570 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

TRIPOD: Towards a Scalable, Efficient and
Resilient Cloud Gateway

Menghao Zhang ™, Jun Bi

, Senior Member, IEEE, Kai Gao™, Yi Qiao, Guanyu Li

, Xiao Kong,

Zhaogeng Li, and Hongxin Hu, Member, IEEE

Abstract— Cloud gateways are fundamental components of a
cloud platform, where various network functions (e.g., L4/L7 load
balancing, network address translation, stateful firewall, and
SYN proxy) are deployed to process millions of connections
and billions of packets. Providing high-performance and failure-
resilient packet processing with a scalable traffic management
mechanism is crucial to ensuring the quality of service of a
cloud provider, and hence is of great importance. Many network
functions nowadays are implemented in software with commodity
servers for low cost and high flexibility. However, existing
software-based network function frameworks oftentimes provide
part of these features, while cannot satisfy all three requirements
above simultaneously. To address these issues, in this paper,
we introduce TRIPOD, a novel network function framework
specialized for cloud gateways. Having identified the fundamental
limitations of loosely coupling traffic, processing logic and state,
TRIPOD jointly manages these three elements with the unique
characteristics of cloud gateways, which is enabled by a simple,
efficient traffic processing mechanism, and a high performance
state management service. Adopting several effective techniques
and optimizations, TRIPOD is able to achieve scalable traffic
management (<100 flow rules for even ~Tbps traffic), high
performance (reducing 40% of latency compared with state of
the art) and failure resilience (similar packet/connection loss rate
compared to state of the art), with reasonable overheads (less
than 10% of the workload traffic) even under an extremely heavy
traffic, making it a good fit for cloud gateways.

Index Terms—Cloud gateway, scalable traffic management,
high performance, failure resilience.

I. INTRODUCTION

ARGE-SCALE commercial cloud platforms [1]-[5] have
become a crucial part of today’s Internet, hosting millions
of services and serving billions of clients all over the world.

Manuscript received October 10, 2018; revised December 27, 2018;
accepted January 11, 2019. Date of publication February 5, 2019; date of
current version February 14, 2019. This work was supported in part by the
National Key R&D Program of China under Grant 2017YFB0801701, and
in part by the National Science Foundation of China under Grant 61872426.
(Corresponding authors: Jun Bi; Kai Gao.)

M. Zhang, J. Bi, Y. Qiao, G. Li, and X. Kong are with the
Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing 100084, China, also with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China, and also
with the Beijing National Research Center for Information Science
and Technology, Beijing 100084, China (e-mail: zhangmhl6@mails.
tsinghua.edu.cn; junbi@tsinghua.edu.cn; qiaoyl8@mails.tsinghua.edu.cn;
ligy 18 @mails.tsinghua.edu.cn; kongxiao0532@gmail.com).

K. Gao is with the College of Cybersecurity, Sichuan University, Chengdu
610017, China (e-mail: godrickk@gmail.com).

Z. Li is with Baidu Inc., Beijing
lizhaogeng01 @baidu.com).

H. Hu is with the School of Computing, Clemson University, Clemson,
SC 29634 USA (e-mail: hongxih@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2894189

100193, China (e-mail:

Controlling the traffic between a data center and the Internet
or other data centers, cloud gateways play an important role in
providing an efficient, reliable networking service. A typical
cloud gateway has multiple network functions (NFs), such
as L4/L7 load balancing, network address translation, stateful
firewall, and SYN proxy, which are essential to ensure secu-
rity, improve performance, and provide other novel network
functionalities.

To enable more flexible and low-cost packet processing,
there’s a growing trend to softwarize network functions on
commodity servers instead of dedicated proprietary hardware.
The general form of such an approach, often referred to as
Network Function Virtualization (NFV),! has been discussed
in a broader context where various frameworks are proposed to
achieve high performance [6]-[9], failure resilience [10]-[12]
and ease of management [13]-[16].

While previous studies [17]-[20] have achieved softwarized
load balancing, it is still unknown whether more general
network functions at the cloud gateway can take advantage
of these existing NFV frameworks to achieve high scalability,
high performance and high availability. In particular, a cloud
gateway framework must satisfy the following requirements
simultaneously:

o R1: Scalable traffic management: Cloud gateways
have an extremely large address space, traffic volume
with numerous concurrent connections [21]-[23], making
SDN-based fine-grained traffic steering and flow rule
updating a challenging problem. A cloud gateway frame-
work must be combined with a scalable traffic manage-
ment mechanism to direct the traffic to the corresponding
NF instance correctly and timely.

o R2: High performance: Cloud gateways have a very
high standard for throughput and latency, usually at the
speed of ~Tbps and the latency of tens of microseconds
(ps) [24], where virtualization is always not the first
preference. A cloud gateway framework must be able to
achieve efficient packet processing.

o R3: Low-cost failure resilience: Cloud gateways have a
high demand for failure resilience, since machine failures
occur frequently [25], [26]. Otherwise, stateful network
functions are not able to process affected TCP connec-
tions when an NF instance fails and stops [27], which
might lead to a significant service degradation. The scale

! Apparently, NFV is not the only form for the software-based implemen-
tation, which achieve an on-demand provision and scaling using virtulization
techniques. However, we believe that the software-based implementation could
benefit from the NFV paradigm.

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-2037-4427
https://orcid.org/0000-0002-7939-7367

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 571

of traffic makes failure resilience even harder since vol-
umes of the state or packets that need to be backuped are
huge. Upon failures, the impacts on the normal packet
processing are not negligible. A cloud gateway frame-
work must provide resilient packet processing without
introducing too much burden or performance penalty on
regular packet processing.

While many existing studies [6]-[8], [10]-[16], [28], [29]
have provided some insightful thoughts to build such a frame-
work for cloud gateways, they only address part of these
challenges and are not able to satisfy all three requirements
simultaneously (details in Section II).

To overcome the limitations of existing studies, we propose
TRIPOD, a novel network function framework, specialized for
cloud gateways to fulfill the three requirements simultaneously.
The core idea of TRIPOD is to jointly manage and optimize
traffic, processing logic and state. In particular, TRIPOD uses
1) a simple, efficient traffic processing mechanism, which
is enabled by a simple network configuration and a state-
less, connection-oriented programming model, to substantially
obtain the traffic management scalability and enhance the
packet processing performance (to satisfy requirement R1
and R2), and 2) HPSMS, a high performance state manage-
ment service, which adopts multiple optimizations, such as fast
state lookup and predictive replica placement, to leverage data
locality and failure prediction and provide a traffic-aware state
management service for near-optimal packet processing and
efficient failure recovery (to satisfy requirement R2 and R3).

We implement a prototype of TRIPOD and evaluated it using
both real cloud gateway traffic traces and extreme pressure
tests. The results demonstrate that TRIPOD can effectively
achieve scalable traffic management, i.e., < 100 flow rules
for a cluster with even ~Tbps traffic, high performance,
i.e., reducing 40% of latency compared with StatelessNF [12],
and the similar failure resilience as StatelessNF, with reason-
able overheads, i.e., less than 10% of the workload traffic.

Our main contributions in this paper are:

1) We identify the essential requirements for cloud gate-
ways and systematically analyze why existing solutions
fall short in handling cloud gateway traffic. (§II)

2) We propose TRIPOD, a novel, simple-to-use network
function framework, specialized for cloud gateways
to address identified challenges. The gain of TRIPOD
comes from the joint management of traffic, processing
logic and state, with a simple, efficient traffic processing
mechanism and a high performance state management
service (HPSMS). (§III)

3) We introduce two optimization techniques, namely fast
state lookup and min-churn predictive replica placement,
to substantially improve the performance and efficiency
of HPSMS and achieve a traffic-aware state management
service. (§1V, §V)

4) We implement a prototype of TRIPOD and evaluated it
using both real cloud gateway traffic traces and extreme
pressure tests. The results demonstrate that TRIPOD can
effectively achieve scalable traffic management as well
as near-optimal latency, throughput and failure resilience
with reasonable overheads. (§VI)

In addition, we discuss some important issues in
Section VII, summarize the related work in Section VIII and
conclude our paper in Section IX.

II. MOTIVATION & OUR APPROACH

In this section, we discuss the limitations of existing NF
frameworks and why they fall short at cloud gateways. Then
we present our new approach, TRIPOD, and show the chal-
lenges as well as our observations to make it fit for the cloud
gateway scenarios.

A. Limitations of Existing Work

We demonstrate the design space of how different
frameworks make different decision choices in addressing the
aforementioned challenges, and show the gap between the
existing studies and the requirements of cloud gateways.

1) Unscalable Traffic Management: ~ Taking the
advantage of the fine-grained SDN traffic control, many
studies [13], [15], [16], [29] choose to keep track of the
location where the state is stored and direct the traffic to
the corresponding location. While these frameworks have
the potential to achieve high availability> with all state
replication and backup, they do not take failure resilience
into consideration, nor provide a concrete and optimized
mechanism to handle failures. Moreover, given a huge amount
of concurrent connections (up to millions [21]) and a very
large address space (up to millions [23]) at cloud gateways, it
is not practical to aggregate the flow rules on the switch, keep
the information on a distributed SDN controller and steer the
traffic timely and correctly. Because this is limited by the flow
table size (up to thousands) and flow rule update rate (tens of
milliseconds for a flow rule and no more than 200 updates
per second) in state-of-the-art OpenFlow switches [30].
A scalable network traffic management approach is urgently
needed to process the high-volume cloud gateway traffic.

2) High Performance Without Failure Resilience: Many
network functions are implemented as virtual machines or
native libraries on commodity servers. These applications or
frameworks [6]—[8], [14] can achieve very efficient packet
processing (i.e., ~Mpps) with relatively simple network con-
figurations. However, they do not take high availability into
consideration and cannot extend to support failure resilience
easily: state about connections is simply lost when a machine
fails, and another server cannot serve flows migrated from
another machine correctly. As machine failure happens fre-
quently at cloud gateways [25], [26], the missing of fault
tolerance guarantee obviously stops them from deployment.
A high-performance solution with failure resilience is highly
desired to fulfill the quality of service at cloud gateways.

3) Failure Resilience With High Costs: While approaches
such as Pico Replication [10] and FTMB [11] can provide
perfect fault tolerance for stateful network functions, they both
come at the expense of high costs. Pico Replication intro-
duces a substantial per-packet latency (~10ms), which obvi-
ously violates the latency requirement of cloud gateways [24].

2In this paper, we denote failure resilience, availability and fault tolerance
as similar meaning.

572 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

| Traffic | | Function | | State |

Loose coupling of traffic and function leads to traffic management complexity.

| Traffic | | Function | | State |

Loose coupling of state and function leads to performance penalty.

| Traffic |E

]
State | !
L]

Tight coupling of traffic and fi to avoid g complexity.
Less-tight coupling of state and function to avoid performance penalty.

Fig. 1. Choices of Decoupling Traffic, Processing Logic and State.

FTMB requires packet duplication, which would occupy 50%
of the total bandwidth if Input Logger is located at another
server. It also incurs long recovery time due to packet replay-
ing (up to hundreds of milliseconds). These two disadvantages
make FTMB suffer from high overheads and substantial per-
formance penalty upon failures. A recent trend to provide high
availability for NFs is to decouple the packet processing logic
from the network state [12], [18], [20], [31], and store the state
in a remote, resilient data store. By trading perfect fault toler-
ance model for cost benefit (see §VII), these approaches could
gain fast and efficient failure recovery. However, all these data
stores are traffic unaware, which means the state is always
steered to a remote, static place (data store) without regarding
to the traffic distribution. Moreover, most of these systems
(especilly StatelessNF [12]) usually require very high-end
hardware such as InfiniBand [32] to reduce the performance
penalty (e.g., per-packet latency due to remote access) as low
as possible, making the deployment daunting for enterprises.
Even so, the additional latency is as high as hundreds of
microseconds [12], which is unacceptable at cloud gateways.
Meanwhile, since each packet requires remote data access to
read/write the network state, the packet number of control
traffic is several times more than that of workload traffic,
which makes the overhead considerable and the scalability
of the remote data stores a significant concern. A low-cost
failure resilience mechanism is in dire need for gaining high
performance, low capital expense and high scalability at cloud
gateways.

B. Our Approach: TRIPOD

The limitations of the aforementioned approaches motivate
us to propose TRIPOD, a new framework customized for cloud
gateways. We highlight two challenges that must be addressed
carefully before TRIPOD could be fit for cloud gateways.

e C1: How to achieve high performance (large throughput
and low latency) with correct traffic management in the
extremely large traffic volume and address space?

o C2: How to accomplish efficient failure resilience with
low cost and high scalability, i.e., providing high avail-
ability without introducing too many overheads or per-
formance penalty?

As demonstrated in Fig. 1, TRIPOD jointly manages traffic,

processing logic and state. Especially, traffic and processing

logic are tightly coupled that each packet is always processed
on the server it arrives in, while processing logic and state
are coupled in a less tight way: state might still need to
be transmitted but the replicas are placed based on traffic
prediction. As a result, we achieve the effect that state is aware
of where traffic will flow through under any circumstance.
In particular, we make the following specific design choices
integrated with the unique characteristics of cloud gateways
to address the challenges above.

To address the first challenge, TRIPOD proposes a sim-
ple and efficient traffic processing mechanism, which jointly
optimizes the workload traffic and processing logic. Binding
processing logic either to traffic or state requires to keep a
mapping of where exactly the processing logic is placed, yet
steering traffic is more complex and less efficient than migrat-
ing state because this is constrained by the hardware capabil-
ities and traffic is more uncontrollable at cloud gateways. As
a result, we resort to the simple network configuration, e.g.,
ECMP [33], which can achieve simple traffic management
and be easily supported by almost all commodity switches in
modern data centers. Besides, more resilient ECMP implemen-
tation could be adopted to avoid global traffic distribution to
reduce failure penalty if advanced switches could be accessed.
Moreover, we observe that servers at cloud gateways are
usually under-utilized to reserve resources for traffic burst for
high performance consideration, where the total capacity is at
least twice the average workload in busy hours. As a result,
we adopt a stateless, connection-oriented programming model,
which takes advantage of run-to-completion (RTC) execution
model and traffic-processing logic co-location to effectively
enhance the packet processing performance.

To address the second challenge, TRIPOD proposes a high
performance state management service, which aims at achiev-
ing efficient packet processing even when there are failures.
Keeping state in a remote, resilient data store can achieve
high availability, yet it incurs high latency and poor scalabil-
ity. Thus, data locality is still important to achieve efficient
packet processing and we want to leverage it as much as
possible. An intuitive approach is to use the memory of each
NF instance to act as the cache of the remote data store.
However, it is not trivial to achieve this during failures, since
traffic may experience churns,> which would lead to service
degradation and slow failure recovery. To efficiently achieve
data locality in cloud gateway packet processing, TRIPOD
chooses to implement its own traffic-aware state management
service instead of simply offloading state management to a
remote, resilient data store. This state management service,
namely HPSMS, is based on the idea of predictive replica
placement that places state replicas to servers where traffic
can potentially be directed when there are network failures.
We also design several techniques to make the state service
fast, robust and cost-efficient.

3Current ECMP implementation incurs unnecessary traffic redistribution
during updates. When a next-hop is added or removed in ECMP, flows are
reshuffled among NF instances, which is defined as churns in this paper. Even
with advanced, resilient ECMP implementation, part of traffic still needs to
be steered to (a) new NF instance(s).

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 573

Simple Network Configurations (§III-A1)
[—
) i
HPSMS
(SII1-B)

Stateless Network

Functions (§I11-A2) ¢

HPSMS
(§I1I-B)

Stateless Network
Functions (§I11-A2)

mmm Workload Traffic
mms Control Traffic

Switch

Servers

Fig. 2. TRIPOD architecture.

III. DESIGN OVERVIEW

As demonstrated in Fig. 2, we introduce the overall
architecture of TRIPOD: the simple and efficient traffic
processing mechanism (Section III-A), including the simple
network configuration (Section III-Al), and the stateless,
connection-oriented programming model (Section III-A2).
And the high performance state management service (HPSMS)
(Section III-B). The two optimizations of HPSMS, fast state
lookup (D) and min-churn predictive replica placement ()
are discussed in Section IV and Section V, respectively.

A. Simple and Efficient Traffic Processing Mechanism

1) Simple Network Configuration: Each TRIPOD cluster is
placed in a single rack where multiple NF nodes (servers) are
connected to the ToR (Top-of-Rack) switch(es). In practice,
there could be multiple links between an NF node and a
switch, or an NF node could be connected to multiple ToR
switches. However, they share much of the design as the
simplest case where there is only one ToR switch and one
link between the switch and each NF node.

The traffic is distributed to all servers in the rack using
ECMP (Equal Cost Multi-Path) [33]. For switches supporting
the select and fast failover group tables as defined in Open-
Flow 1.3 [34] and above, we can optionally use two-stage
ECMP, a variant of ECMP which helps to reduce churns.
Two-stage ECMP is configured as demonstrated in Fig. 3.
Each port k is allocated a failover group table (table
k) with port k being the primary bucket and a secondary
select group table (table N + 1) as the failover bucket.
The primary select group table (table 0) has N entries and
each points to a unique failover group table. If a server is
still connected to the switch, i.e., the corresponding port is still
up, two-stage ECMP will not redirect its traffic even if there
are network failures, which avoids global traffic redistribution.
If more advanced programmable switches could be obtained,
e.g., Barefoot Tofino [35], Cavium XPliant [36], we could also
adopt more resilient hashing algorithms to replace the sim-
ple hash(5tuple)%N in current ECMP implementation [33],
such as consistent hashing [19] and stable hashing [20], which

Table 0 select I I | | oo I I |
tiet [ganiover | [] eee TN [fastover | |
Port 1 Port N]
Table N + 1 | select I I | | cee I I |
¥ !
Port 1 Port N

Fig. 3. Two-stage ECMP.

class NetworkFunction ({
public:
virtual void onInit (const Tuple &tuple,
Packet &pkt,
Direction direction) = 0;

virtual void onPacket (const Tuple &tuple,
Packet é&pkt,
Direction direction) = 0;

virtual void onClose (const Tuple &tuple,
Packet &pkt,
Direction direction,
Reason reason) = 0;

bi

class StateManagementService ({
public:
virtual void readTS (const Tuple &tuple,
int nf_id, size_t size,
void xdata);

virtual void writeTS (const Tuple &tuple,
int nf_id, size_t size,
void xdata);

bi

Fig. 4. API for TRIPOD network functions.

could load balance traffic well as well as ensure connection
affinity when NF nodes fail.

With the switch configuration independent of the packet
header space, and stateless network functions that are not
bound to a specific machine (§III-A2), the management of
network functions and traffic is both simple and scalable.
It is also quite resilient to failures (i.e., we do not get severe
flow disruption or service degradation because of network
reconfiguration or NF redistribution).

2) Stateless, Connection-Oriented Programming Model:
The programming model of TRIPOD is motivated by
other NFV frameworks, in particular StatelessNF [12] and
Pico [10], where a network function itself does not keep per-
sistent internal state but has access to two logically separated
state tables*: 1) the configuration table; and 2) the runtime
state table. The configuration table stores the configurations
of both the NF runtime system, e.g., the service function chain
for packets, and each NF instance, e.g., the access control list
and candidate server list. It is relatively stable and is read-only
to the NF. The runtime state table stores the runtime state of
each connection.

Each NF is required to extend the base class as shown
in Fig. 4 and to expose three function interfaces. The

4 Although the state and processing logic are separated logically, they could
be co-located physically to get high performance as in TRIPOD.

574

1
NF Runtime H X
1

Core 1 [

Core 2 [
: 7 NIC
1 1

| Core (N-1) I

]
H| Ne [
TI State Fetch Execution I :
1

S

Fig. 5. NF execution model in TRIPOD.

onInit function and onClose function are invoked only
once during the lifespan of a connection state — when a
state is allocated® (onInit) and is about to be removed
(onClose). The main logic should be implemented in
onPacket function which is invoked whenever a packet with
the same tuple arrives. The variables in these functions are
basically some common information that can be extracted
from the packets. The type Tuple contains the 5-tuple of
(src_ip, dst_ip, src_port,dst_port, proto) and other informa-
tion such as RSS (receiver-side scaling) hash results. To ensure
that symmetric TCP connections always get the same RSS
results on all NF nodes, we use the key given by Woo and
Park [37]. The type Packet wraps the sk_buffer and
provides methods to access the fields quickly. Direction
indicates whether the packet is an incoming packet (from the
Internet to the data center) or an outgoing one (from the data
center to the Internet). The Reason type is specific to the
onClose function which indicates why the state is removed,
including TCP_CLOSED (the TCP connection is closed),
TIMEOUT (inactive for a long time) and TERMINATED
(explicitly removed by an NF).

To get a higher performance, TRIPOD adopts an all-in-
one design for network function management and deploys
all network functions on all servers, similar to NetBricks [8]
and BESS [38]. In other words, a packet is processed in a
run-to-completion (RTC) manner, i.e., it goes through all NF
instances in the service function chain in a single core. Since
resources at cloud gateways are abundant, the scaling of the
entire service function chain can be easy and efficient. This
execution model is demonstrated in Fig. 5. The incoming
traffic from an NIC is distributed to multiple RX queues using
DPDK'’s RSS configured with the aforementioned key. Each
queue is only accessed by a single core so that packets from
a single TCP connection are always processed on the same
core.

B. High Performance State Management Service

In this section, we introduce the HPSMS subsystem and
describe how our HPSMS subsystem achieves high perfor-
mance, high availability and low overheads.

SWe allocate state differently for TCP and UDP. For TCP connections,
the state is allocated only when a SYN packet is received. For UDP,
we allocate the state whenever the tuple is never seen before from both
directions.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Master Backup

@ 6 &

'
' '
! NF Runtime !
App | 0 TTTTTTT T """ i """" '
[
' : Replica Management
'

© 0 o

NF Runtime

Replica
Placement

Replication
Queues

Active State Pulling

Index Broadcasting

Fig. 6. HPSMS architecture.
TABLE 1
MESSAGES IN HPSMS
Name Description
Confirm(msgs) Confirm messages msgs (including re-
sponses)

State Lookup
Pushindex(s, 1) Push (broadcast) the index set I from s
to all other servers (§IV)

Pull incremental index sets from all to d

(81V)

Pulllndex(d)

Replication
PushReplica(s, d, L) Push a list of state replicas L from s to
d

PullReplica(s, d, I) Pull replicas for index set I from s to d
Failover Recovery
Predict(c, e) Predict the potential next hop for connec-

tion ¢ during failure e (§V)

As shown in Fig. 6, just like general fault-tolerant distrib-
uted storage systems, HPSMS also has the concept of master
node and backup node. The roles of nodes in HPSMS are
based on which connection is of concern, i.e., a node can be
a master node for certain connections and a backup node
for other connections at the same time. Connection state is
stored in an in-memory hash table and is replicated from
a master node to one or more backup nodes using logs.
Some basic control messages are shown in TABLE 1. It is
noteworthy that these messages or interfaces are transparent
to the NF programmer, in other words, they are used to
achieve the HPSMP mechanism under the hood. We have
designed a special DPDK driver so that the control traffic (logs
transmission) can share the same NIC with the NF runtime.
This in-band control design allows us to work on machines
that only have one NIC, which simplifies the network setup
and allows us to do certain optimizations.

We enforce the data locality that guarantees that each
packet is processed on the master node of its connection, i.e.,
the HPSMS subsystem guarantees that there exists a copy of
the state in the local state table. While data stores such as
RAMCloud [39] achieve data locality by always routing the
client operations for a given key to the same master node,

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 575

our system works in a reversed way: whenever a node sees a
packet, it becomes the master node of the connection which
the packet belongs to. The packets of the same connection will
always be sent to the same node under our resilient network
configuration, unless there are failures. When failures happen,
traffic might redistribute and packets can arrive on another
node, which is known as churns. Upon churns, the nodes
in HPSMS start switching their roles. We further adopt the
following techniques to enhance the performance and reduce
the overhead of HPSMS.

1) Fast State Lookup: Fast state lookup answers the ques-
tion of how state should be accessed by network functions,
which play a critical role in the overall performance. Careless
design of HPSMS could incur performance penalty and high
overheads, even suffering from connection disruption and
potential attacks. We conduct two optimizations, lookup aggre-
gation and index broadcasting, to enhance the performance,
robustness and reduce the overheads. The details are discussed
in Section IV.

2) Min-Churn Predictive Replica Placement: Min-churn
predictive replica placement answers the question of where
the replica should be placed. This is an important approach to
reduce the churns caused by ECMP traffic redistribution. The
underlying idea is that if a packet arrives on a backup node,
the node can become a master node without the delay/traffic of
replica transmission. Min-churn predictive replica placement
is the main factor that HPSMS achieves fast recovery, and we
discuss the details in Section V.

3) Optimized Replica Transmission: Optimized replica
transmission answers the question of how the replica can be
transmitted efficiently. Two techniques are used in HPSMS:
batching and piggy-backing.

With min-churn predictive replica placement, we have mul-
tiple replication queues where the logs in the same queue have
the same destination. Merging multiple logs in a single packet
can improve the goodput and reduce network traffic.®

Another technique is piggy-backing. Since the replication
can happen between all node pairs, the confirmation packet of
replica packet from node ¢ to node j carries a batch of logs
from node j to node 1.

IV. FAST STATE LOOKUP

The time to conduct a state lookup operation is directly
related to latency and throughput. Thus, efficient state lookup
is crucial to the overall performance of softwarized cloud
gateways. In this section, we demonstrate the techniques used
in HPSMS to achieve this goal.

A. Lookup Aggregation

Lookup aggregation aims at reducing the number of lookups
to improve the packet processing performance. In our execu-
tion model, packets from the same flow will be processed by
a fixed service chain where each network function needs to
perform a lookup operation. Conducting the lookup operation

®Batching could incur additional latency and compromise the consistency
of fault tolerance model. For scenarios that require stricter consistency model,
batch size could be set as 1.

Indexing Table State Table
Y oo
tuple 1 chain_id
|_> T2 x NF1
tuple 2 chain_id T2 xNF2
X
I— =P tuple3 chain_id
| oo
Binding ceo
I P T3 x NF1
I p| reversed reversed T3 x NF2
tuple 3 chain_id T3N3
X

eee

Fig. 7. Tuple-based memory layout.

independently can lead to a large latency and redundant control
traffic, especially during network failures because the state has
to be fetched from a remote server.

Based on the observation that the state used by all NFs
in the same chain is associated with the same flow, HPSMS
introduces a tuple-based memory layout (Fig. 7) to eliminate
the redundant lookup operations. The state are stored in a
two-layered structure. The states associated with the same flow
are placed together in the state table, and the address is stored
in the indexing table with a chain_id which indicates the
version of service function chain when it is first accessed.
TRIPOD fetches all the state before the packets are sent to the
subsequent network functions.

Cloud gateway network functions (e.g., network address
translation) may rewrite the packet headers. As a result, the
inbound traffic and the outbound traffic may not go to the same
server. For an incoming packet, HPSMS keeps the binding
between the S-tuple as it enters the network function chain
and the 5-tuple as it leaves the last network function (which is
the first network function that handles outbound traffic). The
latter is called a reversed tuple. It points to the same local
state and is either normally replicated to the correct server or
pulled by the server beforehand during the remote lookup.

B. Remote Lookup With Index Broadcasting

Remote lookup operations require communications among
servers and are expensive. Unnecessary remote lookup oper-
ations might potentially lead to service degradation such as
longer latency and lower throughput, and even be exploited
by attackers to paralyze the system.

Given the network configuration in our system, there are
three scenarios where an NF server v can encounter a missing
entry for a connection c¢ (identified by its 5-tuple): /) the
packets belong to the outbound traffic; 2) there is a network
failure e and there is no replica for ¢ on v; and 3) an attacker
creates packets for a connection that does not exist.

In the first case and the second case where e is recov-
erable, there will be at least one valid state on a remote
server. An intuitive approach to obtain the state is broadcast-
ing, that is, the NF node broadcasts a state-request packet
to all the other nodes to pull the state. However, this would
incur heavy load to the control traffic, and may be exploited

576 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Algorithm 1: Fast State Lookup
Input: ¢ - the core ID, ¢ - connection, direction - infout
1 Function LOOKUP(%, ¢, direction)
2 | if (¢, direction) € local_hash_map then
// Local hit
3 APPEND(working_queuelil, (¢, direction))

4 | else if (¢, direction) € local_key_set then
// Replica is on a remote machine

5 candidates «+ INDEXSETLOOKUP((c, direction))
6 ASYNCFETCH(candidates, (¢, direction))
7 | else

// Either attacking traffic or out

of sync, buffered for batch
request
8 APPEND(request_queue[i], (¢, direction))
9 if |request_queue[i]| > threshold then
10 ASYNCREQUESTINCREINDEXSET
(i, request_queueli))
1 request_queueli] «— ()

by the attacks to trigger the amplification attack’ to paralyze
the HPSMS subsystem.

To address this, we propose the idea of index broadcasting.
The basic idea is to let an HPSMS node have the global
view and enable it to conduct local lookup on entries in a
remote server. This is achieved in TRIPOD by broadcasting
the indices (i.e., the set of keys) on a single node actively
to all other nodes. Besides eliminating potential attacks, index
broadcasting also enables a global synchronization among dif-
ferent nodes, which could guarantee the correctness even when
the prediction makes mistake. As the number of connections
is pretty large, broadcasting the indices as they are is not
feasible and we compress the indices using Cuckoo filter [40].
The index sets of incoming traffic and outgoing traffic are
broadcasted separately.

Since the broadcasted index sets are not always up to date,
there is still a race condition that the packet just arrives too
soon. Making complete queries may be exploited by attackers,
making the system vulnerable. Instead, we batch these packets
and send queries for incremental index broadcasting. If the
packet is from a valid connection, its state must be included
in the incremental index sets so we can safely discard the rest.

The final state lookup is described in Algorithm 1. It first
checks if there is a local copy (Lines 2-3), and then leverages
the index set to do fast remote lookup (Lines 4-6). If both
lookup operations fail, it requests for incremental index sets
in batches (Lines 7-11).

V. MIN-CHURN PREDICTIVE REPLICA PLACEMENT

Even though the system can already work very efficiently
with the previous components, we want to further reduce the
system overheads, e.g., number of replicas in the system and

7One missing entry could lead to several control messages, so we call it
amplification attack.

traffic for replica migration. In this section, we introduce the
min-churn predictive replica placement, an important feature
of HPSMS to achieve these goals.

A. Perfect Predictive Replica Placement

The key observation is that if the new server already has a
replica of a connection’s state during network failures, no state
migration is required. Thus, for a given connection ¢ and a
given failure scenario e (a list of failed servers/links), if we
know which server it will be forwarded to and make that
server a backup node beforehand, the packets of the connection
can be processed smoothly when the failure scenario really
happens.

We denote this server as b(c,e) where b: C' X E +— S is
referred to as a prediction function which maps a connection
and an error to a specific server. We also denote the set of
actual backup nodes for connection ¢ as B(c¢) which requires
|B(c)| replicas.

For a perfect predictive replica placement or zero-churn pre-
dictive replica placement which requires zero state migration
for failures up to k servers, we have:

Proposition 1: For a given connection ¢ in an N-node
HPSMS cluster and a given prediction function b, the number
of replicas to achieve perfect (zero-churn) predictive replica
placement for failures up to k(k < N) server(s) is |By(c)|,
where

i=1

By(e) = {b(c7 e)lec U C(N, z)},

and C(N, 1) represents the i-combinations of V.

One can easily conclude that |By(c)| > k + 1 because
we need at least k + 1 replicas to survive a k-failure. In
the worst case, |Bo(c)| ~ O(k?), because for all redirected
flows to find a local replica of its state, we need at most
Zle(i +1) = @ replicas. To find a balance between
churns during failure recovery and the normal replication
traffic, we introduce min-churn predictive replica placement.

B. Min-Churn Predictive Replica Placement Algorithm

The key idea of min-churn predictive replica placement is
to select k+1 replicas such that /) it can survive all failures up
to k servers, and 2) it minimizes the worst-case churn traffic
during these failures.

For each connection ¢, let the size of its connection state
be s.. We use a binary variable rJ to indicate that whether
c has a state replica on server j. We measure the worst-case
churn as the maximum expectation of traffic volume received
on a single server for replica migration, which can be repre-
sented as:

1<e[<k b(c,e)=j b(c,e)=j)
¢ = max Z P(e) Z Sc— Z rlsc , (D
J
€ c c

where P(e) represents the probability that failure e happens.
Thus, we have the objective of min-churn predictive replica
placement being min ¢,

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 577

subject to:
Z rl=k+1,
J

el =1, 7l e{0,1}, Vj, Ve, 3)

ve,)

where Equation 2 represents the constraint that we have at
most k+1 replicas and Equation 3 represents that there always
exists a replica on the master node (the original copy).

However, how this optimization can be conducted in prac-
tice is not trivial. First, the number of c is very large (the
number of all concurrent connections). Second, it is not
preferred to migrate replicas which are already placed on some
backup node to others. Thus, we introduce an algorithm to
practically compute the replication plans.

We first rearrange the objective function in Equation 1:

1<le|<k b(c,e)=j b(c,e)=j)
p = max zg: P(e) zc: Se — zc: rlsc
b(c,0)=i [1<|e|<Ek
= max Z Z Z P(e)bgjsc (1 —rl)
b(c,0)=i

:mjax zl: zc: blsc(1—1l)p, 4)

where b¢; is an indicator for b(c,e) = j and bl =

1<|e|<k
=R Pleyb,.

An additional constraint is added that connections whose
77 is already known will not change the replica placement.

For these connections (say Ci(l)), Do Zb(ecg)()ii bls.(1—1l))

is known and we denote it as .S j(l). Equation 4 becomes

(e,0)=1
o) = max S](»l) + Z Z bisc(1—ri)s. (5)
’ ioege®

Let 2 = 1 —1J

7, minimizing Equation 5 is equivalent to

min p,
subject to:
b(c,0)=1
S+ N bisaal <p, Vi
i C¢C,(l>

ZmizN—k—l, Ve
J

22D =0, ale{0,1}, Vj, Ve. (6)

We first relax the constraint that z7 must be binary
so that this relaxed min-max optimization problem can
be solved using the distributed algorithm introduced by
Notarnicola et al. [41], and then use rounding methods to get
the actual values of all {zZ}. Note that this procedure can
be quickly finished within millisecond on a normal server
cluster. Since we don’t have all the z/ because c keeps
coming in, we take a batch of B connections and conduct
this optimization as demonstrated in Algorithm 2.

Algorithm 2: Min-Churn Predictive Placement
1 Function ONCONNECTION(%, ¢, S¢)

2 | if queue.size < B then
// Batch B connections
3 queue.add(c)
4 record s.
5 b} « ASYNCPREDICT(c)
6 | else
// Replicate to remote servers
7 Pi; {TZ} —
SOLVELP(queuea {Sc}v {)\ij}a {/J‘j}v {SJ})
8 foreach r’ # 0 do
9 | REPLICATE(, j, ¢)
10 queue —
Tl EXCHANGEPARAMETERS ({\i; }, 144, S5)

12 Function ONPARAMETEREXCHANGE({\;; }, {1t;}, {S;})
L record {\;;}, {n;}, {55}

ot
w

C. Predicting ECMP Next-Hops

We now introduce how next hops (i.e., b(c, e)) for ECMP
or two-stage ECMP can be predicted. The basic idea is to
simulate the traffic redistribution using the switch with forged
failures and forged packets.

1) To predict failures with up to K failures, configure the
switch to use K extra ECMP groups, numbered as
g1, --.,9K. These groups are matched on VLAN id so
that the original data center traffic would not use any
of these groups. For the gy, it contains exactly N — k
ports.

2) When a server determines that the state of a connection
c should be replicated, it “forges” K packets using the
same S-tuple but different VLAN numbers and sends
them to the network with the Predicate message. Here
each e is actually encoded as an integer k = |e
the number of failed servers.

3) If a server receives such a packet, it extracts e from the
message and looks up its ID in ECMP group g. which
is statically stored on all servers. It sends a Confirm
message to the Predicate message with the ID.

4) After the sender receives confirmation for all K failures,
it takes a k and the corresponding id (denoted as by).
Now the server can simulate all k-failures and b(c, €) is
the by-th server in the remaining working machines in
the primary ECMP group.

bl

The prediction process is demonstrated in Fig. 8. When
failures happen, the prediction may not be accurate anymore.
If it is confirmed that a failure may not recover very soon,
we update the ECMP groups used by prediction and the cor-
responding mappings on servers. The network configuration
for workload traffic is not affected.

VI. EVALUATION

In this section, we seek to answer the following key
questions with extensive evaluations:

578 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Origin Switch

Send forged packet for

c with Predict message
and VLAN id &

Server s

Forward with g,

Determine where to
place the replica - - _______1 R
after receiving all Reply Predict message
prediction result with ¢, k and id(k, s]

Add to the
replication queue

Fig. 8. ECMP prediction.
Traffic oo Traffic
Generator Generator
Switch
NF Node eee NF Node
Fig. 9. Physical topology for the experiment.

o How scalable is TRIPOD in terms of traffic management?
(§VI-B)

o How does TRIPOD perform overall in terms of latency,
throughput, and failure resilience? (§VI-C)

o How does a single machine in TRIPOD perform? (§VI-D)

o How useful are the techniques and optimization we
adopted in TRIPOD? (§VI-E)

o What are the overheads of TRIPOD? (§VI-F)

A. Methodology

1) Topology: Our experiments are conducted using the
network topology shown in Fig. 9. T' traffic generators and K
identical TRIPOD servers are connected to a single ToR switch
(Pica8 P-3922, 48 x 10 GbE + 4 x 40 GbE). Unless otherwise
specified, all servers are equipped with Intel(R) Xeon(R) E5-
2600 v4 CPUs (2.4 GHz, 2 NUMA, each with 6 physical cores
and 12 logic cores), 15360K L3 cache, 64G RAM and an Intel
82599ES 10GbE NIC. All servers are installed with Ubuntu
14.04 LTS with Linux kernel 4.4.0-31-generic.

2) Traffic Generation: We use a real-world inter-DC traffic
trace collected from a cloud gateway server of Baidu Inc., one
of the large cloud provider around the world. Real IP addresses
are obscured but the trace still retains the relationship between
different connections. The trace is replayed with Pkrgen [42]
to simulate the real-world scenario of a cloud gateway. Since
the trace itself is collected on a single machine, we amplify it
by making K copies and change the IP addresses with different
prefixes to simulate the traffic for the entire cloud gateway.

3) Metric Collection: We collect the metrics every 100ms.

o Latency: Latency is measured on traffic generators which

actually represents the round-trip time of a packet enter-
ing and leaving the TRIPOD cluster.

o Throughput: Throughput is measured as the number/size
of the packets processed on each server and the total
throughput is the sum of throughput on all servers.

« Broken connection: Broken connections are measured as
those whose packets are dropped because of missing state.
These connections are already established on end hosts
but the packets can never go through the cloud gateway
correctly because the state is lost.

e Overhead: Overheads are measured by the num-
ber/volume of control messages, including state replica-
tion, ECMP prediction and index broadcasting.

4) Implementation: Each NF node in TRIPOD, including
NF runtime, HPSMS and several typical network functions
at cloud gateways (TABLE II), is implemented in DPDK
17.08.1 with ~5k lines of code.® All of the three parts
above are located at the same NUMA for high perfor-
mance. We compare our prototype system with the state-
of-the-art practice, where state is separated from processing
logic and stored in a remote, reliable storage, including
StatelessNF [12], Beamer [20], Yoda [18] and Protego [31].
While the latter three only focus on one simple network
function, load balancer, StatelessNF [12] can support more
network functions, which is indeed more general. Since the
source code of StatelessNF [12] is not available, we have
adapted our prototype system to keep the state in a remote,
resilient data store, just as the original paper. We refer to this
implementation as StatelessNF to understand the benefit of
state-computation co-location. Further, we also implement a
system without any fault tolerance guarantees as a performance
baseline (referred to as Baseline).

B. Scalable Traffic Management

We first demonstrate the scalability of TRIPOD’s network
management by the number of flow rules. We have configured
the switch with two-stage ECMP for 48 ports and ECMP
prediction for up to 10 failures. As expected, it only consumes
60 flow rules. On the other hand, state-of-the-art SDN-based
load balancing solutions such as [43] already take up hundreds
to thousands for a university-scale network, which potentially
leads to poor scalability at cloud gateway scenarios.

We also demonstrate how it can support dynamic horizontal
scaling. Horizontal scaling means the ability to add/remove
servers. Since removing a server is equivalent to a failure case
which we discuss in later sections, we only show the case
where a server is dynamically added. We first configure the
traffic generator to generate traffic of 22 Gbps with 4 TRIPOD
servers. Other two servers are connected to the switch but
initially DPDK does not handle any packet so the port is
not detected as active. After 4 and 12 seconds respectively,
we launch a new instance of TRIPOD on each of the two
servers. The throughput of each machine during the process’
is demonstrated in Fig. 10. As we can see, loads on the four

8We do not use the virtulization techniques in all our experiments for the
high performance consideration at cloud gateways. Nevertheless, packaging
our network functions in containers or virtual machines is also feasible.

9The redistribution can cause a small burst of control messages, but the
effect is similar to a failure and is analyzed later.

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 579

TABLE 11
NETWORK FUNCTIONS AT CLOUD GATEWAY S

Network Functions State

Access Patterns

Network Address Translator [16]
Load Balancing [21]

Address pool, NAT entry
Address pool, LB entry

1 Write Per-connection, 1 Read Per-packet
1 Read/Write Per-connection

Stateful Firewall [12] Static configurations, Per- | 5 Read/Write Per-connection, 1 Read Per-packet
connection state
Monitor [8] Static configurations, Packet | 1 Read/Write Per-packet
counter
12000 1.0
—— machine 1
10000 —— machine 2
5 —— machine 3 0.8
£ 38000 —— machine 4
= —— machine 5 0.6
2 6000 —— machine 6 L
< W 8
g 0.4 —— Tripod
2 4000 ' . .
£ —— Tripod-failure
2000 0.2 —— Baseline
' —— StatelessNF
0 —— StatelessNF-failure
4 8 12 16 0.0
Time(s) 0 20 40 60 80 100
Latency(us)
Fig. 10. Per-machine throughput change during horizontal scaling (adding
tWO new servers). Fig. 11. Latency before/after a single failure.
existing machines first drop to about 4/5 after 4s and then :
2/3 after 12s, while the throughput of new instances quickly — T”F’°‘?'
. > 81 —— Baseline
grows up to almost the same level, showing that TRIPOD can >
support dynamic horizontal scaling in a very instantaneous 3 StatelessNF
and seamless way. xg
s
=
0
C. Overall Performance < 4
We now demonstrate the overall performance of TRIPOD S
including latency, throughput, and failure resilience. All eval- g 2
. . Vs
uations are conducted on a 4-machine cluster and we shut o
down the DPDK application on one machine to simulate a ®@ 0 /
single-node network failure.
1 2 3 4 5 6 7

1) Latency: Fig. 11 demonstrates the cumulative distrib-
ution function (CDF) of latency for TRIPOD, the baseline
and StatelessNF. As we can see, the latency of TRIPOD is
very close to the performance baseline, while StatelessNF
results in larger latency (almost twice the latency of TRIPOD
and the baseline). This is reasonable because StatelessNF
needs to do a remote lookup for each packet, which requires
another round trip from one server to another. The results
demonstrate that TRIPOD benefits substantially from state-
computation co-location.

2) Throughput: We do not use an extremely large traffic
volume here due to the limited capability of our traffic
generation tools. Note that this is also not necessary since
the overall throughput of TRIPOD could be estimated as the
number of TRIPOD machines times the throughput of each
single machine. From the experiment in the next subsection
(§VI-D), we can see that a single server in TRIPOD could

Time(s)

Fig. 12. Broken connection ratio.

prcocess almost 40Gbps workload traffic, and a TRIPOD
cluster is able to reach as high as ~Tbps level with only
25 servers. In this subsection, we mainly focus on how
the throughput changes when failures happen. We can see
that three frameworks have similar throughput during nor-
mal traffic, both in total (Fig.13(a)) and on each machine
(Fig.13(b), 13(c) and 13(d)). We can also see that after failure,
TRIPOD and StatelessNF both achieve about 4/3 of the original
throughput, while the throughput of the baseline drops because
of ECMP churns. In our evaluation, there is a gap between the
time when the failure actually happens and when the other
servers start to react. This is because the Pica8 switch uses a

580 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

27500
22000
m
Q
Q
216500
=
>
Q
ey
§11000
E —— Tripod
5500 —— Baseline
—— StatelessNF
o 2 3 4 5 6 7
Time(s)
(a)
9000
7500
m
S$6000
=
5
24500
ey
g —— machine 1
53000 —— machine 2
1500 = machine 3
—— machine 4
0 2 3 4 5 6 7

Time(s)

(©

Fig. 13.

50{ = Tripod

—— Baseline

$ 40| — StatelessNF
e
& 30
()]
%))
o
—20
e
]
Y4
(®)
F10

0

1 2 3 4 5 6 7

Time(s)
Fig. 14. Packet loss rate.

built-in 250ms for port liveness'® and it is possible to reduce
this gap by setting a smaller detection time.

3) Failure Resilience: We now demonstrate the failure
resilience results. As shown in Fig. 12, since TRIPOD and
StatelessNF adopt the same fault tolerance model, the pro-
portion of broken connections of TRIPOD and StatelessNF
is similar, which is only 1/4 of the baseline. If a link/node
failure happens every day, cumulative results indicate that

10We have contacted Pica8 technical support and the 250ms is confirmed
by their engineers. Right now the value is not configurable in PicaOS and
manually disabling the port does not eliminate the gap. However, this feature
might become available in the future.

9000

7500

SSas

Throughput(Mbps)
w I o
o o o
IS) =) IS)
S S S

—— machine 1
—— machine 2
1500 —— machine 3
—— machine 4
01 2 3 4 5 6 7
Time(s)
9000
7500
m
S6000
=S
5
24500
ey
%” —— machine 1
53000 —— machine 2
1500 = machine 3
—— machine 4
0 2 3 4 5 6 7

Time(s)

(d)

Total and single-machine throughput for different solutions in a single failure. (a) Total throughput. (b) TRIPOD. (c) Baseline. (d) StatelessNF.

60+

—— Single Machine in Tripod
—— Line-rate

Packet Rate (Mpps)
w ey w
°© S °

N
o

10
64 128 256 512 1024 1500
Packet Size (Byte)
Fig. 15. Single NF Node Throughput vs. Packet Size.

TRIPOD can provide an availability of 99.9999%. We also
analyze the impacts on packet loss, since it might potentially
affect the performance of TCP connections. As shown in
Fig. 14, the baseline has two large leaps while TRIPOD and
StatelessNF only have one. The first one is because of the
network failure so that all traffic to the failed node is lost
(roughly 1/4). The second leap of baseline is because of ECMP
churns which no longer exist in stateless solutions. We can see
that TRIPOD almost overlaps with StatelessNF, indicating that
TRIPOD achieves similar failure resilience with state of the
art.

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 581

w
N

—— w Index Broadcasting
—— w/o Index Broadcasting

N N
L o]

Control Message Ratio (%)
N
o

0 10 20 30 40 50 60 70 80 90
Attack Packets / Normal Packets (%)

Fig. 16. Control Traffic/Workload Traffic w/o index broadcasting.

D. Single Machine Performance

Since each server in TRIPOD receives a roughly equal
amount of traffic through ECMP, the overall throughput
of TRIPOD could be estimated as the number of TRIPOD
machines times the throughput of each single machine. The
more traffic each server can handle, the fewer machines will
be required to serve the same amount of traffic capacity.

Since a single machine could easily reach the upper limit
of the 10 GbE NIC capability (14.88Mpps for the minimum
packet), we change the origin 10 GbE NIC to an Intel XL710
40GDbE NIC, and use the 40 GbE port of Pica8 P-3922. We use
different size of packets to benchmark the throughput of a
single machine in TRIPOD. As shown in Fig. 15, TRIPOD
is able to forward the minimum packets at 17.3Mpps, and
the rate of larger packets is restricted by the physical NIC
capability (40Gbps). The overall throughput for minimum
packets in original StatelessNF [12] paper is 4.6Mpps, which
is only 1/4 of a single machine in TRIPOD, demonstrating that
state-computation co-location and lookup aggregation enhance
the performance of the NF nodes in TRIPOD greatly. A more
prominent benefit comes from the distribution property of our
HPSMS subsystem. In the original StatelessNF [12], the data
store, RAMCloud, has a coordinated server which serves all
the requests and distributes them to the other servers, and could
easily be a bottleneck. In contrast, we do not have such an
explicit coordinated server in HPSMS, and each server serves
its own requests, which can achieve extremely high scalability.
Note that the average packet size in the data center is about
850 bytes [44], [45], the throughput for this packet size can
easily reach the theoretical limit of 40 GbE NIC.

E. Micro Benchmarks

We now conduct various experiments to demonstrate the
effectiveness of our techniques and optimizations.

1) Index Broadcasting: Index broadcasting can enable a
global view synchronization for each NF node and guarantee
the correctness even if unexpected events happen, especially,
it can effectively enhance the robustness of HPSMS. As shown
in Fig. 16, with index broadcasting, the number of control

—— Predictive Placement
—— Random Placement

N
o

=
[e)]

Control Message Ratio (%)
© o~

D

1 2 3 4 5 6 7
Time(s)

Fig. 17. Control Traffic/Workload traffic.
2
o
= 25 '
& —— Random-4-machine
_S 20{ —— Random-6-machine
g —— Random-8-machine
X 15/ — Predictive-4-machine
& —— Predictive-6-machine
o I .
210 Predictive-8-machine
—_
=]
o
2 5
%]
5
= 0
O
Q
C
¢ 5
e 1 2 3 4 5 6 7
S Time(s)
Fig. 18. Connections requiring PullReplica.

64 64 64

EEm ECMP Prediction B State Transmission B Packet Replication

?56 I State Replication 56 56
%48 B Index Broadcasting 48
©
< 40 40
&
©32 32
3
=24 24
°
£ 16
o
C 8

0

01 2 3 4 5
Time (s)

-

2 3 4 5 6
Time (s)

Fig. 19. Control Traffic/Workload traffic of TRIPOD, StatelessNF and FTMB.

6

4
Time (s)

messages remains unchanged when the rate of attack packets
increases, while without index broadcasting, each attack packet
results in a remote broadcasting and the control messages
increase linearly. The result demonstrates index broadcasting
can effectively mitigate the amplification attack.

2) Min-Churn Predictive Replica Placement: To demon-
strate the effectiveness of min-churn predictive replica place-
ment, we compare it with a variant of TRIPOD using random
replica placement. As we can see in Fig. 17, the randomized
variant incurs an increase of control message when a fail-
ure happens, while the number of control messages remains

582 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

relatively unchanged for the predictive placement. Our initial
experimental setup is with 4 NF instances, and the difference
of TRIPOD and the randomized variant is not so obvious
because flows still have a high probability of arriving on a
backup machine. We increase the number of machines and
count the proportion of connections which require PullReplica.
As we can see in Fig. 18, the proportion of random replica
placement grows significantly, while TRIPOD, using predictive
replica placement, eliminates the overheads. Given the trend,
we expect predictive replica placement to be much more
efficient when deployed on tens of servers.

From the discussion above, we can see that the optimiza-
tions can effectively enhance the performance, robustness
and reduce the overheads of TRIPOD .

F. Overheads

We now demonstrate the overheads of TRIPOD, i.e., band-
width required for state replication, ECMP prediction and
index broadcasting. As we see from Fig. 19, the ratio of control
traffic consumes about 8-10% of the workload traffic. This is
a huge improvement compared with per-packet fault tolerance
approaches such as FTMB [11], which require half of the total
bandwidth for packet duplication when Input Logger is located
at another server. Meanwhile, StatelessNF introduces about
28% traffic overheads, almost 3 times larger than TRIPOD.
Thus, we conclude that the overheads of TRIPOD is reduced
greatly compared with state-of-the-art approaches.

VII. DISCUSSION
A. Per-Connection Model

Current TRIPOD mainly supports and optimizes stateful net-
work functions with per-flow state. On the one hand, the per-
flow model is sufficient to support almost all in-line mode
network functions at cloud gateways. Traffic at cloud gateways
is extremely large, and it must be separated to multiple NF
instances to achieve distributed processing (usually in 5-tuple
flow grain). As a result, each NF instance could only see
part of the traffic, which inherently results in the per-flow
state view of network functions. Although there may be some
sophisticated network functions with cross-flow state (e.g.,
IDS, DPI, DoS detection) deployed at cloud gateways, they
do not work in an in-line mode [46], and they do not have
such a rigid latency requirement and such a large portion
as in-line mode-based network functions, making it essential
to do some specific optimizations and achieve both high
performance and high availability for network functions with
per-flow state. On the other hand, TRIPOD could also support
cross-flow model. Per-connection state could be processed in
the paradigm as it is in TRIPOD, and cross-flow state could be
transmitted to a coordinated server to achieve a cross-machine
synchronization, just like StatelessNF [12]. The discrimination
of cross-flow and per-flow states could be conducted with
methods such as StateAlyzr [29]. Another approach is to
jointly optimize traffic management and processing logic. With
more advanced network configurations than TRIPOD, packets
of the same cross-flow state are distributed as a whole to
the same NF instance. As a result, cross-flow state could

be managed in a similar way as HPSMS. We leave the
exploration of more general HPSMS system with optimization
for cross-flow state to our future work.

B. Fault Tolerance Model

We illustrate this concept from the following two aspects.
First, we only assume the NF nodes would fail unexpectedly in
TRIPOD. On one hand, server failures are a common assump-
tion which has been confirmed by researchers through mea-
surement, while the ToR switch is highly reliable [25], [26].
On the other hand, even if a switch fails unexpectedly, it does
not cause any connection disruption. This is because multiple
NF nodes (servers) are usually connected to multiple ToR
(Top-of-Rack) switches in a rack, and the ToR switches are
stateless and interchangeable. Second, TRIPOD shares the
same fault tolerance model as StatelessNF [12]. This fault
tolerance model can not recover from the situation when the
packets have been transmitted to the fail-stop instance, which
means these in-transmit packets may lead to a slight inconsis-
tency between the original instances and the backup instances.
However, as we discussed with the cloud provider, this fault
tolerance model could make a balance between the cost and
benefit, and it fits for the cloud gateway scenarios. Although
Pico Replication [10] and FTMB [11] could provide perfect
fault tolerance model, their expenses such as per-packet delay
and per-packet duplication either violate latency requirement,
or incur high overheads and substantial performance penalty,
which is unacceptable for cloud gateways.

VIII. RELATED WORK

Beyond the most directly related work discussed in
Section II, we discuss other related work based on the fol-
lowing four categories.

A. Elasticity of NFV Instance

Split/Merge [13], OpenNF [15] and S6 [16] focus on trans-
ferring state between NF instances to achieve correct and
efficient NF elasticity. These frameworks cannot support fail-
ure resilience well while TRIPOD puts failure resilience as
the top priority. U-Haul [28] reduces state migrations by
only migrating the elephant flows while StateAlyzr [29] uses
standard program analysis tools to automatically identify the
state objects that need to be managed during redistribution.
Both U-Haul and StateAlyzr are orthogonal with our work
and can potentially improve the performance of TRIPOD.

B. NF Instances at Cloud Scale

Several systems have been proposed for cloud-scale
softwarized network functions. Ananta [17], Yoda [18],
Maglev [19] and Beamer [20] provide softwarized load bal-
ancing. Ananta [17] employs ECMP to build a scale-out
system and uses a highly available control plane to coordi-
nate state across the distributed data plane. Yoda [18] uses
memcached, an in-memory key-value database to store the
state of TCP connections. Maglev [19] uses consistent hashing
(with a unique hash function) and connection tracking (i.e.,

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 583

the bindings between VIP and the server for active TCP
connections) to achieve highly reliable packet delivery even
under failures. Beamer [20] leverages the per-connection state
already held by back-end servers to guarantee occasional stray
connections are never dropped under churns. Protego [31] pro-
vides IPSec tunnels at the cloud scale by carefully separating
the control plane state (keys) and data plane state of IPSec
and storing them in different locations. It also leverages the
renegotiation of keys to achieve dynamic VM migration and
efficient IPSec consolidation. While these systems are highly
specialized for a certain application with high performance
and high availability, TRIPOD can support more applications,
making it useful as a general framework for cloud gateways.
Note that Ananta [17], Maglev [19] and Beamer [20] also
adopt ECMP for traffic distribution, and the role MUX plays is
somewhat similar to that of NF nodes in our paper. However,
there are several distinguished differences between TRIPOD
and these load balancing systems. First, they all assume
difference MUXes are interchangeable, that is, once a MUX
fails, other MUXes could seamlessly reconstruct the VIP-DIP
mapping state by themselves. This is because all MUXes
adopt the same DIP selection algorithm, and the selection
is only decided by the 5 tuples of the packets. In contrast,
network functions at cloud gateway such as stateful firewall
do not follow this practice, the state of these network functions
are updated by nearly all packets of a flow. As a result, for
a persistent flow, if the state triggered by previous packets
are lost, the subsequent packets of the flow could not be
processed correctly, which means these dynamic state must
be carefully managed to ensure the packets of the same flow
are processed equally even when NF node failures occur.
Second, Ananta [17] and Maglev [19] are sensitive to the
changes of back-end servers, and Beamer [20] eliminates this
concern with a stateless MUX design and daisy chaining.
TRIPOD handles this concern with an efficient and resilient
state management service (HPSMS) for NFs, and the TRIPOD
system 1is transparent to both ends of a connection. When a
back-end machine fails, only connections pertained to it will
be affected. When adding a new back-end server, only new
connections will be directed to this new server to gradually
achieve a new balance. Besides, our efficient and resilient
state management service are much more general, which can
leverage more sophisticated network functions, not only simple
load balancing as stated in these papers.

C. Failure Recovery for In-Memory Storage Systems

RAMCloud [39] uses log-structured replicas which stores
replicas on the disks in multiple backup servers. Cocytus [47]
uses a hybrid recovery mechanism which uses primary backup
for metadata and keys, and uses erasure coding for values.
TRIPOD has adopted many useful design features from these
studies. However, instead of providing a general-purpose
highly available storage system, our HPSMS subsystem is
deeply integrated into the overall TRIPOD framework and has
leveraged the characteristics in traffic management. This joint
design makes it possible to achieve better performance and
also reduce overheads.

D. SDN/NFV at 5G Scenario

Ksentini et al. [48] use Nash Bargaining game and the
threat point to seek for the optimal SDN controller place-
ment points in 5G. Dutra et al. [49] adopt SDN to enable
operators to efficiently allocate the network resource with
multi-paths routing, which further guarantees the required
end-to-end QoS. Taleb et al. [50] introduce several different
VNF placement algorithms to achieve diverse optimization
goals for virtual 5G network infrastructure. Bagaa et al. [51]
propose three heuristic algorithms to find the optimal network
function placement locations in carrier cloud. Addad er al. [52]
benchmark the ONOS intnt interfaces to ease 5G service
management. Addad et al. [53] formulate a MILP optimization
model to enable a cost-optimal network slice deployment
for 5G. Bagaa et al. [54] devise an efficient VNF placement
algorithm to sustain the QoS and reduce the deployment cost.
These works target at different domain and adopt different
techniques from ours.

IX. CONCLUSION

In this paper, we introduce TRIPOD, a novel, simple-to-use
framework, which is specially designed for cloud gateways.
To provide high-performance and failure-resilience packet
processing with a scalable traffic management mechanism,
TRIPOD jointly manages traffic, processing logic and state. In
particular, TRIPOD uses a simple, efficient traffic processing
mechanism and a high performance state management service
(HPSMS), with two critical techniques, namely fast state
lookup and min-churn predictive replica placement, to sub-
stantially improve the performance, scalability and reduce
the overheads. Our evaluation results demonstrate that TRI-
POD achieves seamless horizontal scaling, low latency, large
throughput, and high availability with reasonable overheads,
making it a good fit for cloud gateways.

REFERENCES

[1] Microsoft. (2017). Microsoft Azure Cloud Computing Platform & Ser-
vices. [Online]. Available: https://azure.microsoft.com/en-us/

[2] Rackspace. (2017). Rackspace: Managed Dedicated & Cloud Computing
Services. [Online]. Available: https://www.rackspace.com

[3] Amazon. (2017). Amazon Web Services (AWS)—Cloud Computing Ser-
vices. [Online]. Available: https://aws.amazon.com

[4] Alibaba. (2017). An Integrated Suite of Cloud Products, Ser-
vices and Solutions Alibaba Cloud. [Online]. Available: https://www.
alibabacloud.com/

[5]1 Google. (2017). Google Cloud Computing, Hosting Services & APIs.
[Online]. Available: https://cloud.google.com/

[6] J. Martins et al., “Clickos and the art of network function virtualization,”
in Proc. NSDI, 2014, pp. 459-473.

[7]1 J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manage., vol. 12, no. 1,
pp. 34-47, Mar. 2015.

[8] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proc. OSDI, 2016,
pp- 203-216.

[91 Y. Hu, M. Song, and T. Li, “Towards full containerization in container-

ized network function virtualization,” ACM SIGOPS Oper. Syst. Rev.,

vol. 51, no. 2, pp. 467-481, 2017.

S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high

availability framework for middleboxes,” in Proc. SoCC, 2013, p. 1.

J. Sherry et al., “Rollback-recovery for middleboxes,” SIGCOMM Com-

put. Commun. Rev., vol. 45, no. 4, pp. 227-240, 2015.

[10]

(1]

584

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
NSDI, 2017, pp. 97-112.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. NSDI, vol. 13, 2013, pp. 227-240.

S. Palkar et al., “E2: A framework for NFV applications,” in Proc.
SOSP, 2015, pp. 121-136.

A. Gember-Jacobson et. al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163-174, 2014.

S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. NSDI, 2018,
pp. 213-299.

P. Patel et al., “Ananta: Cloud scale load balancing,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 207-218, 2013.

R. Gandhi, Y. C. Hu, and M. Zhang, “Yoda: A highly available layer-7
load balancer,” in Proc. EuroSys, 2016, p. 21.

D. E. Eisenbud et al., “Maglev: A fast and reliable software network
load balancer,” in Proc. NSDI, 2016, pp. 523-535.

V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in Proc. NSDI, vol. 18, 2018, pp. 125-139.
R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching asics,” in
Proc. SIGCOMM, 2017, pp. 15-28.

R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 27-38, 2015.

AzureSpeed. (2018). Datacenter IP Range.
http://www.azurespeed.com/Information/IpRange
Juniper. (2018). SRX5400, SRX5600, and SRX5800 Services Gate-
ways. [Online]. Available: https://www.juniper.net/assets/us/en/local/pdf/
datasheets/1000254-en.pdf

P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” ACM SIG-
COMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350-361, Aug. 2011.
K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proc. I1st ACM Symp. Cloud Comput., 2010,
pp- 193-204.

F. B. Schneider,
state machine approach: A tutorial,
pp- 299-319, 1990.

L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-haul: Efficient state
migration in NFV,” in Proc. 7th ACM SIGOPS Asia—Pacific Workshop
Syst., 2016, p. 2.

J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for NFV: Simplifying middlebox modifi-
cations using statealyzr,” in Proc. NSDI, 2016, pp. 239-253.

X. Jin et al., “Dynamic scheduling of network updates,” ACM SIG-
COMM Comput. Commun. Rev., vol. 44, no. 4, pp. 539-550, 2014.

K. Tan, P. Wang, Z. Gan, and S. Moon, “Protego: Cloud-scale multi-
tenant ipsec gateway,” in Proc. ATC, 2017, pp. 473-485.

IBTA. (2017). InfiniBand Trade Association: Home. [Online]. Available:
http://www.infinibandta.org/ and http://www.infinibandta.org/

C. E. Hopps. RFC 2992: Analysis of an Equal-Cost
Multi-Path ~ Algorithm. Assedded: 2018. [Online]. Available:
https://tools.ietf.org/html/rfc2992

O. N. Fundation, “Openflow switch specification version 1.3.3,” Tech.

[Online]. Available:

“Implementing fault-tolerant services using the
” Comput. Surv., vol. 22, no. 4,

Rep., 2013.
Barefoot Networkss. (2017). Barefoot: World’s Fastest P4-
Programmable Ethernet Switch Asics. Accessed: Jul. 13, 2018.

[Online]. Available: https://barefootnetworks.com/products/brief-tofino/
XPliant. (2018). Xpliant Ethernet Switch Product Family. Accessed:
Jul. 19, 2018. [Online]. Available: https://www.cavium.com/xpliant-
ethernet-switch-product-family.html

S. Woo and K. Park, “Scalable TCP session monitoring with symmetric
receive-side scaling,” KAIST, Daejeon, South Korea, Tech. Rep., 2012.
S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy, “Soft-
NIC: A software NIC to augment hardware,” Tech. Rep. UCB/EECS-
2015-155, 2015.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in ramcloud,” in Proc. SOSP, 2011,
pp. 29-41.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. CoNext, 2014,
pp. 75-88.

[41]

[42]
[43]

[44]

[45]
[46]

[47]

(48]

[49]

(501

[51]

[52]

[53]

[54]

I. Notarnicola, M. Franceschelli, and G. Notarstefano. (2016).
“A duality-based approach for distributed min-max optimization.”
[Online]. Available: https://arxiv.org/abs/1611.09168

AppNeta. (2017). PKTgeen—PCAP Editing and Replaying Utilities.
[Online]. Available: http://tcpreplay.appneta.com/

N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. CoNext, 2015, p. 6.
T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” in Proc. Ist ACM Wsorkshop Res.
Enterprise Netw., 2009, pp. 65-72.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. IMC, 2010, pp. 267-280.
ipwithease. (2018). Firewall vs IPS vs IDS. [Online]. Available:
https://ipwithease.com/firewall-vs-ips-vs-ids/

H. Chen et al., “Efficient and available in-memory KV-store with hybrid
erasure coding and replication,” ACM Trans. Storage, vol. 13, no. 3,
p. 25, 2017.

A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G: The
controller placement problem,” in Proc. GLOBECOM, 2016, pp. 1-6.
D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-to-
end QoS based on multi-paths routing using SDN technology,” in Proc.
GLOBECOM, 2017, pp. 1-6.

T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” in
Proc. ICC, 2015, pp. 3879-3884.

M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in Proc. WCNC,
2014, pp. 2402-2407.

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, and
M. Namane, “Benchmarking the ONOS intent interfaces to ease 5G
service management,” in Proc. GLOBECOM, 2018.

R. A. Addad, T. Taleb, M. Bagaa, D. L. C. Dutra, and H. Flinck,
“Towards modeling cross-domain network slices for 5G,” in Proc.
GLOBECOM, 2018.

M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, “Efficient virtual
evolved packet core deployment across multiple cloud domains,” in Proc.
WCNC, 2018, pp. 1-6.

Menghao Zhang received the B.S. degree from the
Department of Computer Science, Tsinghua Uni-
versity, China, where he is currently pursuing the
Ph.D. degree with the Institute for Network Sci-
ence and Cyberspace. His research interests include
software-defined networking, network function vir-
tualization, and cyber security.

Jun Bi (S’98-A’99-M’00-SM’14) received the
B.S., C.S., and Ph.D. degrees from the Department
of Computer Science, Tsinghua University, Beijing,
China. He is currently a Changjiang Scholar Dis-
tinguished Professor of Tsinghua University and
also the Director of the Network Architecture
Research Division, Institute for Network Sciences
and Cyberspace, Tsinghua University. He success-
fully led tens of research projects, published more
than 200 research papers and 20 Internet RFCs
or drafts, and owned 30 innovation patents. His

current research interests include Internet architecture, SDN/NFV, and network
security. He is a Distinguished Member of China Computer Federation.

Kai Gao received the B.S. and Ph.D. degrees from
the Department of Computer Science and Tech-
nology, Tsinghua University. His research interests
include software-defined networking and distributed
systems.

Yi Qiao received the B.S. degree from the
Department of Computer Science, Tsinghua Uni-
versity, China, where he is currently pursuing the
master’s degree with the Institute for Network
Science and Cyberspace. His research interests
include software-defined networking, network func-
tion virtualization, and cyber security.

Guanyu Li received the B.S. degree from the School
of Computer Science and Technology, Huazhong
University of Science and Technology, China. He is
currently pursuing the Ph.D. degree with the Insti-
tute for Network Science and Cyberspace, Tsinghua
University. His research focuses on software-defined
networking, network function virtualization, and
cyber security.

ZHANG et al.: TRIPOD: TOWARDS A SCALABLE, EFFICIENT AND RESILIENT CLOUD GATEWAY 585

Xiao Kong is currently pursing the master’s
degree with the Institute of Network Science and
Cyberspace, Tsinghua University, and the bachelor’s
degree in computer science with Nankai Univer-
sity. His research focuses on software-defined net-
working, network function virtualization, and cyber
security.

Zhaogeng Li received the B.S. and Ph.D.
degrees from Tsinghua University. He is cur-
rently a Senior Engineer with Baidu Inc. His
main research interest includes datacenter network,
RDMA, information-centric network, and edge
computing.

Hongxin Hu (S’ 10-M’12) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, USA, in 2012. He is currently an
Assistant Professor with the Division of Computer
Science, School of Computing, Clemson University.
He has published more than 80-refereed technical
papers, many of which appeared in top conferences
and journals. His current research interests include
security in emerging networking technologies, secu-
rity in Internet of Things, security and privacy in
social networks, and security in cloud and mobile
computing. He was a recipient of the Best Paper Awards from ACM
CODASPY 2014 and ACM SIGCSE 2018, and the Best Paper Award
Honorable Mentions from IEEE ICNP 2015, ACM SACMAT 2016, and
ACM SACMAT 2011. His research has also been featured by the IEEE
Special Technical Community on Social Networking and received wide
press coverage, including ACM TechNews, InformationWeek, Slashdot, and
NetworkWorld.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

