion control (e.g., DCQCN) to alleviate
problems of the hop-by-hop flow control (e.g., PFC) [32],
[116], [68], [57], but we surprisingly find that the behaviors
of the congestion control can also be misled by the flow
control with well-crafted bursts, which derives significant
security concerns. Specifically, by crafting concurrent bursts
to overwhelm the egress queue of a switch port, the attackers
can cause the backpressure of PFC PAUSE frames regardless
of DCQCN deployment, resulting in congestion spreading to
the upstream switches. Worse yet, the congestion detection of
DCQCN is misled by the queues congested by back-spreading
PFC frames, and therefore cuts the rate of innocent flows,
which even share no link with the bursts. Moreover, due to the
Additive-Increase/Multiplicative-Decrease (AIMD) property of
DCQCN, the victim flow rate recovers very slowly, causing
long-term average performance degradation. This phenomenon
presents an unprecedented opportunity for attackers to conduct
an efficient low-rate DoS attack: the attackers can widely cause
high performance loss on flows across multiple hops, with low
attack traffic volume and detectability.
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In light of these observations, we present the LoRDMA at-
tack, a new low-rate DoS (Denial-of-Service) attack in RDMA
networks. Nevertheless, exploiting these vulnerabilities and
conducting an efficient attack still face two substantial chal-
lenges. First, the attackers should coordinate the compromised
devices (bots) to congest certain egress ports, in order to 1)
cover more victim flows and 2) put higher performance degra-
dation on each victim flow. However, selecting target ports to
cover more flows is a generalized coverage problem, which is
a classical NP-hard problem [15], [44]. Besides the coverage
problem, deciding how many bots for each selected port to
achieve a trade-off between the attack burst rate and the perfor-
mance loss is also difficult. Although experiments have shown
the rough relationship between them, the precise relationship
is difficult for end-host attackers to acquire by experiments or
offline simulations/mathematical analysis, due to the limited
knowledge of flow rate and network configurations, and the
complexity of the coupled traffic control mechanisms (PFC&
DCQCN). Therefore, an efficient bot assignment is nontrivial
to obtain. The second challenge is how to schedule the burst
duration to cause high performance loss efficiently. Existing
low-rate DoS attacks [62], [24], [25], [86] usually develop a
theoretical model of the target service control system. They
either construct a mathematical function between the attack
impact and burst parameters, or identify some feedback signals
to calculate the attack impact numerically, which helps make
an efficient trade-off between the attack impact and the cost
(e.g., average traffic volume). However, due to the complexity
of the coupled traffic control systems in RDMA networks, it
is also difficult to model this relationship mathematically.

Fortunately, we observe that RTT (Round-Trip Time),
which has been proven to present a linear mapping with
the queue length [68], [48], can well reflect the convergence
of the burst impact. By monitoring RTT, the attackers can
qualitatively infer whether the attack impact converges under
the current attack pattern and adaptively adjust the burst pa-
rameters, though quantitatively evaluating the exact impact of a
specific attack pattern is still difficult. Accordingly, we propose
a two-step attack method consisting of a coordination and a
schedule procedure. Guided by the RTT probing, the attackers
first select the target ports and coordinate the bots to each target
port to cover more target victim flows with rate degradation
efficiently. Then the attackers schedule the burst duration to
cause high performance loss on covered victim flows effi-
ciently. We implement the attack tools including a line-rate
burst generator and an RTT prober, and carry out evaluations
on both ns-3 simulations and a real-world cloud RDMA
cluster. All the codes are publicly available at GitHub [97].
Our evaluations demonstrate that the LoRDMA attack provides
∼10% higher average vicitm flow coverage and performance
degradation in different topoligies, and only presents ∼50%
of the direct flow contention, compared with existing attacks
(e.g., link flood attacks [44]). And the LoRDMA attack also
has several times higher attack efficiency compared to dumb
burst parameter settings. Our simulations on real-world RDMA
applications demonstrate that very few bots (∼2% in the
network) can cause performance loss on nearly 100% flows
and a mean performance degradation ratio of 8.11% to 52.7%
in different workloads and background traffic conditions. Ex-
periments on the real-world cloud RDMA cluster also show
that the communication performance of typical distributed

machine learning training applications (NCCL Tests) is also
significantly degraded by 18.23% to 56.12%. To the best of
our knowledge, we are the first to identify PFC-misleading-
congestion-control security vulnerabilities that may impact
traffic hops away and propose a new attack correspondingly,
which reminds researchers/engineers/operators to carefully re-
visit bursts when facing unideal network performance, and
reconsider the security of traffic control in lossless RDMA
networks.

Our contributions in this paper include:

• We conduct comprehensive experiments and provide
an in-depth analysis of the performance loss by short-
duration bursts in RDMA networks. We then reveal
the vulnerabilities of the traffic control mechanisms
in RDMA networks (§ III).

• We present the LoRDMA attack, a new low-rate
DoS attack in RDMA networks. Taking RTT as the
feedback, the attackers can efficiently tune the burst
rate to the carefully selected target egress ports and the
burst duration to achieve high attack efficiency (§ IV).

• We implement the attack tools including a line-rate
burst generator and an RTT prober (§ IV-F), and
conduct extensive evaluations to demonstrate the ef-
fectiveness and efficiency of the LoRDMA attack
(§ V).

II. BACKGROUND AND RELATED WORK

A. RDMA Basics

RDMA was designed to be a high-throughput, low-latency,
and low-CPU-occupation remote memory access technology. It
eliminates the multiple data copies between application, kernel,
and NICs, and allows direct memory-to-memory communica-
tion in user space, without CPU intervention or OS context
switching between kernel and user space. It also offloads the
transport protocol stack into dedicated hardware (i.e., RNIC),
such as packet encapsulation, segmentation, reassembly, and
traffic control mechanisms. Therefore, RDMA applications
can directly access the memory of remote hosts with RNICs,
achieving much lower latency and higher throughput without
CPU mediation. Currently, RDMA has been widely used in
a number of data center applications, especially distributed
machine learning training tasks and distributed storage clus-
ters [67], [16], [39], [101], [41], [10], [40], [60], [23], [8],
[100], [56], [103], [11], [105], [37], [21], [7], [5].

RDMA applications can invoke the RDMA verbs API [35],
[78] to directly operate RNIC hardware. In particular, the
programmer can create a queue pair (QP) to set up an RDMA
transport channel to a remote host. It can set different QP types,
including Reliable Connection (RC), Unreliable Connection
(UC), or Unreliable Datagram (UD). RDMA consists of two
types of data transmission verbs. Two-sided verbs (SEND and
RECV) are similar to traditional RPC messages and require
CPU involvement. For example, the receiver CPU needs to
issue RECV to its RNIC to declare readiness to receive
data. And one-sided verbs (WRITE, READ, and ATOMIC)
bypass CPU involvement completely. During the transmission,
clients can directly access remote memory without remote
CPU awareness and thus achieve ultra-high performance.
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Although the OS-bypassing and protocol-offloading
paradigm of RDMA enables substantial performance
adavantages, it also imposes new constraints on the network
traffic control mechanism. Mainstream implementations
of RDMA usually require a lossless network to ensure
high performance, because the loss handling on RNICs is
expensive due to the limited hardware resources. In particular,
the most widely used RDMA protocol, RoCEv2 [34],
which encapsulates InfiniBand [35] over UDP, deploys
PFC [33] to avoid packet loss. However, PFC brings several
considerable performance problems, and congestion control
(e.g., DCQCN [116]) is introduced subsequently to alleviate
these performance problems. We give a detailed discussion
on RDMA traffic control in § II-B.

B. Traffic Control Mechanisms in RDMA

RDMA requires a lossless network to achieve high trans-
port performance in general. Specifically, in RoCEv2, the
hop-by-hop flow control mechanism, PFC [33], is deployed
to guarantee the loss-free property. When the ingress queue
length exceeds a certain threshold (X-OFF) due to network
congestion, the switch sends a “PAUSE” frame to its upstream
entity (a switch or a RNIC) to stop packet transmission.
And the transmission restarts with a “RESUME” frame when
the queue drains below another threshold (X-ON). Despite
zero packet loss, PFC results in many performance problems
due to congestion spreading, such as head-of-line blocking
(HLB), unfairness (victim flows), PFC storm, and even PFC
deadlock [26], [31], [116], [89].

To alleviate the problems of PFC, conventional wis-
dom introduces the end-to-end congestion control. DCQCN,
the default congestion control algorithm in RNICs from
NVIDIA/Mellanox [66], is the most widely used one in leading
industry companies [116], [26], [21], [5]. DCQCN detects
congestion based on the egress queue length. The switch
(Congestion Point) monitors egress queues and marks packets
with ECN (Explicit Congestion Notification) [20] according
to the RED (Random Early Detection) algorithm [19]. Note
that in principle, ECN on switches should be set before PFC
is triggered. The receiver (Notification Point) then responds
to ECN-marked packets with congestion notification packets
(CNPs). After receiving CNPs, to achieve fairness among
different flows, the sender (Reaction Point) runs an AIMD
rate adjustment mechanism, based on which the sending rate
can be cut rapidly and recovered in a more moderate manner.
Note that DCQCN has no slow start phase like TCP. When
a flow starts, it sends at full line rate to accelerate the flow
completion time.

There are many variants of congestion control algorithms
in RoCEv2, e.g., QCN [32], TIMELY [68], HPCC [57].
However, QCN does not support layer-3 networks and limits
the netowrk scale, TIMELY has been replaced with Swift by
Google because of its convergence problems [48], and HPCC
is still an academic paper without large-scale deployment [21].
To summarize, in current production RDMA networks, PFC
and DCQCN are still the most widely used traffic control
mechanisms. And thus in this paper we use PFC and DCQCN
as the representatives of the hop-by-hop flow control and the
end-to-end congestion control respectively.

C. Related Work

RDMA security. The popularity of RDMA boosts the research
on its security considerations [80], [96], [94], [90], [83], [38].
RFC 5042 [80] proposes a basic security analysis of RDMA
system architectures and discusses various potential attacks and
countermeasures. Pythia [96] proposes a side-channel attack
on RNICs that allows attackers to learn the access pattern of
victim clients by statistically analyzing the latency of well-
crafted probe requests. sRDMA [94] highlights the vulnera-
bility of weak authenticity and secrecy in RDMA systems,
and also offloads symmetric cryptography onto SmartNICs to
bridge the security gap. Simpson et al. [90] demonstrate the
security issues in current RDMA systems, such as missing
confidentiality, integrity, and authenticity, and also discuss
guidelines on securing RDMA-based cloud storage systems.
ReDMArk [83] provides a more systematic analysis of the
security mechanisms in current RDMA architectures and RNIC
implementations of various vendors. It also presents a com-
prehensive range of vulnerabilities with different adversary
models, such as unauthorized access, resource exhaustion, and
impersonation. Bedrock [38] offloads security functions, such
as authenticity and access control, to programmable switches
to avoid software overhead. Most of these works focus on the
security of RDMA systems, and the research on transport layer
security in RDMA networks remains lacking. Some existing
studies [12], [109] identify the PFC-DCQCN interaction and
improve the congestion control algorithm. However, they nei-
ther study the relationship between bursts and their impact on
victim flow performance, nor how bursts can be exploited to
conduct attacks. Worse yet, their solutions require substantial
processing logic modifications on switches and RNICs, which
have no support from current commercial production and face
serious deployment obstacles in practical large-scale RDMA
networks. Snyder et al. [92] identify that DCQCN can be ex-
ploited by attackers to gain an unfair advantage in bandwidth.
However, they do not consider the impact of PFC, which is
frequently triggered in realistic RDMA networks despite the
deployment of DCQCN. Our work is the first study that reveals
the relationship between bursts and victim flow performance
via extensive experiments and theoretical analysis, and also
presents a well-crafted new low-rate DoS attack to exploit the
vulnerabilities efficiently.

Low-rate DoS attacks. Low-rate DoS attacks are a classic
type of DoS attacks [49], [62], [24], [25], [36], [86]. They
focus on service provision systems, which can be mod-
eled as a feedback-based control system. By crafting short-
duration high-volume requests, they temporarily overwhelm
the capacity of a service provision system and trigger “fake”
feedback signals to degrade the service performance. TCP-
based low-rate DoS attacks, such as Shrew [49] and Luo
et al. [62], exploit the AIMD rate adjustment and RTO
(Retransmission Time Out) mechanism, trigger packet loss
by congesting switch port queues with periodic bursts, and
make TCP decrease the performance of flows sharing the same
link over a much longer term. The RoQ attacks [24], [25]
analyze the Lyapunov stability [79] of the systems, such as
TCP and load-balancers, and propose an optimization problem
based on the relationship between the attack pattern and the
impact. TCPwn [36] proposes an automated attack method by
combining fuzzing and runtime analysis to generate specific
attack methods for different implementations of TCP. The tail
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Fig. 1. LoRDMA vulnerability illustration.

attack [86] analyzes the attack impact on n-tier Web-App
systems and constructs a feedback-based control framework
to dynamically tune the attack parameters. As we can see,
most existing low-rate DoS attacks require detailed theoretic
analysis of the victim control system to guide an effective
attack, such as queuing theory [86], [61], control theory [24],
[25] or fuzzing [36]. However, RDMA networks consist of two
coupled control systems: PFC and DCQCN, making mathemat-
ical analysis challenging. Our work is the first study to analyze
the impact of low-rate DoS attacks on RDMA networks.
Instead of deducing the mathematical relationship between
attack pattern and impact, our work qualitatively reveals the
convergence of the attack impact with burst parameters through
extensive experiments and theoretical analysis, which inspires
us to conduct the LoRDMA attack efficiently.

III. MOTIVATING MEASUREMENT

In this section, we perform a systematic study on the impact
of concurrent bursts on network performance. By adjusting
different burst parameters, we investigate the variation of
performance loss with each parameter. We then analyze the
reasons for the performance degradation phenomenon, and
summarize the vulnerabilities and principles for conducting
an efficient low-rate DoS attack.

A. Experimental Setup

Like existing congestion control studies from top-tier con-
ferences [116], [57], [12], [109], we develop our simulated
testbed based on the open-source ns-3 DCQCN project [115].
We set up the topology as shown in Figure 1(a), a common
unit from the CLOS network topology in data centers [1], [14],
where 3 receivers under a ToR switch (SW5) are connected
by 4 senders at other ToR switches (SW1&SW2), through
different intermediate leaf switches (SW3&SW4). All links in
the network have 100Gbps bandwidth with a propagation delay
of 5µs. Specifically, S1-S4 start flows F1-F4 respectively to

R1-R3. Each flow is allocated a fair share of the bandwidth
bottleneck link, i.e., each flow converges to 50Gbps. Assuming
some hosts are compromised by attackers as bots (A1-An), the
attackers can manipulate the RNIC to craft line-rate bursts1 to
congest SW5.P4, and degrade the performance of legitimate
flows. We set all parameters of PFC and DCQCN according
to the default recommended values [33], [116], [115] (Table II
in Appendix C).

To study the impact of the bursts comprehensively, we
first define the parameters to describe the bursts. As shown
in Figure 1(b), we define the burst peak rate as δ, the burst
duration as τ , and the period to restart the burst as T . In
particular, we present δ as an integer multiple of the line rate,
i.e., δ = n ∗ 100Gbps, n ∈ N0, where n stands for the number
of bots sending the burst to the same destination egress port.
To represent the impact on the performance of victim flows, we
also define the performance loss of a flow caused by the bursts.
As Figure 1(c) shows, for a flow f , the average bandwidth over
time interval T can be computed as

∫
T
R(t)dt/T , where R(t)

is the instantaneous rate of flow f at time t. The bandwidth
loss can then be represented as the bandwidth difference:
∆Bw = R0 −

∫
T
R(t)dt/T =

∫
T
(R0 − R(t))dt/T , where

R0 is the original rate of flow f . Note that the integral term as
the numerator is exactly the area of the shadowed part in Fig-
ure 1(c) geometrically. Therefore, we define the performance
loss of f as the shadowed area: PLf =

∫
T
(R0 − R(t))dt.

Based on these definitions, we conduct the simulations with
various burst rate δ (i.e., the number of bots sending line-rate
bursts to SW5.P4) and duration τ . We then monitor the flow
rate over time, and calculate the performance loss for each
flow correspondingly.

B. Experiment Results

Figure 2 shows the rate of different flows with different
burst parameters. Specifically, we set the burst rate δ from
200Gbps to 800Gbps, and the burst duration τ from 100µs to
5ms. Due to space limitations, we only present a part of the
results here. We also analyze the performance loss of victim
flows with different parameters in Figure 3. Furthermore, we
record the queue length and count PFC PAUSE frames under
the 1ms burst in Figure 4.

Performance loss properties. As shown in Figure 2, the
victim flow (F1-F4) rate decreases very fast in microseconds,
and recovers nearly linearly because of the AIMD property
in the congestion control. Actually, the recovery rate is deter-
mined by the parameters of DCQCN [116]. As we defined in
§ III-A, since the performance loss PL on a flow is exactly
the shadowed part in Figure 1(c) geometrically, PL can be
approximately regarded as the area of geometric shape whose
height is the difference between the original flow rate R0

and the lowest flow rate Rlo (denoted as ∆R = R0 − Rlo).
Therefore, we refer to ∆R as the performance loss factor,
which represents the performance loss on a flow roughly.
We also define the normalized performance loss factor as
Norm ∆R = ∆R/R0, to characterize the severity of the
performance loss experienced by different flows.

1In RDMA networks, line-rate burst can be generated in different ways,
such as aggregating multiple mice flows (flow size ≤ BDP, Bandwidth-Dealy-
Product) to avoid DCQCN rate cutting [12], [92], or even fully controlling
the RNIC to craft traffic [83]. We give a more detailed discussion in § IV-A.
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(a) 100µs burst from 3 bots (b) 500µs burst from 3 bots (c) 1ms burst from 3 bots (d) 5ms burst from 3 bots

(e) 100µs burst from 4 bots (f) 500µs burst from 4 bots (g) 1ms burst from 4 bots (h) 5ms burst from 4 bots

(i) 100µs burst from 5 bots (j) 500µs burst from 5 bots (k) 1ms burst from 5 bots (l) 5ms burst from 5 bots

Fig. 2. Flow rate with different burst duration τ and peak rate δ.

Different types of victim flows. Figure 2 shows two types of
victim flows in Figure 1(a), which have different symptoms
and mechanisms of performance degradation. (1) F2 and F3
are directly “cut off” by the bursts because of the egress
queue congestion in SW5.P4. As Figure 4 shows, SW5.P4 has
drastic queue buildup due to the bursts, and the packets of F2
and F3 get ECN marked, making DCQCN decrease their rate
consequently. Worse yet, it takes a longer time for them to
recover to the original rate because of the AIMD property in
DCQCN, which is similar to existing TCP-targeted low rate
DoS attacks [49], [62], [36]. (2) F1 and F4, surprisingly, also
experience performance degradation. F1 and F4 have no link
sharing, and thus no queue contention with the culprit bursts.
But as shown in Figure 4, SW3.P2 and SW4.P2 also encounter
significant queue buildup, resulting in the performance degra-
dation on F1 and F4. In a word, they are indirectly cut by the
bursts. We make further analysis of the performance loss on
these two types of victim flows below.

Performance loss on direct victim flows. As described
above, direct victim flows (F2 and F3) are similar to those
under traditional TCP low-rate DoS attacks. (1) Consider the
performance loss factor of direct victim flows ∆Rd. On the
one hand, given a bot number n (i.e., a given burst peak
rate δ = n ∗ 100Gbps), ∆Rd gradually increases with τ
and converges to Rd0 (50Gbps) when τ is long enough, as
shown in every row of Figure 2. On the other hand, given a
τ long enough (e.g., 1ms), ∆Rd is relatively constant with
increasing bot number (Figure 2(c), 2(g) and 2(k)), because
very few bots (e.g. 2 bots) with line-rate bursts have already
cut the rate of direct victim flows to nearly 0. We also
illustrate the relationship between ∆Rd and δ in Figure 3(c)
(shown by Norm ∆Rd). (2) Consider the performance loss on
direct victim flows PLd. PLd is approximately an orthogonal
triangle area when τ is short (e.g., Figure 2(a)). Its height
is the performance loss factor (∆Rd), and the slope of the

hypotenuse k, is a constant determined by the DCQCN additive
recovery parameters. Therefore, we have PLd = (∆Rd)

2/2k,
which increases super-linearly with τ because ∆Rd is also
growing with τ 2. However, when τ is long enough and the
flow rate decreases to 0 (∆Rd converges), PLd geometrically
becomes a right trapezoid where its height is ∆Rd = Rd0

(Figure 2(d), 2(h) and 2(l)). Accordingly, PLd begins to
increase linearly with τ , i.e., PLd = Rd0 ∗ τ + (Rd0)

2/2k
and dPLd/dτ = Rd0. We also illustrate the variation of PLd

with τ in Figure 3(a).

Performance loss on indirect victim flows. (1) Consider the
performance loss factor of indirect victim flows ∆Ri first. On
the one hand, given a bot number n, i.e., δ = n ∗ 100Gbps,
∆Ri gradually increases with τ , and becomes constant when
τ is long enough, as shown in every row of Figure 2. On
the other hand, given a τ sufficiently long (e.g., 1ms), ∆Ri

becomes higher and converges with δ (Figure 2(c), 2(g) and
2(k)), as also illustrated in Figure 3(d) (shown by Norm ∆Ri).
(2) Then consider the performance loss on indirect victim
flows PLi. As Figure 3(b) shows, given a δ, PLi increases
with τ when τ is short. However, different from PLd, when
τ is long sufficiently, PLi converges to the upper bound
and stays constant. And the upper bound of PLi increases
with δ. Nevertheless, the growth rate of PLi upper bound
fast diminishes with δ increasing. For example, as shown in
Figure 3(b), when δ ≥ 500Gbps, the upper bound of PLi

hardly grows, and therefore adding more bots sending bursts
makes no more gain in PLi.

C. Understanding the Performance Loss

In this subsection, we give an in-depth analysis of the
performance degradation on these two types of victim flows.

2Actually, there exists a negligible error between real PLd and (∆Rd)
2/2k

and in other equations. We use “=” in this paper for readability.
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(a) Performance loss on direct victim
flows PLd with burst duration τ .

(b) Performance loss on indirect victim
flows PLi with burst duration τ .

(c) Normalized performance loss factor
Norm ∆Rd on direct victim flows
with burst peak rate δ (τ = 1ms).

(d) Normalized performance loss factor
Norm ∆Ri on indirect victim flows
with burst peak rate δ (τ = 1ms).

Fig. 3. Performance loss on different victim flows with burst duration and peak rate.

Fig. 4. Queue length and PFC PAUSE frame count during the burst (δ =
300Gbps, 400Gbps, 500Gbps, τ = 1ms).

The impact on direct victim flows is similar to those at TCP
low-rate DoS [49], [62], [61], which is caused by direct
queue contention between bursts and victim flows. As Figure 4
shows, the egress queue at SW.P4 is congested by the bursts,
causing the packets of direct victim flows (F2 and F3) to get
ECN marked and then get flow cut multiplicatively until 0 by
DCQCN. As shown in Figure 3(c), the flow rate can easily
be cut to 0 (Norm ∆Rd = 1) with ∼200Gbps (2 bots). And
PLd, which is dominated by ∆Rd, accordingly first grows
super-linearly with τ before the flow rate decreases to nearly
0, and then grows linearly when the flow rate stays at nearly 0
(Figure 3(a)). Actually, when τ is long enough, direct victim
flows will stay at nearly 0, which is equivalent to a link flood
attack (LFA) [44], [93].

However, the performance degradation on indirect victim
flows and the underlying causes are substantially different.
The congestion points of F1 and F4, SW3.P2 and SW4.P2
(illustrated in Figure 4), are not passed by the culprit bursts.
Actually, their queue buildup is caused by PFC PAUSE frames.
When the bursts overwhelm SW5.P4, a large number of
packets in F2 and F3 accumulate quickly in the ingress ports
(SW5.P1 and SW5.P2). Their queue length rapidly exceeds
the PFC X-OFF threshold, generates PFC PAUSE frames to
the upstream switch ports (SW3.P2 and SW4.P2), and stops
their packet transmission. Note that it takes a much longer time
for the end-to-end DCQCN to reduce the rate of F2 and F3
compared to PFC. DCQCN reduces the rate by at most 50% in
every update period, which is 10s of µs and comparable to the
end-to-end latency, while the hop-by-hop PFC runs at µs level.
Therefore, PFC dominates the control system transiently and
spreads the congestion upstream. Consequently, the upstream
egress queues quickly build up and results in an extra rate
cut on F1 and F4 by DCQCN. In other words, the congestion
spread by PFC misleads the congestion detection of DCQCN,

causing the performance degradation on flows even without
any direct queue contention with the attack bursts. As Figure 4
shows, higher δ results in higher PAUSE frame rate and thus
more severe queue congestion at SW3.P2 and SW4.P2, finally
leading to higher ∆Ri and PLi. However, the congestion
experienced by indirect victim flows is not persistent during
bursts. Figure 3(b) shows that longer burst duration does not
increase PLi, and Figure 4 also proves that the queue length
of SW3.P2 and SW4.P2 recovers even when the bursts exist
and SW5.P4 remains congested. Actually, later in the burst
duration, DCQCN finally dominates the traffic control after
several update periods. It decreases the rate of direct victim
flows F2 and F3 to 0, and mitigates the buildup at SW5.P1 and
SW5.P2. Therefore, the PFC PAUSE frame rate significantly
decreases, and the queue buildup at SW3.P2 and SW4.P2 also
vanishes. Finally, F1 and F4 start to recover the rate regardless
of bursts.

D. Vulnerabilities in RDMA Traffic Control

In this subsection, we summarize the vulnerabilities in
RDMA traffic control for an efficient and stealthy attack.

First, by carefully congesting certain switch port queues
(links) using bursts from multiple bots, the attackers can
spread congestion broadly, and consequently mislead DCQCN
to cut off victim flows in an indirect way. The attackers
can directly congest fewer links by causing short-duration
high link load using bursts (like traditional DoS attacks),
and exploit PFC to indirectly shut down more links while
keeping their load low. They can therefore cover more target
flows with fewer high-load congested links and lower link
correlation between bursts and victim flows, both of which
are important footprints in security defense and performance
anomaly detection. First, current DoS (especially link flood
attack) defense studies [102], [111], [43] usually monitor the
link load, especially the link with high flow density (more
flows pass through) [110], [104], to detect the attack. They
usually trigger mitigation mechanisms when the number of
high-load congested links (queues) exceeds a threshold and
identify the attack traffic by analysing (such as counting bytes)
the traffic in the detected congested links. Second, current
network monitoring systems [71], [112], [117], [95] also take
queue contention between flows as one of the key signals
in performance anomaly detection. Existing studies on per-
formance anomaly diagnosis [99], [113], [54] usually collect
the monitor information across networks (e.g., INT statistics),
construct the queue contention relationship between flows, and
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find the major contributors to the queue contention (and hence
the performance degradation) experienced by the victim flows.
Therefore, as we can see from these two points, reducing the
direct queue/link congestion between victim flows and attack
traffic, can help reduce the detectability significantly.

Second, short-duration bursts can cause long-term flow
degradation on victim flows with low detectability. A burst
lasting for <1ms can significantly decrease the victim flow rate
to nearly 0. However, due to the AIMD property of DCQCN
rate adjustment, it takes 10s of milliseconds to recover to the
original rate. Therefore, the average victim flow rate can be
suppressed at a very low level with only <10Gbps average
burst rate, by carefully tuning the duration τ and period T .
For example, as our experiment shows, a 100Gbps line-rate
flow can be reduced to 0 in 1ms but can only recover to the
original rate in about 60ms. By setting τ as 1ms and T as
60ms, the average burst rate for each bot is only 1.6Gbps, while
the average victim flow rate is 50Gbps, which is only 50% of
the original rate. The average performance loss can also be
further increased by adjusting the period, which is a trade-off
between the impact and the cost. Due to the high performance
of RNICs and line-rate start property of DCQCN, high volume
traffic (∼100Gbps) is common in RDMA networks. Besides,
short-duration (∼1ms) bursts with low average rate (∼1Gbps)
is difficult to capture for the prevalent second-level network
monitoring tools currently. And the bursts are also difficult
to be noticed at end-host, because these unexpected traffic is
immediately dropped by RNICs without noticing upper-level
applications at the destination hosts.

Principles to exploit the vulnerabilities. (1) The attackers
should degrade more victim flows with higher impact and
lower detectability, especially by exploiting the indirect victim
flow effect. The bots should be carefully coordinated to attack
different target egress queues, to cover more victim flows and
put higher ∆R on them efficiently. For example, in Figure 3,
5 bots are sufficient to degrade both direct and indirect victim
flows to about 0, and adding more bots is not cost-efficient.
(2) The attackers should tune the burst duration τ and period
T carefully to make a trade-off between the performance
loss PL and the average burst rate, which is correlated with
detectability and capital expenditure. For example, longer
duration adds no damage gain on indirect victim flows and
linear gain on direct victim flows, making diminishing returns
on damage.

IV. THE LORDMA ATTACK

In this section, we present the LoRDMA attack to exploit
the vulnerabilities in RDMA traffic control. First, we specify
the threat model and define metrics to model attack impact and
cost, aiding in guiding an efficient attack. We then identify the
challenges to conduct such an attack, and finally propose our
observation and attack methodology.

A. Threat Model

Attack scenarios. Our threat model is based upon the state-of-
the-art studies on RDMA security that the adversary resides in
RDMA networks [80], [96], [94], [90], [83], [38]. In particular,
similar to Bedrock [38], we focus on an RDMA network
where multiple users share the network infrastructure, which is

common in both public cloud data centers and private RDMA
clusters. We assume that the network infrastructure can be
trusted, but there may be potential malicious hosts which seek
to degrade the service performance of the entire network.
Current RDMA clusters, even RDMA-capable cloud providers
(e.g., Azure [4] and Alibaba [3]) have nearly no fabric-level
isolation [26], [5], [21], and the network infrastructure is
shared between hosts. Therefore, in current RDMA-enabled
cloud instances (e.g., bare metal servers, VMs, and containers),
network traffic can still impact each other.

Attacker capability. The attackers should be able to craft
high-rate (even line-rate) burst traffic. This assumption can
be achieved by RDMA hosts in multiple ways. First, as
we mentioned in § II-B, RDMA networks allow line-rate
start of each flow. And any network host can craft line-rate
traffic by continuously generating line-rate mice flows shorter
than 1 RTT (i.e., flow size ≤ BDP), which is uncontrol-
lable by the end-to-end congestion control. This bandwidth
exploitation method has been proposed and implemented by
existing work [92], [12]. Second, mainstream RNICs have
supported IBV_QPT_RAW_PACKET, a raw Ethernet program-
ming feature enabling high-performance kernel-bypass traffic
generation on the RNICs [83], [74]. Considering the attackers’
control of RNICs and verbs API, they are hence fully capable
of high-rate traffic generation without further compromising
any network infrastructure. We have also validated the burst
generating capability at Alibaba Cloud and a private cloud
RDMA cluster at Kuaishou Technology (§ V-D).

Attacker prior knowledge. (1) We assume that the attackers
know the network topology with the help of existing probing
tools, such as traceroute [63] and ping [6], because RoCEv2
traffic is also a special kind of UDP traffic. However, these
traditional probing tools can only help to collect network
route information. It is difficult for them to probe network
performance metrics (e.g., network latency [63] or bandwidth
bottleneck [65], [30]), because RoCEv2 traffic and other
TCP/UDP traffic are assigned in different queues with different
schedule policies in general. (2) The attackers are also assumed
to have prior knowledge of a specific set of network flows that
are expected to be cut off (we refer to them as target flows).
This can be specified in advance by the Attack-as-a-Service
buyers [73], [85]. The attackers can also infer them from social
engineering or probing techniques, which is orthogonal to this
work. In fact, this assumption can be relaxed in practice, such
as partial knowledge of flow routes or even only topology
awareness, which is discussed in § VII.

Attack goal. The attackers aim to launch an efficient attack,
i.e., cause high impact at low cost. The impact represents
the coverage and performance loss on target flows. And we
consider the cost to refer to not only capital expenditure, but
also the risk of being detected. The attackers then carefully
set the attack parameters δ, τ and T to achieve an efficient
trade-off between the performance loss on target flows and
the attack cost. Note that the relationship between T and the
average performance loss is similar to traditional TCP-based
low-rate DoS attacks, since DCQCN has similar AIMD rate
adjustment mechanism. Therefore, our major focus in the rest
of our paper is to investigate how to efficiently cause high and
wide performance loss with δ and τ . We set T long enough
(60 to 100ms based on our experience) to keep the average
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burst rate low and to make the network flows re-converge.

B. Challenges

Although we have shown the promising vulnerabilities for
the LoRDMA attack, conducting an efficient attack still faces
the following two major challenges.

The first challenge is how to coordinate the limited bots to
cause high impact on more flows efficiently. First, congesting
specific switch egress ports to cover most flow routes with
limited bots is a generalized maximum coverage problem,
which is a classical NP-hard problem. Traditional link flood
attacks (LFA) propose target link selection algorithms based
on heuristic or reconnaissance [44], [9], [93]. However, they
do not exploit the indirect victim effect, and degrading every
flow via directly contending the bandwidth would cause high
burst rate and significant direct queue contention, i.e., high
detectability [102], [111], [113], [99]. Furthermore, directly
cutting all the flows also requires a huge number of bots, which
requires high expense. Second, besides the coverage of victim
flows, deciding the burst rate δ to each target port, in order
to put high performance degradation on victim flows, is also
difficult. An intuitive idea is to decide the burst rate δ on each
target port according to the relationship about δ and ∆R caused
on victim flows, as illustrated in Figure 3(c) and Figure 3(d).
Unfortunately, obtaining the precise relationship between δ and
∆R, especially ∆Ri, requires comprehensive experiments on
all topologies, which is unfeasible for the attackers. And the
instantaneous flow rate of victim flows is also difficult for the
end-host attackers to obtain. Another idea is offline simulating
the network to derive this relationship. However, besides the
network topology and flow distribution, offline simulating
requires much more network configurations, such as DCQCN
and PFC parameters, switch buffer and queue size, etc., which
are also very difficult for the host-side attackers to acquire.
Worse yet, mathematically deducing such a relationship is
also impractical. Besides the lack of network configurations
and conditions above, the coupled control systems in a large-
scale topology make analyzing drastically complex. Especially,
the congestion encountered by the indirect victim flows is
caused by PFC in the downstream switches and DCQCN at
the congestion point jointly, which is extremely difficult for
the attackers to model and analyze.

The second challenge is how to schedule the burst duration
τ to cause high performance loss with low average burst
rate, similar to what traditional low-rate DoS attacks do [49],
[62], [61]. Existing low-rate DoS attacks have proposed fine-
grained mechanisms to tune the attack burst parameters (burst
peak rate, duration, and period). They model the adjustment
behaviors of the target control system (such as TCP [49],
[61], [36], switch queue management [24], or web application
servers [86]), and theoretically infer the attack impact, such
as fuzzing [36] or queuing theory [86]. They then abstract
a mathematical model to estimate the attack impact (perfor-
mance degradation) a specific set of burst parameters can
cause [49], [24]; or find a feedback signal to compute the
attack impact and guide the parameter tuning [86]. They can
hence achieve an efficient attack with high impact and low
costs. However, this method is difficult in RDMA networks.
Although we obtain the rough relationship between τ and PL
(Figure 3(a) and Figure 3(b)), it is difficult for the attackers to

deduce this relationship precisely. The traffic control consists
of two coupled systems (the hop-by-hop PFC and the end-
to-end DCQCN), and the impact on victim flows may be
caused by bursts hops away. For example, as we discussed
in III-C, to calculate the PLi an indirect flow f suffers, the
attackers should analyse the queue buildup process at the target
egress ports and deduce the back-spreading PFC PAUSE frame
rate. Then they still have to calculate the egress queue length
variation at upstream switches, and the corresponding ECN-
marked packet rate to estimate when f stops decrease and
recover its rate. The analysis above is far more complex,
compared with the traditional attack impact analysis on a single
queue with a single control system (e.g., TCP). Furthermore,
as we mentioned in the previous paragraph, due to the limited
information of attackers, experimental or simulation methods
cannot be used to obtain precise relationships as well.

C. Key Observation & Attack Overview

Although it is challenging to construct an exact quantitative
function of the attack impact, we observe that, RTT is a
natural side-channel signal qualitatively reflecting whether
the attack impact (∆R and PL) converges with δ and τ ,
which can guide the attackers to set efficient burst parameters.
Actually, RTT is a key signal reflecting queue length and
congestion [68], [48], and has been proven to be linearly
mapped to queue length [68], which is also validated by our
experiment (Figure 5(a)). In particular, the queue length during
the congestion decides how many packets are marked with
ECN, i.e., how severely the victim flow rate will be cut.
When the queue length resumes to zero, the congested flows
will begin to recover their rate additively. As a result, RTT,
which indicates the queue length, well reflects (1) the severity
of congestion (i.e., ∆R) the victim flows are encountering,
which is represented by the peak value of RTT; (2) when
the congestion ends (the RTT resumes normal) and the victim
flows begin to recover the rate, so that PL can be estimated.

However, RDMA RTT probing is not as trivial as in general
networks. Traditional probing tools, such as ping or traceroute,
fail to get the accurate RTT of RDMA communication due to
the different QoS policies between TCP traffic and RoCEv2
traffic. Existing RDMA RTT measurement tools, such as
rping [59], only support RTT probing between controlled hosts,
resulting in a limited detection range. Luckily, we find a
side channel to infer the RTT from bots to any host in the
network. We notice that, when using RDMA CM (Connection
Manager), a communication suite, to setup RDMA communi-
cations, a host replies with a ConnectReject packet upon
receiving a ConnectRequest from an unknown host. Both
packets are in RoCEv2 protocol and can reflect the RTT of
the RDMA communication. Therefore, a bot can keep crafting
connection requests to other hosts and monitor the long-term
RTT of different target flows.

With the help of RTT probing, we can adaptively organize
an efficient attack. We decouple the attack organization into
two sub-problems: 1) coordinate the bots to congest the target
switch ports, and 2) schedule the burst duration τ . In the
coordination step, the attackers greedily select the “high-value”
ports which can cut more flows, especially indirectly. Then
they gradually add bots sending line-rate bursts to each target
port, and monitor RTTi and RTTd, the RTT passing through
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(a) Correlation between queue length
and RTT .

(b) Correlation between ∆R and
range⟨RTT ⟩ of victim flows.

Fig. 5. RTT reflects queue buildup and performance loss by bursts (δ =
200Gbps∼800Gbps, τ = 1ms).

the congestion point of the indirect/direct victim flows. They
stop adding the bot when ∆Ri, reflected by RTTi, stops
growing to achieve efficient δ on each target port. In the
schedule step, similarly, they adaptively adjust τ based on the
varying RTT and achieve efficient burst parameters. We give a
more detailed description of our attack in § IV-D and § IV-E.

D. Coordination

In this subsection, we elaborate on the coordination pro-
cedure in the LoRDMA attack. The coordination procedure
determines which egress port each bot should send burst traffic
to congest, in order to bring high and wide performance loss
on target flows. We first give a formal problem statement, then
illustrate our insight on the relationship between RTT and ∆R,
and finally give the detailed process.

Problem statement. The input of the coordination is the
network topology, the target flow set F , the egress port set
P of all switches, and the bot set B. The coordination outputs
a mapping from bots to ports Coord: B → P ∪ {ϕ}. For
a bot b ∈ B, Coord(b) describes whether or which switch
egress port b should send traffic to congest3. To simplify
the coordination, we specify that each bot sends all its line-
rate burst to at most one destination, making an integer
programming on burst rate δ (e.g., δ = n ∗ 100Gbps, n ∈ N0).
To obtain higher ∆R on more flows, the attackers aim to
1) select the ports which can cover more flows directly and
indirectly, and 2) carefully set the number of bots on each
target port to cause sufficient ∆R and avoid deploying too
many bots meanwhile. Note that since few bots (e.g., 2 bots)
are sufficient to cut the direct victim flows of each port to
about 0 (i.e., ∆Rd converges), we mainly focus on the rate
degradation on indirect victim flows ∆Ri.

RTT range and ∆R. As we illustrate in § III, the rate
degradation of indirect victim flows (F1 and F4) is caused
by the queue buildup in their congested ports (SW3.P2 and
SW4.P2). And higher queue length makes more severe rate
cut ∆Ri (Figure 4). Therefore, the attackers can infer ∆Ri by
monitoring the maximum queue length during the burst, which
is exactly reflected by RTTi. Since the queue length is linearly
mapped with RTT (Figure 5(a)), we can obtain the maximum
queue length by calculating the range of the RTT sequence
⟨RTT ⟩ during the bursts, i.e., range⟨RTT ⟩ = max⟨RTT ⟩ −
min⟨RTT ⟩. Note that we evaluated the max queue length us-
ing range⟨RTT ⟩ instead of max⟨RTT ⟩, because the network
topological complexity may introduce different min⟨RTT ⟩,

3After obtaining Coord, the attackers can further assign a bot to send bursts
to different hosts so that its burst traffic can pass through the target port. Such
assignment [44], [93] is not essentially difficult, and we omit the details due
to space limitations.

which is exactly the end-to-end propagation delay. However,
for indirect victim flows, range⟨RTTi⟩ is not linear with
∆Ri. As Figure 5(b) shows, by increasing δ, ∆Ri converges
after a specific range⟨RTTi⟩, although the latter continues to
increase. And further adding more bots after ∆Ri converges is
not efficient. To find the minimum bot number needed and the
corresponding minimum range⟨RTTi⟩ where ∆Ri converges,
we observe that, ∆Rd converges easily at lower burst rate δ
(e.g., 200Gbps), and the corresponding range⟨RTTd⟩ is a good
heuristic value implicating whether ∆Ri reaches peak and con-
verges. For example, as shown in Figure 5(b), range⟨RTTi⟩
is about 270µs at a 500Gbps burst, and is approximately equal
to range⟨RTTd⟩. In this case, both ∆Ri and ∆Rd nearly
converge. Therefore, by monitoring how many bots can exactly
make the range⟨RTTi⟩ ≃ range⟨RTTd⟩, the attackers can
find an efficient bot number congesting a selected port.

Coordination procedure. The overall coordination procedure
is described in Algorithm 1. As analyzed in § IV-B, the
target port selection is an NP-hard problem. Therefore, we
propose a heuristic greedy algorithm to select M target ports.
For each p in the port set P , we define a heuristic function
H(F,α)(p) = α|Fi(p)| + (1 − α)|Fd(p)|, which describes the
weighted sum of the covered direct and indirect victim flow
number (Fd(p) and Fi(p), respectively) in the target flow set
F . The attackers greedily select the p with the highest H
which heuristically cuts most flows. Then they start to deploy
bots sending bursts to the port, and monitor the RTT sequence
⟨RTT d⟩ and ⟨RTT i⟩ as the feedback signal. To cut more flows
indirectly, we prefer the bots whose ingress links to p have
lower flow density [44], i.e., the number of flows in F . The
attackers stop adding bots anymore when the range of RTTi

and RTTd sequence is approximately equal, where ∆Ri is
similar to ∆Rd, as shown in Figure 5(b).

E. Schedule

In this subsection, we elaborate on the schedule procedure
in the LoRDMA attack. The schedule procedure aims to obtain
an efficient burst duration τ with high performance loss.

Problem statement. In the coordination step, the attackers
assign bots to send bursts to the target ports with sufficiently
long duration τ (1ms in our motivating case), leading to higher
volume and lower efficiency. However, naively decreasing
the duration may reduce the performance loss. According to
Figure 3, too short τ hurts the performance loss significantly.
Therefore, we adaptively decrease the burst duration τ with the
probed RTT values as the feedback signal to check whether
the performance loss decreases.

RTT pattern and PL. The queue length at the congestion
point of indirect victim flows during the burst (reflected by
⟨RTT i⟩), shows variable patterns. As Figure 4 shows, it first
presents a peak pattern, and then gradually falls back and
oscillates at the original value. This 2-phase pattern is analyzed
in § III-C, as DCQCN cuts down F2 and F3 after several
control loops and alleviates the congestion on F1 and F4
spread by PFC PAUSE frames. Therefore, the lower RTTi sub-
sequence can be trimmed without reducing the attack impact,
while the higher RTTi sub-sequence not.

Schedule procedure. The overall schedule procedure is de-
scribed in Algorithm 2. The attackers gradually reduce the
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Algorithm 1: Coordination Procedure
Data: P - switch egress port set; B - bot set; F -

target flow set;
H(F,α)(p) = α|Fi(p)|+ (1− α)|Fd(p)| -
heuristic objective function for port p: a
weighted sum of the number of direct/indirect
victim flows in F ; fdF (l) - how many flows in
F pass through link l; Inglink(b, p) - the
ingress link where b sends traffic to p

Input: M - number of target ports to select; α -
parameter of H(F,α)(p); ε - desired precision
level of range⟨RTT ⟩;

Output: Tr- set of selected target ports,
Coord: B → Tr ∪ {ϕ} - mapping describes
whether and which target egress port a bot
should attack

1 while |Tr| < M do
2 # Find the port with the max heuristic objective

function
3 p = argmaxp∈P H(F,α)(p)
4 ADD(p, Tr)
5 # Deploy bots and monitor RTTd and RTTi

sequence
6 while |range⟨RTT d⟩ − range⟨RTT i⟩)| > ε do
7 # When range⟨RTTi⟩ ≃ range⟨RTTd⟩, ∆Ri

converges
8 # Deploy the bot with the lowest footprint
9 b = argminb∈B fdF (Inglink(b, p))

10 Coord(b) = p
11 # Remove the corresponding bot
12 REMOVE(b, B)
13 # Remove the corresponding victim flows and port
14 REMOVE(Fd(p) ∪ Fi(p), F )
15 REMOVE(p, P )
16 return Tr, Coord

Fig. 6. RTTi variation with different burst duration.

burst duration τ while maintaining the higher sub-sequence of
the RTTi intact. The attackers tune the duration in a bisection
method. For every step, the attackers monitor the RTTi

sequence during the burst (⟨RTT i⟩), filter the higher RTTi

sub-sequence by a threshold (e.g., 100µs), and check wether
it remains intact. For example, as Figure 6 shows, when τ is
decreased at 600µs, the peak pattern is still intact. But when at
400µs, the peak pattern gets cut, and the performance loss on
indirect victim flows PLi reduces (Figure 3(b)). Therefore,
the 400µs duration is too short and 600µs is an efficient value.

F. Implementation Discussions

In this subsection, we discuss the implementation of the
LoRDMA attack tools, including a line-rate burst generator

Algorithm 2: Schedule Procedure
Data: ⟨RTTi⟩τ - RTT sequence of indirect victim

flows during τ
Input: θ - threshold to filter high RTT sequence; τ0 -

original burst duration; τmin - minimum burst
duration; ϵ - desired precision level of τ ;

Output: τ - final burst duration
1 # Filter out RTTi subsequence higher than θ
2 ⟨RTTi⟩′τ0 = filter(⟨RTTi⟩τ0 , θ)
3 # Adaptively find convergence τ using bisection
4 τ = τ0
5 τlo = τmin

6 τhi = τ0
7 while |τhi − τlo| > ϵ do
8 τ = (τhi + τlo)/2
9 ⟨RTTi⟩′τ = filter(⟨RTTi⟩τ , θ)

10 if len(⟨RTTi⟩′τ ) < len(⟨RTTi⟩′τ0) then
11 τlo = τ

12 else
13 τhi = τ

14 return τ

and an RTT prober. Our prototype of attack tools is publicly
available [97].

Burst generator. To make the LoRDMA attack practical,
the burst generator should 1) craft line-rate burst consisting
of attacker-specified packet bytes, and 2) control the burst
duration (τ ) and period (T ). Fortunately, the capability of
current RNICs fully supports these features. The RNIC hard-
ware version newer than Mellanox CX-4 [76] and the RDMA
Core driver version newer than MLNX OFED v5.0 [77]
have supported IBV_QPT_RAW_PACKET, a new QP type
which enables high-performance kernel-bypass raw Ethernet
programming on the RNIC [83], [74]. Therefore, the attackers
can utilize the RNIC as a high-performance burst generator,
and craft line-rate bursts to any host in the network by carefully
setting the packet headers. For example, the attackers set the
packet length as MTU for higher bandwidth usage, and set the
destination IP address as the remote hosts to which the path
passes through the target egress port. To avoid the packet being
classified into normal TCP/IP traffic instead of RoCEv2 traffic,
the DSCP field (the ToS bits in the IP header) should be set
carefully. To control the duration and period of the burst, the
burst generator should record the time during burst crafting.
To avoid hurting the performance by wasting CPU cycles in
time recording, we create a new thread in parallel as the timer.

RTT prober. As we mentioned in § IV-C, by using the RTT
side-channel signal, a bot can estimate the RTT to any host in
the network. We utilize the raw ethernet programming feature
of RNIC and craft CM ConnectRequest packets [58].
Then the RNIC sniffs the corresponding reply packet, which
is usually a ConnectReject, and estimates the RTT by
subtracting their respective timestamps.

V. EVALUATION

In this section, we conduct extensive evaluations on the
LoRDMA attack. We first evaluate the effectiveness and
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efficiency of the coordination and schedule procedures in
LoRDMA, then evaluate the impact of LoRDMA on RDMA
applications, and finally validate LoRDMA at real testbeds.

A. Coordination Performance

In this subsection, we evaluate the effectiveness and cost of
the coordination procedure with ns-3. We simulate networks
with different topologies and traffic distributions, and compare
the performance of different attack coordination methods.

Metrics. To evaluate the coordination process with different
topologies, we define four metrics. First, we define the cover-
age ratio as the percentage of the target flows that the coordina-
tion methods can cut in the network, and define the average of
normalized performance loss factor (Norm ∆R = ∆R/R0)
on flows to describe the overall impact on the target flows.
Second, we also consider the attack footprint that affects the
detectability. As described in § III-D, many DoS and LFA
detection systems [102], [111], [43] monitor congested links
and locate attack traffic from the traffic flowing through them.
Therefore, we first record the number of directly congested
queues required by different coordination methods to over-
whelm using the burst traffic. Besides, existing performance
anomaly diagnosis systems mainly analyse the flow contention
with the victim flows in a queue [54], [99] to identify attack
traffic. We accordingly define the direct flow contention, i.e.,
the percentage of target flows that pass through and experience
the congestion in the directly congested queues.

Setup. To evaluate the robustness of the coordination process,
we simulate 3 publicly available network topologies from
topology zoo [47]: a small topology (Carnet), a medium
topology (Switch), and a large topology (Cernet), as shown
in Figure 12 in Appendix B. For each topology, we generate
10 target flow distribution cases, by randomly picking 2 hosts
as the source and destination and setting a flow through
the shortest path between them. Among these flows we set
20% as target flows to attack and the remaining flows as
background traffic. We first set an ideal LoRDMA attack,
where the attackers know all the flows in the network. The
attackers then try to indirectly cut the target flows by exploiting
PFC-spreading congestion to avoid direct flow contention. The
second attack is an LoRDMA attack where the attackers only
know target flows, and they try to cover more target flows
with less direct congestion. Third, we also setup a baseline
attack. To the best of our knowledge, there is no existing attack
against RDMA traffic control (especially PFC), therefore, we
set up the baseline inspired by the Crossfire [44], a classic link
flood attack cutting links similarly. It keeps selecting the link
with the highest flow density and deploying bots to congest
it until no available bot remains. The key difference is that it
does not utilize the indirect-cutting feature. It only deploys few
(e.g. 2) bots for each target port and thus there are only direct
victim flows by the queue contending between attack traffic
and victim flows. Each coordination method generates a bot-
to-target-port mapping to form congestion trees (LoRDMA)
or links (Crossfire). We then count the target flows covered
in the directly&indirectly cut links and their Norm ∆R, as
well as the number of target congestion points and the target
flows passing through these congestion points in each attack
solution.

Figure 7 shows the performance of the attack solutions gen-
erated by different coordination methods in different topolo-
gies. Since different topologies have different bot number and
switch node, we describe the bot number by a normalized
factor, denoted as the ratio between the actual bot number and
the switch number. First, compared with the Crossfire attack,
the LoRDMA attack only aware of the target flows covers
more victim flows (∼10% higher on average). Besides the
coverage, it also causes higher performance loss factor ∆R in
each topology, demonstrating that indirectly cutting can cause
similar performance loss with direct congestion. The LoRDMA
attack aware of the background traffic, i.e., the ideal LoRDMA
attack, which mainly indirectly cuts the target flows, causes a
bit higher victim flow coverage and performance degradation.
These results also show that when the number of bots is
small, the indirectly cutting effect can be leveraged to achieve
greater coverage and performance degradation. Furthermore,
the LoRDMA attack also shows lower cost. Compared with
the Crossfire attack, the LoRDMA attack has fewer congested
ports directly overwhelmed by the bursts (∼50% on average),
and lower queue contention (∼20% on average) between the
burst traffic and target flows. The ideal LoRDMA attack
which exploits the background traffic and indirectly cuts the
target flows presents similar direct congestion point number.
However, since it tries to select the link where fewer target
flows go through, the direct flow contention is lower, also
presenting lower attack footprint. To summarize, LoRDMA
presents higher effectiveness and lower cost compared to the
straightforward link-flood attacks in different topologies.

B. Schedule Performance

In this subsection, we evaluate the performance of the
schedule procedure with ns-3. We first define the impact and
efficiency of an attack with a specific parameter set (δ, τ), and
then demonstrate the effectiveness of the schedule procedure
under different attack parameters across various background
traffic scenarios.

Metrics. We first define the impact and cost of an attack
with a specific parameter set, and evaluate the efficiency
correspondingly. We define the impact as the summed per-
formance loss PL of each target flow (defined in § III-A).
Specifically, the impact of an attack is defined as the weighted
summed performance loss: Impact = Σ(αPLi+(1−α)PLd),
because an effective attack should always try to cause higher
performance loss on as many indirect victim flows as possible,
as discussed in § IV-D and § IV-E. And the cost is defined as
the attack burst bandwidth Cost = δ ∗ τ . We further define
the efficiency of an attack as the ratio of impact and cost
naturally [24]: Efficiency = Impact/Cost.

Setup. We set a multi-rack topology (Figure 13 in Appendix
D) derived from Fat-tree topologies [1], [14] via abstracting the
leaf and spine switches as one-big-switch (SW5), as Lao et al.
do [52]. We set ≤ 1 bot under each ToR switch (SW1-4, SW6-
9), and set up a target flow scenario similar to our motivating
experiments (Figure 1(a)). We also add background traffic of
different rate (0Gbps, 33.3Gbps, 50Gbps respectively) on the
links of target flows. The attackers then craft bursts to congest
SW5.P6 with different burst duration (τ ).

Figure 8 shows the efficiency of the LoRDMA attack with
different τ . First, the efficiency manifests as a pronounced
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(a) Victim flow coverage at Carnet, Switch and Cernet, respectively.

(b) Average ∆R at Carnet, Switch and Cernet, respectively.

(c) Directly congested queue number at Carnet, Switch and Cernet, respectively.

(d) Direct flow contention at Carnet, Switch and Cernet, respectively.

Fig. 7. Coordination performance with different bot number in different
topologies.

(a) Attack efficiency as τ changes
with different background traffic sce-
narios.

(b) Attack impact as τ changes with
different background traffic scenar-
ios.

Fig. 8. Schedule performance of the LoRDMA attack with different
parameters.

unimodal function, indicating an optimal point exists. The
LoRDMA attack with our schedule procedure approach, albeit
not identifying the ideal parameter, consistently obtains a suf-
ficiently efficient attack parameter across various background
traffic conditions, compared with the preset adequately long
fixed τ (e.g., 1ms or 2ms). Second, the LoRDMA attack with
our schedule procedure can induce a sufficiently high impact
under diverse background traffic conditions. Given that the
impact is defined based on bandwidth loss, which is inherently
associated with the original rate of the target flow, it can
be lowered by bandwidth contention caused by background
traffic. However, the LoRDMA attack can still lead to a
considerable bandwidth degradation, approximately equivalent
to the predetermined value such as 1ms and 2ms.

(a) Co-flow completion time impact
ratio of distributed machine learning
training with a low flow number.

(b) Co-flow completion time impact
ratio of cloud storage with a low flow
number.

(c) Co-flow completion time impact
ratio of distributed machine learning
training with a high flow number.

(d) Co-flow completion time impact
ratio of cloud storage with a high
flow number.

Fig. 9. Complementary Cumulative Distribution Function (CCDF) of the
performance loss ratio.

C. Impact on Real Applications

In this subsection, we evaluate the impact of the LoRDMA
attack on different RDMA applications in a large-scale Fat-tree
topology with ns-3.

Metrics. We pick up 2 typical RDMA applications: distributed
machine learning training [37], [52], and cloud storage [21],
[90]. In the former application scenario, such as a data-parallel
parameter-server (PS) architecture, multiple training nodes
transport the batched data in the same size to the parameter
server after a step of training. The latter has significantly
different workload, and the flow size is quite diverse, showing
a long-tailed distribution [84]. The communication pattern and
performance of both application scenarios are closely corre-
lated with the co-flow [13], [108]. Therefore, we accordingly
evaluate the performance degradation on co-flows at different
application classes.

Setup. We carry out evaluations in a Fat-tree (k = 8) topol-
ogy [1], [14]. The link capacity is 100Gbps and the link delay
is 5µs. The network configuration is the same as Table II in
Appendix C, and the ECMP routing scheme is deployed at
each switch. We assume that every ToR switch has at most
1 bot for attackers. To simplify the coordination procedure,
we specify that the source nodes of flows are all located on
hosts under ToR1-ToR4 and the destination nodes are located
on hosts under ToR5-ToR8. Therefore, the bots can select
one of the egress queues under ToR5-ToR8 as the target
symmetrically. We also omit the schedule process and set the
burst duration as 500µs.

Workload. We choose multiple workloads from two indepen-
dent aspects: 1) the flow number and 2) the flow size. For the
flow number, we set a different number of hosts within each
ToR switch. Specifically, we set 9 or 25 hosts under each ToR
switch respectively, and set the source and destination host
of each flow arbitrarily with a random incast ratio varying
from 1 to 4, or 1 to 16 correspondingly. For the flow size,
we select different flow size distributions for each scenario. In
distributed machine learning training, every flow has the same
size of 12.8MB. And for cloud storage, we set a typical long-
tailed traffic size distribution in operating data centers [84],
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(a) Burst generator performance. (b) Prober result.

Fig. 10. Validation of attack tools in real network.

where < 80% of flows are smaller than 10MB, < 90% of
flows are smaller than 100MB, and ∼ 10% flows are larger
than 200MB. We set various proportions of background traffic
in these flows (0%, 50%, 75% respectively), and then observe
the performance degradation experienced by the target flows
under each background traffic condition.

We craft a 500µs burst from 4 and 8 bots respectively,
and monitor the impact. We term the co-flow as the flows
incasting to the same host. We further define the co-flow
completion time (CFCT) impact ratio as the ∆CFCT/CFCT
and evaluate the overall impact ratio in different applications.
Our evaluation results show that a 500µs burst can cause
significant performance loss. As shown in Figure 9, all co-
flows in different scenarios have non-negligible performance
loss. The minimum damage suffered by the coflows at different
cases ranged from 1% to 24.5%, with a average value of
7.12%. And the median damage on coflows at each case varies
from 8.11% to 52.7%, averaging at 25.2%. Furthermore, the
maximum damage on coflows at each case varies from 29.1%
to 251.6%, averaging at 65.47%. For a single burst period,
short flows, which constitute the majority in data center traffic,
suffer a higher impact ratio because the same performance
loss counts more in terms of their total transmitted bytes.
Furthermore, with varying proportions of background traffic,
the degradation distribution is similar, which indicates that
background traffic does not substantially influence the overall
impact on coflow completion time.

D. Real Testbed and Cloud RDMA Cluster Evaluation

We validate the LoRDMA attack at a real testbed from
our lab and a private cloud RDMA cluster from Kuaishou
Technology with prior approval. The real testbed from our
lab consists of a simple back-to-back topology with 2 DELL
PowerEdge R730 servers, and each server is equipped with
an NVIDIA Mellanox ConnectX-4 SmartNIC(40GbE), 2 Intel
Xeon E5-2620 v3 CPUs (2.40GHz) and 128GB RAM. Each
server runs on Ubuntu 16.04 and MLNX OFED 5.4. This
simple testbed is used to implement and evaluate our attack
tools. The cloud RDMA cluster from Kuaishou Technology
consists of 8 Inspur SA5280M6 servers, and each server is
equipped with an NVIDIA Mellanox ConnectX-6 SmartNIC
(100GbE), 2 Intel Xeon Platinum 8352Y CPUs (2.20GHz),
1024GB RAM, and 1 NVIDIA Tesla A10 GPUs. Each server
runs on CentOS 7.4 and MLNX OFED 5.4. All the devices
are connected through a Fat-tree with 4 ToR switches and 2
leaf switches, as shown in Figure 14 in Appendix § E. The link
capacity between leaf and ToR switches is 400Gbps, and the
link capacity between ToR switches and severs is 100Gbps.
All the attacker and victim applications are launched at the
servers using host-model docker containers.

(a) Performance of different commu-
nication primitives.

(b) PFC and CNP count over time.

Fig. 11. Attack impact in real network.

We first evaluate the performance of our burst generator.
We run the burster at one of the RNICs in each real envi-
ronment. And we also run the burster between 2 scch5s
instances in Alibaba Cloud rented by ourselves. Since we do
not control all the instances in the network, we set a 25Gbps
rate limitation to reduce the impact on the network. The burst
duration is 10ms and the period is 110ms. Figure 10(a) shows
that the burst can reach line rate (40Gbps in our lab and
100Gbps in Kuaishou, respectively) or maximum rate (25Gbps
in Alibaba) with precise duration and period control, validating
the feasibility of crafting line-rate bursts with a single RNIC.

We then evaluate the performance of the prober. Fig-
ure 10(b) shows that it presents a stable correlation with the
actual network delay in different end-to-end communication
situations. Specifically, when not under attack, the probed
latency for back-to-back communication (Lab w/o Attack),
passing through one ToR switch (ToR w/o Attack) and a leaf
switch (Leaf w/o Attack) is relatively stable at low levels.
And the heavily long-tailed delays under attack are also well
reflected (Leaf w/ Attack). All these evaluations show that our
prober can accurately reflect the delay.

We also conduct a LoRDMA attack against real-world
applications in the Kuaishou cloud RDMA cluster. We set up
NCCL Tests [75], the test suite for the famous inter-GPU
collective communication library NCCL, which is widely used
in today’s mainstream machine learning training frameworks.
Specifically, we run different typical collective communication
primitives, including AllReduce, AllGather, ReduceScatter and
AlltoAll, as victims, and monitor their performance degrada-
tion under the LoRDMA attack. The algorithm bandwidth is
defined as S/t, where S is the size of the data in the communi-
cation operation, and t is the time to the completion. As shown
in Figure 14, we set up H1, H3 and H4 as the nodes running
NCCL Tests. We then craft high-rate burst traffic to H2 from
H4, H7, and H8, so that the attack traffic can only indirectly
cut the target flows by spreading PFC. Due to the second-level
switch monitoring granularity in the cloud RDMA cluster, we
set a longer burst duration (10ms) to provide clearer network
diagnostic data. We also set the period as 110 ms. Figure 11(a)
illustrates the performance (algorithm bandwidth) with/without
the LoRDMA attack. The percentages above the bars indicate
the performance degradation ratio caused by LoRDMA. All
the communication primitives suffers significant performance
degradation, from 18.23% (AlltoAll) to 56.12% (AllGather).
Figure 11(b) shows the network diagnostic information during
the attack on AllReduce. ToR1 switch generates a large number
of PFC PAUSE frames upstream, while ToR3 switch receives
numerous CNP packets destined downstream to H5 and H6,
validating our insight that PFC can be back-spread to mislead
DCQCN severely.
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VI. DEFENSE SCHEMES

In this section, we discuss some potential solutions to
detect and defend against the LoRDMA attack.

PFC-driven network anomaly detection and analysis. Nu-
merous studies on network performance anomaly monitoring
or DoS defense [113], [114], [99], [102], [111] consider the
number of congested queues and the major queue contention
contributor as key metrics to locate the culprit attacker.
However, such philosophy may be less effective due to the
congestion spreading caused by PFC, because the attack traffic
may have a lower congested queue number and contention
contribution, as analyzed in § III. We observe that the key
to defend the LoRDMA attack is to take the PFC pause
frames spreading into the causality dependency construction.
By analyzing the causality of the spreading of PFC pause
frames, the root cause of the congestion can be found, and
the culprit traffic can then be located. We leave designing a
precise and responsive RDMA network performance anomaly
diagnosis system as our future work.

Fine-grained burst monitor. The millisecond- or even
microsend-level burst duration requires that the monitoring
granularity should be as fine as the corresponding level. For
example, it is challenging to pinpoint the 1ms burst with
a monitoring window of 50ms. Besides, the line-rate start
property of DCQCN and PFC also makes the attack burst
less outstanding in RDMA networks, rendering rate-based
detection less effective, which requires a more responsive
and precise mechanism. Moreover, the monitor mechanism
should introduce low overhead to avoid violating the hardware
kernel-bypass paradigm of RDMA. However, it is challenging
for both in-network [113], [28], [111], [99] or host-based
monitoring [27], [22], [69] to make a perfect trade-off between
responsiveness, effectiveness and overhead, especially consid-
ering the harsh performance requirement in RDMA networks,
which requires new ideas to resolve these problems.

Network fabric level isolation & virtualization. The fea-
sibility of the LoRDMA attack lies in the sharing of the
network infrastructure between hosts including target victims
and attackers. Therefore, network fabric isolation can theoreti-
cally eliminate the infrastructure sharing and provides bounded
bandwidth guarantees for each tenant, as the studies in tradi-
tional TCP data centers demonstrate [98], [81], [51]. However,
currently fabric isolation mechanisms in RDMA network are
still lacking, which needs more research effort. Besides fabric
isolation, virtual RDMA overlay networking [18], [46], [29]
may prevent the attackers from probing the real physical
network environment and make the target selection difficult,
which is promising to alleviate the damage of the LoRDMA
attack. However, the underlay physical infrastructure can still
be impacted, so the LoRDMA attack still takes effect to some
extent. To conclude, more research effort on the fabric level
isolation and virtualization in RDMA network is in urgent need
to fully mitigate the LoRDMA attack.

VII. DISCUSSION

Different degrees of network traffic knowledge. Our threat
model assumes that the attackers know the target flow route
set, which is a subset of the whole network traffic. However,
the LoRDMA attack remains feasible with different knowledge

of network traffic. An ideal scenario is that the attackers know
not only the target flow but also a part of background traffic.
To avoid the direct queue contention with target flows (we
assume the attacker only cares about the performance loss
and queue contention on the target flows), the attackers should
try to coordinate carefully by putting more background flows
at direct victim flows and covering more target flows. Our
attack methods can suit such a scenario by assigning different
weights for target and background flows, and we omit the
details for space limitations. Furthermore, the LoRDMA attack
can still work by relaxing the assumption of prior knowledge
of attackers. Specifically, suppose that the attackers only know
the network topology, i.e., only the network link information,
but have no idea of the exact target flow set. In that case,
the attackers choose some target links via some metrics or
algorithms [44], [17], [50], [72]. Then, organizing attacks can
be reduced into a coverage problem with the congestion tree
caused by the bot traffic. Note that these attacks are similar
to but still different from traditional link flood attacks [44],
[9], [93], because the target link can be cut off using the PFC
spread from downstream instead of high-load traffic.

Effect of background traffic. Background traffic can poten-
tially affect the LoRDMA attack in multiple aspects. First,
background traffic affects the attack impact since it shares
links with target flows, which has been extensively evaluated
and analyzed in § V. Second, background traffic may affect
the RTT measurement. Stable background traffic only intro-
duce a constant background noise and still enables reliable
queue length estimations and RTT measurement. However,
highly dynamic traffic may interfere with the measurement,
leading to sub-optimal burst parameters potentially. Neverthe-
less, even sub-optimal burst parameters still cause significant
performance degradation. Third, background traffic can affect
burst synchronization to the target link due to varying path
delays. Note that dynamic burst alignment is a well-studied
topics which is orthogonal to our work [45], [82]. And even
bursts that are not strictly synchronized can still cause severe
congestion.

Attack feasibility with different queue disciplines. The
congestion caused by bursts and the RTT measurement require
queue sharing between the victim traffic and attack/probing
traffic. Some ideal queue disciplines, such as fair queuing [70]
which allocates a separate queue for each flow, can theoreti-
cally isolate the malicious traffic from the benign traffic. How-
ever, implementing these complex queue disciplines at line-
rate (100Gbps) is impossible for current commercial switches
due to resource constraints. Existing approximating fair queue
scheduling methods (e.g., AFQ [87], PCQ [88], SP-PIFO [2],
AIFO [107], and Cebinae [106]), usually require new hardware
features such as programmable switching ASICs and more
queuing resources, which are less supported in production
environments. Current commercial switches usually set a static
queue number and share buffers across ports, resulting in queue
sharing between flows. Besides, most data flows (including
attack/probing traffic) share the same priority and thus equal
network resources. Therefore, attack traffic can still cause
queue congestion and cut normal flows; and probing traffic
can also estimate the congestion impact of normal flows.

Attack feasibility with different congestion control vari-
ants. Although in this paper we mainly focus DCQCN, the
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most widely used congestion control algorithm in production
environments, LoRDMA can also be effective against other
congestion control variants. Many end-to-end congestion con-
trol algorithms follow similar principles: 1) monitor network
feedback as congestion signals of each flow (queue length or
delay); 2) adjust flow rate in an AIMD way to achieve fairness
among different flows. As a result, the hop-by-hop PFC can
manipulate the flow-level signals by spreading the congestion
to the flow paths (e.g., queue congestion or long delay), and
mislead the congestion control to cut the rate of some innocent
flows. We have also validated this vulnerability in a number
of other congestion control variants, as shown in Appendix F.

ECMP and LoRDMA. ECMP is widely deployed in current
data center networks for load balance, and may also influence
LoRDMA if other equivalent links exist for the selected target
link, e.g., the links between leaf and ToR switches (Figure 14
in Appendix E). First, the probing accuracy may be affected,
because the probing traffic may go through different equivalent
links. Second, since ECMP aims to distribute the traffic into
different equal-cost paths, congesting the target link may
require higher burst rate and thus higher bot number. However,
for the target links without other equal-cost paths (the links
between ToR switchs and hosts in Figure 14 in Appendix
E), probing and congesting are similar to those in non-ECMP
topologies.

Coverage and accuracy of RTT probing. The coordination
and schedule procedures require that the attackers should
probe the RTT of indirect and direct victim flows. Since the
position of bots cannot be fully determined by the attackers, the
coverage on the target flows is not always satisfied. We leave
inferring the performance loss with partial RTT probing as our
future work. Besides, the accuracy of congestion estimation by
RTT probing can also be impacted by the noise, such as the
probing packet processing latency on the remote host. It can
be augmented by more statistical methods or control theory
models [42], which is left as future work.

Extensibility of the LoRDMA attack. In this work we term
the attack impact and cost as the bandwidth loss and average
attack burst volume, respectively. However, we claim that the
metrics can have various definition instances. For example,
for an attacker aiming to maximize the delay, a natural
definition of attack impact can be the difference between the
communication delay before and after the attack. Furthermore,
the attack cost can also consist of different metrics such as the
attack duration (τ ), the topological similarity of the target flow
(e.g., Levenshtein distance [64], [55]), etc. Besides, the attack
method can also be improved to achieve higher efficiency
using more feedback control-theoretic frameworks, such as the
Kalman filter [42], [86] or Reinforcement Learning [53]. We
leave a more flexible attack framework as our future work.

VIII. ETHICAL CONSIDERATIONS

No ethical consideration is raised in our experiments.
The experiments at the Kuiashou cloud RDMA cluster are
conducted with prior approval. The experiments on ns-3 sim-
ulations and the testbed in our lab are conducted with all
devices in our control. The experiments in Alibaba Cloud are
conducted between our controlled instances with strict rate
restrictions, and operated at the light traffic periods for a very
short time.

IX. CONCLUSION

In this paper, we identify the security vulnerabilities of
RDMA traffic control mechanisms through comprehensive ex-
periments and analysis. We then propose the LoRDMA attack,
an efficient low-rate DoS attack which causes significant per-
formance degradation in RDMA networks. The coordination
and schedule procedures provide high performance loss and
victim coverage, and require low average burst rate and direct
queue contention. Our evaluations validate the feasibility of
the LoRDMA attack, and demonstrate it is highly effective
and efficient in deteriorating the RDMA performance.
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[16] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in USENIX NSDI, 2014.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” ACM SIGCOMM CCR, vol. 29, no. 4,
1999.

[18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh et al.,
“Azure Accelerated Networking: SmartNICs in the Public Cloud,” in
USENIX NSDI, 2018.

[19] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, 1993.

[20] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition
of Explicit Congestion Notification (ECN) to IP,” RFC 3168, 2001.
[Online]. Available: https://www.rfc-editor.org/info/rfc3168

[21] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan et al., “When cloud storage meets RDMA,” in USENIX NSDI,
2021.

[22] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in ACM SOSR, 2017.

[23] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
Memory Disaggregation with Infiniswap,” in USENIX NSDI, 2017.

[24] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the transients
of adaptation for RoQ attacks on Internet resources,” in IEEE ICNP,
2004.

[25] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang, “Reduction of
Quality (RoQ) Attacks on Dynamic Load Balancers: Vulnerability
Assessment and Design Tradeoffs,” in IEEE INFOCOM, 2007.

[26] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity ethernet at scale,” in ACM SIGCOMM, 2016.

[27] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in ACM SIGCOMM, 2015.

[28] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
ACM SIGCOMM, 2018.

[29] Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang, and K. Zheng,
“MasQ: RDMA for virtual private cloud,” in ACM SIGCOMM, 2020.

[30] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
Internet bottlenecks: Algorithms, measurements, and implications,” in
ACM SIGCOMM, 2004.

[31] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen,
“Deadlocks in datacenter networks: Why do they form, and how to
avoid them,” in ACM HotNets, 2016.

[32] IEEE, “IEEE 802.1 Qau - Congestion Notification.” https://1.ieee802.
org/dcb/802-1qau/, 2010.

[33] ——, “IEEE 802.1 Qbb - Priority-based Flow Control,” https://1.ieee
802.org/dcb/802-1qbb/, 2011.

[34] InfiniBand Trade Association, “InfiniBand Architecture Specification
Release 1.2.1 Annex A17: RoCEv2,” https://cw.infinibandta.org/docu
ment/dl/7781, 2014.

[35] ——, “InfiniBand Architecture Specification Volume 1 Release 1.4,”
https://cw.infinibandta.org/document/dl/8567, 2020.

[36] S. Jero, M. E. Hoque, D. R. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a model-
guided approach,” in NDSS, 2018.

[37] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A Unified Archi-
tecture for Accelerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters,” in USENIX OSDI, 2020.

[38] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu,
and Ang Chen, “Bedrock: Programmable network support for secure
RDMA systems,” in USENIX Security, 2022.

[39] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in ACM SIGCOMM, 2014.

[40] ——, “Design guidelines for high performance RDMA systems,” in
USENIX ATC, 2016.

[41] ——, “FaSST: Fast, scalable and simple distributed transactions with
Two-Sided (RDMA) datagram RPCs,” in USENIX OSDI, 2016.

[42] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, 1960.

[43] M. S. Kang, V. D. Gligor, and V. Sekar, “SPIFFY: inducing cost-
detectability tradeoffs for persistent link-flooding attacks,” in NDSS,
2016.

[44] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
IEEE S&P, 2013.

[45] Y.-M. Ke, C.-W. Chen, H.-C. Hsiao, A. Perrig, and V. Sekar, “CI-
CADAS: Congesting the internet with coordinated and decentralized
pulsating attacks,” in ACM Asia CCS, 2016.

[46] D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan, “FreeFlow: Software-based virtual RDMA
networking for containerized clouds,” in USENIX NSDI, 2019.

[47] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE JSAC, vol. 29, no. 9, 2011.

[48] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay is
simple and effective for congestion control in the datacenter,” in ACM
SIGCOMM, 2020.

[49] A. Kuzmanovic and E. W. Knightly, “Low-Rate TCP-Targeted Denial
of Service Attacks: The Shrew vs. the Mice and Elephants,” in ACM
SIGCOMM, 2003.

[50] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Sampling biases in ip
topology measurements,” in IEEE INFOCOM, 2003.

[51] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese,
“Netshare and stochastic netshare: Predictable bandwidth allocation
for data centers,” SIGCOMM CCR, 2012.

[52] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network Aggregation for Multi-tenant Learning,” in USENIX
NSDI, 2021.

[53] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” NATURE, vol.
521, 2015.

[54] Y. Lei, L. Yu, V. Liu, and M. Xu, “PrintQueue: performance diagnosis
via queue measurement in the data plane,” in ACM SIGCOMM, 2022.

[55] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,
1966.

[56] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang, “Socksdirect: Datacenter
sockets can be fast and compatible,” in ACM SIGCOMM, 2019.

[57] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: High precision
congestion control,” in ACM SIGCOMM, 2019.

[58] linux rdma, “RDMA Core Userspace Libraries and Daemons,” https:
//github.com/linux-rdma/rdma-core/tree/master/librdmacm, 2023.

[59] ——, “rping,” https://github.com/linux-rdma/rdma-core/blob/master/
librdmacm/examples/rping.c, 2023.

[60] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an RDMA-enabled
distributed persistent memory file system,” in USENIX ATC, 2017.

[61] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun, and K. Long, “On a
Mathematical Model for Low-Rate Shrew DDoS,” IEEE TIFS, vol. 9,
no. 7, 2014.

[62] X. Luo and R. K. C. Chang, “On a new class of pulsing denial-of-
service attacks and the defense,” in NDSS, 2005.

[63] G. S. Malkin, “Traceroute Using an IP Option,” RFC 1393, 1993.
[Online]. Available: https://www.rfc-editor.org/info/rfc1393

[64] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev,
“NetHide: Secure and practical network topology obfuscation,” in
USENIX Security, 2018.

[65] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,”
in IEEE Globecom, 2000.

[66] Mellanox, “DCQCN parameters.” https://support.mellanox.com/s/art
icle/dcqcn-parameters, 2020.

[67] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA reads to
build a fast, CPU-Efficient Key-Value store,” in USENIX ATC, 2013.

[68] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
congestion control for the datacenter,” in ACM SIGCOMM, 2015.

16

https://www.rfc-editor.org/info/rfc3168
https://1.ieee802.org/dcb/802-1qau/
https://1.ieee802.org/dcb/802-1qau/
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://github.com/linux-rdma/rdma-core/tree/master/librdmacm
https://github.com/linux-rdma/rdma-core/tree/master/librdmacm
https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/examples/rping.c
https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/examples/rping.c
https://www.rfc-editor.org/info/rfc1393
https://support.mellanox.com/s/article/dcqcn-parameters
https://support.mellanox.com/s/article/dcqcn-parameters


[69] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in ACM SIGCOMM, 2016.

[70] J. Nagle, “On packet switches with infinite storage,” IEEE transactions
on communications, vol. 35, no. 4, 1987.

[71] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-Directed Hardware Design for
Network Performance Monitoring,” in ACM SIGCOMM, 2017.

[72] M. J. Newman, “A measure of betweenness centrality based on random
walks,” Social Networks, vol. 27, no. 1, 2005.
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APPENDIX

A. Variable Table

Variables used in the analysis of performance loss caused
by the LoRDMA attack are listed in Table I.

B. Coordination Evaluation Setup

Figure 12 shows the topologies for our experiments to
evaluate the coordination procedure (§ V-A). These network
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TABLE I. VARIABLE TABLE.

Variable Description
δ Burst peak rate
τ Burst duration
T Burst period

R(t) Flow rate at time t
R0 Original converged flow rate before bursts
Rlo Lowest flow rate during bursts (usually 0)
PL Performance loss on a flow, defined as PL =

∫
(R0 − R(t))dt

PLd Performance loss on a direct vicitm flow
PLi Performance loss on an indirect vicitm flow
∆R Performance loss factor, defined as R0 − Rlo

Norm ∆R Normalized performance loss factor, defined as ∆R/R0

(Norm) ∆Rd (Normalized) performance loss factor on a direct flow
(Norm) ∆Ri (Normalized) performance loss factor on an indirect flow

topologies are selected from topology zoo [47].

(a) Carnet topology. (b) Switch topology. (c) Cernet topology.

Fig. 12. Topologies used in coordination evaluation.

C. Network Parameters in Simulations

Table II illustrates the parameters of PFC and DCQCN in
our ns-3 simulations. We set these parameters based on the
values recommended by the state of the art [33], [116], [115].

TABLE II. PARAMETERS FOR DCQCN & PFC.

Parameter Value
Kmax 400KB
Kmin 100KB
Pmax 1.0

Switch buffer size 6MB
PFC dynamic threshold α 16

D. Topology in Schedule Evaluation

Figure 13 demonstrates the multi-rack topology in our
schedule performance evaluation, which is derived from Fat-
tree topologies [1], [14], [52]. We set at most 1 bot under each
ToR switch (SW1-4, SW6-9), and set up a target flow distribu-
tion similar to our motivating experiments (Figure 1(a)), with
different background traffic volumes.

SW5

SW1

SW2

SW3

SW4

SW6

SW7

SW8

SW9

P1

P2

P3

P4

P5

P6

P7

P8

F1 F2 F1

F3 F4 F4

F2 F3

Fig. 13. Multi-rack topology.

E. Topology of the Kuaishou Cloud RDMA Cluster

Figure 14 shows the topology of the Kuaishou cloud
RDMA cluster. We set NCCL Tests between H1, H5, and
H6 as the victims, and craft burst traffic from H4, H7, and H8
to H2 to conduct the LoRDMA attack.

ToR 1

Leaf 1 Leaf 2

ToR 2 ToR 3 ToR 4

H1 H2 H3 H4 H5 H6 H7 H8

Fig. 14. Topology of the Kuaishou cloud RDMA cluster.

F. Validation on Congestion Control Variants

We carry out the motivating evaluation in § III with
different congestion control variants to show the generality
of the vulnerability inspiring the LoRDMA attacks. The ex-
perimental setup is similar to § III-A. The topology is the
same with Figure 1(a), and we deploy 3 typical congestion
control algorithms: QCN [32], TIMELY [68], and DCQCN.
As shown in Figure 15, the rate of indirect victim flows
(F1&F4) are degraded by the bursts in different congestion
control algorithms, demonstrating that congestion control can
be broadly misled by PFC.

(a) QCN. (b) TIMELY. (c) DCQCN.

Fig. 15. Validations in congestion control variants.
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