
VEDRFOLNIR: RDMA Network Performance
Anomalies Diagnosis in Collective Communications
Yuxuan Chen1,2, Menghao Zhang1,2, Xiheng Li1, Fangzheng Jiao1, Xiao Li2, Jiaxun Huang1, Shicheng Wang2,

Chunming Hu1
1School of Software, Beihang University 2State Key Laboratory of Internet Architecture, Tsinghua University

Abstract—Collective communication has become increasingly
crucial as large language models rapidly evolve, leveraging
RDMA networks for inter-node connectivity to achieve high
throughput and low latency. However, RDMA inevitably face
Network Performance Anomalies (NPAs) due to mechanisms
like line-rate start and PFC flow control. Collective commu-
nication usually utilizes multiple flows simultaneously, which
puts new challenges for efficient diagnosis of NPAs. Existing
works fall short in analyzing co-flow patterns, which cannot
diagnose RDMA NPAs in collective communication accurately
and efficiently. To address this, we propose VEDRFOLNIR, an
accurate and efficient diagnosis system for RDMA NPAs in
collective communication. VEDRFOLNIR (1) constructs waiting
graphs through algorithm decomposition, (2) adaptively detects
anomalies while efficiently collecting diagnostic data, and (3)
precisely analyzes performance bottlenecks and identifies root
causes. We implement an open-source prototype of VEDRFOLNIR
and evaluation results show that VEDRFOLNIR can achieve
accurate diagnosis results with low overhead.

I. INTRODUCTION

With the rapid growth of large language models (LLMs),
collective communication has become an essential component
that determines the efficiency of data exchange and parallel
computation among GPUs. RDMA (Remote Direct Memory
Access), with its high bandwidth and low latency charac-
teristics, is widely used in data transmission for collective
communication. As data center network infrastructure evolves,
more clusters are transitioning from InfiniBand (IB) networks
to more versatile high-speed Ethernet, commonly using the
RDMA over Converged Ethernet version 2 (RoCEv2) protocol
[1] for data exchange [2]–[5], especially in areas like LLM
training [6]–[12]. For example, Meta’s 16,000-GPU cluster [6]
utilizes RoCEv2 for LLM training.

To ensure high performance, in RoCEv2, PFC (Priority
Flow Control) [13] is typically used to achieve a lossless
network, along with congestion control algorithms such as
DCQCN [14] and Swift [15] to manage flow control and
ensure transmission efficiency. Complex collective communi-
cation operations performed on this basis introduce additional
complexity for diagnosing performance anomalies. On one
hand, collective communication is dynamic during execution,
with data dependencies between flows and potential changes
in the flows across different stages. On the other hand,
RDMA mechanisms such as PFC flow control and line-rate
start make network congestion more frequent and complex.
As a result, collective communication is prone to encounter

various types of network anomalies (e.g., flow contention, PFC
backpressure), leading to degraded performance.

Existing research faces significant challenges in accu-
rately and efficiently diagnosing RDMA Network Performance
Anomalies (NPAs) in collective communication. Firstly, ex-
isting diagnostic approaches predominantly focus on single-
flow level analysis (e.g., Hawkeye [16], [17], SpiderMon [18],
Sonata [19], and *Flow [20]), neglecting complex communica-
tion paradigms such as collective communication. In contrast
to the static nature of single-flow communication, flows in
collective communication are dynamic and may evolve over
time, potentially having dependencies on other flows as the
communication progresses. For instance, in the Halving and
Doubling [21] algorithm, the destination of a flow can change
multiple times, and such changes depend on the data transmit-
ted by other flows. Current diagnostic methods fail to capture
these intricate dynamic behaviors and the provenance between
flows within the collective communication, rendering them
inadequate for accurately analyzing RDMA NPAs in collective
communication. Second, due to the involvement of numer-
ous nodes and flows in collective communication, achieving
accurate diagnosis with minimal overhead presents another
significant challenge. Existing approaches collect telemetry
data across all switches (e.g., NetSight [22] and PINT [23])
or at all time (e.g., Hawkeye [16], [17]). While ensuring
accuracy, these methods introduce substantial communication
and computational overhead, leading to potential performance
bottlenecks. Thus, minimizing the impact on network per-
formance while maintaining diagnostic accuracy remains a
critical issue that requires significant attention.

To address the above challenges, we propose VEDRFOL-
NIR, an accurate and efficient RDMA network performance
anomaly diagnosis system for collective communication. In
terms of data collection, VEDRFOLNIR monitors collective
communication performance information on the host side
and performs network tracing when performance anomalies
occur. For diagnostics, VEDRFOLNIR primarily utilizes the
waiting relationships between flows to construct a waiting
relationship graph for analyzing performance bottlenecks in
collective communication, and builds network provenance
graphs for root cause analysis and flow impact assessment.
VEDRFOLNIR is built with the following three key modules.
First, VEDRFOLNIR characterizes collective communication
performance by decomposing the communication algorithm
into steps and defining a waiting relationship graph (§III-B).



Second, VEDRFOLNIR employs a step-aware adaptive detec-
tion mechanism to reduce redundant data collection (§III-C).
Third, VEDRFOLNIR uses the collected data to construct
waiting and network provenance graphs for comprehensive
root cause analysis (§III-D). We implement a prototype on
NS3, which is open-source at GitHub [24]. Evaluations show
that VEDRFOLNIR can accurately diagnose collective commu-
nication NPAs while reducing overhead up to 90% compared
to Hawkeye or full polling. The additional CPU overhead
caused by VEDRFOLNIR is negligible.
Contributions. We analyze the complexity that collective
communication introduces to RDMA NPA diagnosis (§II)
and propose VEDRFOLNIR, an accurate and efficient RDMA
NPA diagnosis system for collective communication (§III). We
implement a prototype using NS-3 simulation and experimen-
tal results show that VEDRFOLNIR can accurately diagnose
performance issues while reducing substantial overhead (§IV).

II. BACKGOUND AND MOTIVATION

Collective communication adds significant complexity to the
diagnosis of NPAs, making existing work inadequate for effec-
tive diagnosis. VEDRFOLNIR focuses on diagnosing collective
communication performance anomalies resulted from RDMA
NPAs, and aims to answer the following key question: what
network performance anomaly is responsible for the degraded
collective communication?

A. Network Complexity of Collective Communication

The network complexity of collective communication pri-
marily consists of two main aspects:
Co-flow patten in collective communication. Collective com-
munication typically employs specific algorithms (e.g., Ring,
Halving and Doubling) to enhance communication efficiency
(Figure 1), thereby introducing additional complexity for net-
work anomaly diagnosis. First, unlike single-flow applications,
collective communication requires collaborative efforts from
multiple flows originating at multiple nodes. Second, collec-
tive communication changes dynamically during execution.
The specific flows involved differ across distinct algorithmic
phases. Third, there are data dependencies between flows. Host
B may receive the data transmitted by flow A before it can
start flow B to transmit the data to other nodes.
Complexity introduced by RDMA. Unlike traditional TCP
networks, RDMA possesses characteristics such as line-rate
start and PFC mechanisms that are more prone to cause
network congestion. First, in RoCEv2, RDMA relies on
PFC flow control to achieve a lossless network, which is
fundamental to its superior transmission performance. With
PFC, when a switch queue exceeds a certain threshold, it
sends a PAUSE frame to its upstream devices. After that, the
upstream device stops transmitting on the link until it receives
a RESUME frame. However, PFC has a back-pressure effect
when it encounters network congestion, cascading PAUSE
frames upstream and causing widespread network congestion.
Second, RDMA does not have a slow start process like TCP,
but instead sends at line rate initially, which makes network

Node 0 a1 b1 c1

Node 1 a2 b2 c2

Node 2 a3 b3 c3

Step 1

Step 2

(a)

0 1 2 3 4 5 6 7

Step 1

Step 2

Step 3

(b)

Fig. 1. Examples of collective communication algorithms. (a) Ring. (b)
Halving and Doubling.

F18

BF1
BF2

. . .
. . . F17

N12

N21

N23

SW28

SW29

SW32

SW33

N17

N18

N19

SW0 SW4

. . .

. . .
. . .

SW2

. . .

SW3 SW7

SW6

SW8

SW9

SW10

SW11

F15

Congestion

(a)

F13
F12

SW0

SW6SW2

SW3

SW8

SW7

SW11

SW1

SW9

SW10

SW4

SW5

N12

N13

N14

N15

N16

N17

N18

N19

F15
F14

F17
F16

F19
F18

PFC Pause

(b)

Fig. 2. Anomaly cases. (a) Flow contention. (b) PFC storm.

congestion more frequent and transient given the shallow
buffers of commercial RDMA switches.

B. NPAs in Collective Communication

Network performance anomalies are complex and diverse.
Figure 2 illustrates two fundamental types of anomalies: 1)
Flow contention. In large-scale clusters, many tasks share the
same infrastructure, making flow contention in the network
inevitable. Figure 2a shows an instance of collective communi-
cation using the Ring algorithm among 8 nodes (Nodes 12-19),
accompanied by two background flows (BF1 and BF2). Due to
path overlap, the background flows collide with the collective
communication flows, causing congestion at multiple switch
ports and degrading transmission performance. 2) PFC storms.
A PFC storm refers to the sustained injection of PFC frames,
often caused by hardware bugs, which triggers widespread
propagation of PFC and leads to network-wide performance
anomalies. Figure 2b displays the flows of an 8-node collective
communication. Persistent PFC injection occurs at a port
on Switch 0, causing Flow 12 to be halted across multiple
switches, severely impacting performance.

In real network environments, flow contention and PFC
propagation often occur in combination. Depending on their
different causes or characteristics, some studies [17], [18] have
also summarized the following other common anomalies: 1)
Load imbalance. Due to misjudgments in load balancing poli-
cies (e.g., ECMP), traffic from collective communication or
other flows may not be distributed ideally across the network
topology, leading to contention between different flows. 2)
Loops. Due to asynchrony among switches during network
reconfiguration, some switches may form a forwarding loop.
A flow may be forwarded from a switch port and, after



Switch ASIC

Switch CPU

Collector Agent

Telemetry Recorder

Monitor

Normal Flow
Anomaly Flow
Polling

Analyzer

Waiting Graph Construction

Network Provenance 

ReportAlgorithm Decomposition

Adaptive Anomaly Detection

Performance 
Recorder

Step-aware Limitations
Detection Agent

Collective Communication

Send 

Recv 

Steps
Metadata

Algorithm

Group…

Adaptive Triggering

Fig. 3. VEDRFOLNIR framework.

multiple hops, return to the same port. 3) PFC backpressure
by flow contention. PFC propagation caused by culprit flows
can even affect flows that do not share a forwarding path
with the culprits [14], [17], highlighting the particularity of
diagnosing PFC-related anomalies. 4) PFC deadlock. When
PFC propagation forms a cycle, all flows at the cyclic locations
are halted, resulting in a deadlock.

C. Existing Solutions Fall Short

Lack of analysis capability for co-flow patterns. Exist-
ing work [16]–[20], [25], [26] primarily focuses on single-
flow analysis and overlooks more complex paradigms such
as collective communication, leading to insufficient co-flow
analysis. Due to the complexity of collective communication,
an anomaly in one flow is likely to delay the start time
of another flow that depends on it. Therefore, diagnosing
collective communication performance must consider multi-
ple flows simultaneously and analyze them based on their
interrelationships. However, existing host-based approaches
[27]–[29] mainly focus on inferring anomalies in the net-
work, while switch-side methods [18]–[20], [25] primarily
use programmable switches to directly collect network data.
These approaches focus solely on the network, with analysis
conducted at the flow or packet level, without considering
potential relationships at the application level.
Telemetry collection incurs significant redundant over-
head. Some works [22], [23] collect telemetry information
from all switches, ensuring accuracy but introducing substan-
tial communication or analysis overhead. Other works [18],
[30], while analyzing queue contention on only a subset of
switches, fail to account for the PFC chaining propagation
characteristics in RDMA, resulting in inaccurate information.
Hawkeye [17] achieves single-flow-level accuracy and effi-
ciency by devising a PFC tracing method, but it still lacks
design considerations for collective communication. For ex-
ample, when Hawkeye is applied to collective communication
anomaly detection, its mechanically set anomaly detection
trigger mechanism can cause repeated triggers at multiple
communication nodes within a short period, collecting redun-
dant data and introducing significant overhead.
Lack of precise root cause diagnosis at the collective
communication level. Existing diagnostic approaches can be
categorized into three types: flow statistics-based [19], [20],

[25], [26], [29], [31], queue measurement-based [30], [32],
and provenance-based [16]–[18], [33]. First, methods based on
flow statistics and queue measurements contribute primarily
by statistical analysis of flows or queues, but they struggle
with precise anomaly localization (e.g., detecting switches
related to loops or PFC deadlocks). Second, provenance-
based methods address the aforementioned limitations, but still
fail to consider the complexities of collective communication
scenarios, unable to analyze the performance bottlenecks and
locate the root causes.

III. VEDRFOLNIR DESIGN

A. Overview

To diagnose collective communication performance anoma-
lies resulted from RDMA NPAs accurately and efficiently,
VEDRFOLNIR consists of the following key steps. 1) To
capture the dynamics of collective communication and the data
dependencies of flows, VEDRFOLNIR algorithmically decom-
poses collective communications at a per-step granularity and
constructs a directed graph to describe the entire collective
communication process using the waiting relationships of
flows (§III-B). 2) To ensure accuracy with low overhead,
VEDRFOLNIR employs a step-aware adaptive mechanism to
limit unnecessary detection triggers, and leverages coordinated
data collection through host monitoring and network telemetry
to efficiently and accurately support diagnostics of collective
communication (§III-C). 3) To enable effective root cause
analysis,VEDRFOLNIR constructs multi-level graphs for bot-
tleneck analysis and root cause localization, and evaluates the
primary contributing flows to flow contention (§III-D).

Figure 3 shows the overall architecture of VEDRFOLNIR.
First, the monitor (located on each host) pre-executes algo-
rithmic decomposition and monitors performance metrics of
the flows by steps during collective communication in real
time. These metrics are reported to the analyzer. Second,
when performance anomalies occur, VEDRFOLNIR adaptively
adjusts the trigger for anomaly detection in monitors. Monitors
send notification packets based on their wait relationships to
control the frequency of anomaly detection. During detec-
tion, the collective communication hosts initiate the process
by transmitting polling query packets. These packets trigger
the collection of telemetry data from all relevant switches
involved in the anomaly. The collected telemetry data is then
reported to the analyzer. Finally, the analyzer constructs both a
waiting graph and network provenance graphs. Through com-
prehensive analysis of these graphs, VEDRFOLNIR provides
structured diagnostic results.

B. Algorithm Decomposition and Graphical Description

Algorithm decomposition. VEDRFOLNIR decomposes the
algorithm into multiple steps, describing the distinct phases
of various flows in a collective communication. For a flow
originating from a particular node, the transmitted data chunk
or the destination address changes between each step. For
example, in Figure 1a demonstrating the Ring algorithm, the
data chunk transmitted by flow F0 (originating from node



All F 
end

All F
begin

F4S3
begin

F2S3
begin

F2S2
end

F2S2
begin

F2S1
end

F1S3
begin

F1S2
end

F1S2
begin

F1S1
end

F4S2
end

F4S2
begin

F4S1
end

F3S3
begin

F3S2
end

F3S2
begin

F3S1
end

Fig. 4. Waiting graph of a Ring reduce-scatter communication.

0) changes from chunk A to chunk C during the transition
from step 1 to step 2. Similarly, Figure 1b shows that in the
Halving and Doubling algorithm, the destination of flow F0
shifts from node 4 in step 1 to node 2 in step 2. When either of
these two transitions occurs, we say that F0 has gone through
a step. Other collective communication algorithms can also
be decomposed using a similar approach. The fundamental
idea is to break them down based on the data dependencies
between flows, where each step of a flow serves as a unit that
either waits for or is waited for by other flows. We do not
implement an automatic decomposition method applicable to
all collective communication algorithms; instead, the steps of
the collective communication algorithm need to be predefined
prior to execution.
Waiting graph definition. After the step splitting of the flows,
we construct a waiting graph to describe the collective com-
munication process. Taking the Ring reduce-scatter illustrated
in Figure 4 as an example, we define 1) vertices: the start
or end of each step of each flow. FiSj represents step j of
flow i. Specifically, the end of the final step for all flows
serves as the graph’s source, while the start of the first step
for all flows serves as the sink. 2) directed edges: indicating
waiting dependencies between vertices. For example, due to
data dependency, the start of F2S2 needs to wait for the end
of F1S1, which is represented by a blue edge; meanwhile, the
start of F2S2 needs to wait for the end of the previous step
F2S1, which is represented by an orange edge; the relationship
between the start and the end of step execution within F2S2
itself is represented by a dark edge. 3) weight: indicating
the waiting time. The weight of the light-colored (i.e., blue,
orange) edge is 0, and the weight of the dark edge is the
execution time of this step of the flow.

C. Logging Workflow

VEDRFOLNIR monitors collective communication perfor-
mance metrics on the host side (§III-C1). Upon detect-
ing performance anomalies, VEDRFOLNIR adaptively triggers
network telemetry (§III-C2) and retrieves network informa-
tion recorded in the switches (§III-C3), enabling subsequent
anomaly diagnosis.

1) Performance Monitoring: On the host side, VEDR-
FOLNIR monitors the waiting state and records performance
information.

TABLE I
WAITING STATE DETERMINATION

Index Comparison
(state) Meaning

Send Steps == Recv Steps
(waiting)

The next send step waits for the current
receive to complete.

Send Steps < Recv Steps
(non-waiting)

Do not wait for others, execute the next
send step as soon as current step is finished.

Waiting status awareness. As discussed in Section III-B,
VEDRFOLNIR decomposes the collective communication pro-
cess using the waiting relationships of flows. However, in
actual execution, the waiting relationship occurs selectively.
As shown in Figure 4, the start of F1S2 waits for both the end
of F1S1 and F4S1, but due to the sequence of the two events,
F1S2 actually waits for only one of them. To enable real-
time awareness of the waiting status, VEDRFOLNIR’s monitor
maintains two queues: a Send Step Queue (SSQ) and a Receive
Step Queue (RSQ). During the algorithm decomposition, the
flow originating from the current host is divided into multiple
steps. The target of each sending step is sequentially enqueued
into the SSQ. Correspondingly, the source of the required data
for each receiving step (i.e., the source of flow which the next
send step waits) is sequentially enqueued into the RSQ. By
tracking the index of the currently active step within these
queues, VEDRFOLNIR can determine the waiting status of each
flow (Table I).
Performance recording. To construct the waiting graph and
analyze performance bottlenecks in collective communication,
the monitor on each host collects performance metrics for
its local flows. Upon completion of each flow step, the host
reports its 5-tuple, data volume transferred, start time, end
time, and the source host of the flow it is waiting for.

2) Step-Aware Adaptive Anomaly Detection: To address
the issues of high redundant overhead and lack of multi-
flow analysis in previous work (e.g., Hawkeye [16], [17] and
SpiderMon [18]), VEDRFOLNIR primarily improves in two
aspects: 1) Step-aware detection trigger constraints. Under
ideal conditions, the execution time of a single step in a
collective communication flow is typically short (e.g., ap-
proximately 30 ms for transmitting 300 MB of data at 100
Gbps). However, our testing indicates that, in commonplace
flow contention, the communication flow execution time can
easily experience a two-fold or greater delay. Previous ap-
proaches lack temporal management for detection triggers,
repeatedly collecting telemetry within the same step and
thus generating substantial redundant overhead. Hence, step-
level detection granularity is more appropriate. 2) Adaptive
detection opportunity allocation. As defined by the waiting
graph (§III-B), the overall performance (i.e., total execution
time) of collective communication is determined by its critical
path, and the affected steps on this path tend to be prolonged.
It is appropriate to allocate more detection opportunities to the
affected steps based on their wait-for dependencies.

For detection triggering, VEDRFOLNIR primarily makes
decisions dynamically based on network topology and user



Flow duration Congestion
Detection

Hawkeye

Vedrfolnir

Fig. 5. Examples of detection triggers.

DST MAC Step EVENT ID VIC FLOW 5-TUPLE

L2 Header

ETH TYPESRC MAC

Reserved 
ETH TYPE

Remaining 
Detection Counts

Notification Packet Header Format

Fig. 6. Notification Packet Format.

Node 0 Node 1

Node 2Node 3

1

23

4

5

6

7

Flow Completion

Notification

Polling

F0

F1

F2

F3

Fig. 7. Example of the adaptive mechanism. The numbers represent the order
of events.

configurations, specifically including the following two as-
pects. First, host-side triggering based on RTT thresholds.
Unlike Hawkeye’s fixed RTT threshold settings, VEDRFOLNIR
recalculates RTT thresholds based on network topology before
each step initiation. This avoids inappropriate RTT settings
caused by changes in flow paths (e.g., the algorithm in Figure
1b) or failure to distinguish between different flows. When
the monitor detects that the RTT surpasses the threshold, an
anomaly detection is triggered. Second, triggering constraints.
As shown in Figure 5, to avoid redundancy, VEDRFOLNIR
uses configurable parameters to define the number of anomaly
detection triggers for each step of a collective communication
flow. Based on the estimated FCT (Flow Completion Time,
which can be calculated from the network topology or set
empirically), it sets a triggering time interval limit. This
ensures that triggering opportunities are evenly distributed,
thus ensuring coverage as comprehensively as possible.

For the adaptive mechanism, VEDRFOLNIR mainly achieves
adaptation by allowing monitors to observe the waiting states
of their respective flows. Specifically, when a certain step of
a flow is completed, its monitor sends a notification packet to
inform the monitor of the flow waiting for it (if any), trans-
ferring its remaining detection opportunities. The notification
packet contains detection count information (Figure 6) and
is assigned the highest priority to avoid being affected by
network congestion. An example is illustrated in Figure 7. F0
completes first, and node 0 transfers its detection opportunities
to host 3 by sending a notification packet. Subsequently, F3
completes, and the opportunities are further transferred to host
2. Before F2 completes, F1 finishes earlier. As a result, the
slowest host, host 2, obtains the most detection opportunities.
In this way, VEDRFOLNIR strives to collect telemetry data for

Flow Completion

Flow Beginning

Automatically Set 
Parameters

RTT Monitoring 

Last Polling Time 
Reset

Time interval < CurrentTime - LastPollingTime

Available Detection 
Counts

> 0

RTT Threshold Timeout

Detection 
Polling

Update

Set

IF Send Steps == Recv Steps

IF Send Steps < Recv Steps

Next Step

Send Notification 
Notification

Receive Notification 
NotificationAdd

- 1

Fig. 8. Algorithmic flow of one step.

the relatively slowest flow at each step, while theoretically
ensuring an upper bound on overhead.

VEDRFOLNIR implements the aforementioned design on the
host side through a detection agent, which is responsible for
the dynamic updating of various parameters, the sending and
receiving of notification packets, the judgment of triggering
conditions, and other functions. The specific algorithmic flow
is illustrated in Figure 8.

3) Telemetry Collection: On the network side, VEDRFOL-
NIR follows the same methodology as that of Hawkeye [16],
[17] for telemetry collection. Specifically, switches periodi-
cally record flow-level telemetry (e.g., flows’ 5-tuple, packet
count per flow, queue depth, etc.) and port-level telemetry
(e.g., traffic size between ports, number of packets paused by
PFC per port, etc.) while monitoring port PFC states. Upon
receiving a polling packet, the switch data plane propagates
it along both the flow paths and the PFC spreading paths.
Concurrently, the switch controller assists in data collection
and reports the telemetry information to the analyzer.

D. Comprehensive Root Cause Analysis

Considering the complex flow patterns of collective com-
munication, the root cause diagnosis of VEDRFOLNIR should
be able to answer the following questions: 1) Where are the
performance bottlenecks in collective communication? Which
specific anomalous flows are slowing down the collective
communication? 2) What is the underlying network root cause
of the performance anomaly? Which flows or switches are in-
volved? 3) If other flows are causing the decrease in collective
communication performance, how significant is the impact of
these flows on collective communication performance?

1) Graph Construction: VEDRFOLNIR constructs a waiting
graph to analyze the performance bottlenecks of collective
communication and identify critical flows. For each step of
the collective communication, it constructs provenance graphs
to locate network root causes and evaluate the impact of flows.
Waiting graph of collective communication. The definition
of the waiting graph is described in Section III-B. During
runtime, the analyzer queues the collected data entries in order
of their completion time and constructs the waiting graph
sequentially according to the queue order. Based on the real-
time collected data regarding waiting relationships and their
corresponding timestamps, the analyzer constructs correspond-
ing nodes and edges. For simplicity, upon determining that a



node is not being waited for (i.e., has an in-degree of zero), the
analyzer can recursively prune nodes with an in-degree of zero.
After constructing the complete waiting graph, the analyzer
calculates the critical path, which represents the performance
bottleneck of the collective communication.
Provenance graph of network. VEDRFOLNIR constructs
the provenance graphs based mainly on packet-level waiting
relationships between flows and ports. Previous works [16]–
[18] are unable to evaluate the contribution between flows
while performing PFC traceability. To support identifying
the primary contributing flows, VEDRFOLNIR redefines the
graph construction based on Hawkeye [16], [17]. The vertex
set V consists of F (flows), P (ports), and CF (collective
communication flows), where CF ∈ F and F ∪ P = V . The
directed edge set E describes waiting relationships between
vertex, which are categorized into the following three types:

(1) e(f, p): Describes the waiting relationship from a flow
to a port. Essentially, a flow waits on a port due to congestion
caused by contention among multiple flows at that port.
We use the queue depth encountered by the flow’s packets
while queued at the port as the edge weight. Suppose that
a packet pkt of flow fi enters the queue, and define the
number of packets of flow fj in front of it as xj(pkt).
Then, the waiting weight of flow fi for fj is defined as
w(fi, fj) =

∑
pkt∈fi

xj(pkt), and the weight of the flow for
the port is w(fi, p) =

∑
j ̸=i w(fi, fj).

(2) e(p, f): Describes the waiting relationship from a port
to a flow. We mainly use this type of edge to quantify the
contribution of the flow to port congestion. Similarly, we use
the number of packets contributed by the flow to the port
queue depth as the weight of the edge. Assuming that the
queue depth of port p is qdepth(p) and the number of packets
detected within a certain period is pkt num(p), the weight of
the port for the flow is calculated as w(p, fi) =

pkt num(fi)
pkt num(p) ×

qdepth(p).
(3) e(pi, pj): Describes the waiting relationship between

ports. We use this type of edge to capture PFC causal
relationships. When a PFC pause event occurs, an egress port
pj on a downstream switch may halt an egress port pi on an
upstream switch, establishing a waiting relationship from pi to
pj . Since the measure of the wait is based on the queue depth,
in this case, we consider pi to be waiting for all packets in
the pj queue. However, PFC backpressure can propagate along
multiple paths. In order to accurately evaluate the contribution
ratio of the path from pj to pi, we define the weight from pi
to pj as the traffic ratio w(pi, pj) =

∑
k

meter(pi,pj)
meter(pk,pj)

.
2) Anomaly Breakdown: Similar to Hawkeye [17] and

SpiderMon [18], VEDRFOLNIR diagnoses specific root causes
based on the signatures of different anomaly types. Similarly,
VEDRFOLNIR can extend the range of detectable anomaly
types by adding more signature definitions. Below, we provide
examples of diagnosing two anomaly types: (1) Flow con-
tention. VEDRFOLNIR identifies flow contention by checking
the port vertices in the network provenance graph. When
∃ p ∈ P, {fi, cf} ⊆ F ∧{e(fi, p), e(cf, p)} ⊆ E ∧ fi ̸= cf , it

is considered that fi contend with the collective communica-
tion flow cf at port p. (2) PFC backpressure. VEDRFOLNIR
identifies PFC backpressure by tracing the PFC spreading
path. This occurs when ∃ p ∈ P, cf ∈ F, e(cf, p) ∈ E ∧
∃ pj ∈ P, e(p, pj) ∈ E. Following the PFC spreading path.
VEDRFOLNIR can pinpoint the root cause location of the
PFC event. PFC storms typically also exhibits backpressure
phenomena and is identified analogously.

3) Contributor Rating: In scenarios where collective com-
munication contends with other flows, VEDRFOLNIR is capa-
ble of quantifying the contribution of these contending flows
to identify the main contributors. In this way, VEDRFOLNIR
can make recommendations on the priority of the actions of
the network operations personnel.
Evaluating contribution to a collective communication flow.
First, starting from all collective communication flows (CF ),
we obtain the largest connected subgraph of the network
provenance graph, then all flows f /∈ CF belong to the
evaluation object. For each flow, we calculate the contribution
of the flow to a vertex by traversing along the reverse direction
of directed edges (i.e., the direction of being waited for).
Suppose that the neighboring vertices of flow fi are p1 and
p2, where p2 is downstream of p1. Then the impact score of fi
is R(fi, p2) = w(p2, fi), R(fi, p1) = w(p1, fi) +R(fi, p2)×
w(p1, p2). Generally, the contribution of a flow to a port is:

R(fi, pj) = w(pj , fi) +R(fi, pk)× w(pj , pk),

e(pj , pk) ∈ E (1)

Given a collective communication flow cf , its neighboring
vertices set Pcf , and R(fi, pk) for any pk ∈ Pcf . Since cf
and fi may directly cause flow contention at port pk, in this
case, the impact of fi on cf is w(cf, fi) rather than w(pk, fi).
Therefore, the contribution of flow fi to cf is calculated as:

R(fi, cf) =
∑

pk∈Pcf

[(w(cf, fi)− w(pk, fi))

× I(e(fi, pk) ∈ E) +R(fi, pk)] (2)

where I(·) is the indicator function that determines whether fi
and cf contend at pk; w(cf, fi) can be derived via a replay
algorithm [17].
Evaluating contribution to collective communication. Since
the performance of collective communication is mainly de-
termined by the flow on the critical path in the waiting
graph, we obtain the impact score of flow fa to the overall
collective communication by weighting the sum of the critical
flow scores R(fa, cfi) at step i. Let the execution time of
step i be exec time(i) and the expected execution time be
expect time(i), the contribution of flow fa to the overall
collective communication is:

R(fa) =
∑
i

R(fa, cfi)

× exec time(i)− expect time(i)∑
k(exec time(k)− expect time(k))

(3)



Flow ContentionIncast
PFC Storm

Backpressure0
10
20
30
40
50
60
70
80
90

100
Pr

ec
isi

on
 (%

)

Vedrfolnir
Hawkeye-MinR
Hawkeye-MaxR
Full polling

(a) Precision v.s. baselines.
Flow ContentionIncast

PFC Storm
Backpressure0

10
20
30
40
50
60
70
80
90

100

Re
ca

ll 
(%

)

Vedrfolnir
Hawkeye-MinR
Hawkeye-MaxR
Full polling

(b) Recall v.s. baselines.

Fig. 9. Precision & recall v.s. baselines.

Flow ContentionIncast
PFC Storm

Backpressure0

50

100

150

200

250

By
te

s (
KB

)

Vedrfolnir
Hawkeye-MinR
Hawkeye-MaxR
Full polling

(a) Processing overhead.
Flow ContentionIncast

PFC Storm
Backpressure0

50

100

150

200

250

300
By

te
s (

KB
)

Vedrfolnir
Hawkeye-MinR
Hawkeye-MaxR
Full polling

(b) Bandwidth overhead.

Fig. 10. Overhead v.s. baselines.

where expect time(i) can be derived theoretically or empir-
ically. By scoring each flow, VEDRFOLNIR finds the main
contributors to flow contention.

IV. EVALUATION

The prototype of VEDRFOLNIR in NS-3 simulator is im-
plemented with about 1000 lines of additional C++ code
and the source code is publicly available at Github [24].
The VEDRFOLNIR prototype in real testbed is implemented
with about 500 lines of additional C++/Python codes based
on the system of our partner company. Through both large-
scale simulation and real testbed experiments, we evaluate
VEDRFOLNIR to answer the following questions: (1) Can
VEDRFOLNIR diagnose RDMA NPAs in collective communi-
cations accurately and efficiently (§IV-B)? (2) How effective
is design techniques in VEDRFOLNIR (§IV-C)? (3) How does
VEDRFOLNIR performance under real-world cases (§IV-D)?

A. Experimental Setup

Topology. We set up a standard Fat-Tree (K=4) topology with
20 switches on NS3. The link bandwidth is 100 Gbps and
the link delay is 2 us. Our real testbed experiments use four
H100s connected via RoCE NICs, each machine having a total
of 192 CPU cores and 50 GB of memory.
Workload. We simulate an empirical collective communica-
tion workload derived from an analysis of LLM training [34].
Specifically, 97% of collective communication operations are
AllReduce or AllGather, each with a data size of 360 MB per
traffic. For simplicity, we adopt 360 MB per flow in a similar
way and use the Ring algorithm for AllGather as the workload.
Anomaly construction. We construct four anomaly scenar-
ios for comprehensive testing. 1) Flow contention are
constructed by injecting flows into the existing workload.
We construct 60 cases, with the number of flows uniformly
distributed in 1-6, sizes randomly chosen in 20 MB-1 GB, and
start times randomly distributed in 0-200 ms. These flows are
placed randomly but deliberately set to collide with collective
communication flows. For diagnosis, we define detecting all

14 16 18 20 22
Time (s)

0

50

100

150

200

CP
U

 U
sa

ge
 (

%
)

Without monitor
Case 1
Case 2
Case 3

(a) CPU overhead.

14 16 18 20 22
Time (s)

0

100

200

300

400

500

M
em

or
y 

U
sa

ge
 (

M
iB

) Without monitor
Case 1
Case 2
Case 3

(b) Memory overhead.

Fig. 11. Overhead in real testbed.

injected flows as a true positive, detecting only some flows
as a false positive, and failing to detect any anomaly as a
false negative. 2) Incast includes 60 cases in a similar
way to flow contention. Specifically, the number of flows
changes to 3-8, with random positions but multiple flows
targeting the same node. Flow sizes are randomly selected in
20-200M, and all flows start simultaneously. The diagnostic
criteria are the same as for flow contention. 3) PFC storm
is constructed by injecting continuous PFC frames. In 40 cases,
the injection point is selected from the switch ports along the
paths of 4 collective communication flows. The start time is
random in 0-150 ms, and the duration is random in 10-100
ms. For diagnosis, tracing to the source port where the PFC
occurred is defined as a true positive, merely reporting the
presence of PFC is defined as a false positive, and failing
to detect any anomaly is defined as a false negative. 4)
PFC Backpressure includes 60 cases. It is similar to PFC
storms. The unique feature is that the PFC does not originate
on the collective communication path but affects collective
communication through multi-hop propagation. We generat
PFC using incast traffic and design propagation paths partially
overlapping collective communication flows. The diagnostic
criteria are the same as for PFC storms.
Baseline systems. We compare VEDRFOLNIR with two base-
line systems. 1) Hawkeye [17]: A state-of-the-art RDMA NPA
diagnosis system that collects telemetry data from PFC-related
paths and diagnoses root causes. When anomaly detection,
Hawkeye sets a fixed RTT threshold for all flows, whereas the
RTTs of different flows in collective communication vary. For
accurate evaluation, we use Hawkeye-MaxR to denote setting
Hawkeye’s RTT threshold to 120% of the maximum RTT, and
Hawkeye-MinR to denote setting the RTT threshold to 120%
of the minimum RTT. 2) Full polling: Continuously collects
telemetry data from all switches in the network.

B. Diagnosis Effectiveness

Precision and recall. Our initial analysis focuses on the
precision and recall of different solutions. For each scenario,
we demonstrate the precision and recall with optimal param-
eters. The experimental results are presented in Figure 9a and
Figure 9b. VEDRFOLNIR demonstrates excellent precision and
recall across all scenarios. In flow contention, Hawkeye-MaxR
tends to easily overlook flows with small RTTs, resulting in
poor performance. Additionally, due to its detection-triggering



0
20
40
60
80

100
Pr

ec
isi

on
 (%

)

120% RTT 180% RTT 240% RTT0
20
40
60
80

100

Re
ca

ll 
(%

)

T = 1
T = 3

T = 5
T = 7

(a) Flow contention.

0
20
40
60
80

100

Pr
ec

isi
on

 (%
)

120% RTT 180% RTT 240% RTT0
20
40
60
80

100

Re
ca

ll 
(%

)

T = 1
T = 3

T = 5
T = 7

(b) Incast.

0
20
40
60
80

100

Pr
ec

isi
on

 (%
)

120% RTT 180% RTT 240% RTT0
20
40
60
80

100

Re
ca

ll 
(%

)

T = 1
T = 3

T = 5
T = 7

(c) PFC storm.

0
20
40
60
80

100

Pr
ec

isi
on

 (%
)

120% RTT 180% RTT 240% RTT0
20
40
60
80

100

Re
ca

ll 
(%

)

T = 1
T = 3

T = 5
T = 7

(d) PFC backpressure.

Fig. 12. Precision & recall over different RTT thresholds and detection counts.

Vedrfolnir RTT 10µs RTT 20µs RTT 30µs0

20

40

60

80

100

120

140

160

Pe
rc

en
ta

ge
 (%

)

Precison
Overhead

(a) Precision and overhead.

T = 1 T = 3 T = 5 T = 7 Unrestricted
Detection Count Settings

100

200

300

400

Av
er

ag
e 

Po
lli

ng
 T

im
es

45

115

184

252

416

(b) Number of polling triggers.

Fig. 13. Ablation studies of our methods.

design, Hawkeye is prone to collecting several pieces of
telemetry data within tens of microseconds, though only one of
them may actually be needed. In the source code of Hawkeye,
to avoid excessive processing overhead, only one piece of data
is retained every 50 microseconds, which can inadvertently
lead to valid data being discarded. As a result, it can be
observed that Hawkeye-MinR collects more redundant data
and performs even worse. VEDRFOLNIR does not have this
issue due to its restricted detection design.
Processing overhead. We utilize the size of telemetry packets
collected for diagnostic purposes to evaluate the processing
overhead of different approaches. Figure 10a shows the av-
erage processing overhead for all samples in each scenario.
VEDRFOLNIR demonstrates the lowest processing overhead
across all tested scenarios, with telemetry data volume con-
sistently maintained around 10KB, achieving 60%–98% sav-
ings compared to Hawkeye. Due to the low RTT threshold,
Hawkeye-MinR continuously triggers detection for flows with
long RTTs, resulting in high overhead. For the reason il-
lustrated in Figure 5, Hawkeye-MaxR also performs poorly.
However, Hawkeye-MaxR shows better performance in PFC
anomalies because Hawkeye measures RTT through ACKs for
each packet. When persistent PFC halts an entire flow, no
packets are sent, and thus no detection is triggered, leading
to lower overhead. In contrast, Full polling demonstrates the
upper bound of overhead by continuously triggering detection
during collective communication.
Bandwidth overhead. We measure the additional bandwidth
overhead introduced by different methods during monitor-
ing. The bandwidth overhead here includes polling during
detection, notification packets, and switch telemetry reports.
As illustrated in Figure 10b, VEDRFOLNIR still achieves
the lowest bandwidth overhead across all scenarios. Com-
pared to processing overhead, the bandwidth overhead of
VEDRFOLNIR and Hawkeye is higher. However, Hawkeye’s

overhead increases more noticeably due to repeated anomaly
detection. Full polling simulates the scenario where switches
continuously and autonomously report telemetry data, and thus
excluding detection overhead.
Real testbed evaluation. Compared to Hawkeye, VEDRFOL-
NIR introduces an additional host-side monitor, which incurs
extra CPU overhead during collective communications. We
conduct real testbed experiments using NCCL, executing a
4-node AllGather operation with 1 GB transmission volume.
Performance collection, notification packet transmission, and
data reporting are triggered during the corresponding phases.
Figure 11 illustrates the computational and memory overhead.
When comparing three test cases with scenarios without the
monitor, the additional CPU and memory overhead is practi-
cally negligible.

C. Ablation Study

Step-aware mechanism. We validate the effectiveness of the
step-aware mechanism from two aspects: 1) Step-grained RTT
thresholds settings. In collective communication, RTT varies
not only across different flows but may also change across
different steps. Figure 13a presents the precision and overhead
of VEDRFOLNIR under different fixed RTT thresholds. The
experiment is conducted in the flow contention scenario,
limiting the number of detections per step to a maximum of 3.
2) Detection triggering count allocation. We evaluate different
settings for the number of detections to observe the polling
frequency. Figure 13b shows the average results under different
configurations in the flow contention scenario. Compared
to unrestricted triggering similar to Hawkeye, VEDRFOLNIR
achieve significant gains in overhead reduction.
RTT threshold and detection counts. We evaluate two
important detection parameters in VEDRFOLNIR: the RTT
threshold and the number of detections per step. Figure 12
shows the precision and recall of VEDRFOLNIR for each
scenario under different parameter settings. Theoretically, a
larger RTT threshold results in slower detection responses after
an anomaly occurs. This is evident in flow contention and
PFC backpressure, where performance is poorer at 240% RTT.
Increasing the detection count improves accuracy, as clearly
demonstrated in the PFC backpressure experiments at 120%
RTT. Note that precision is relatively poor when the detection
count is set to 1. This occurs because, unlike PFC storms, PFC
backpressure is not continuous but triggered intermittently,
which may cause VEDRFOLNIR ’s detection to occur precisely
during the recovery intervals of PFC. As a result, only some



50msOther Delayed
Flows

Waiting Graph 
After Pruning

F17S2
end

F17S1
end

F17S3
end

F17S4
end

35ms 70ms 38ms

F18S3
begin

F18S3
end

F18S4
end

F18S4
end35ms

Critical Path

(a)

BF1

SW6.
P2

SW3.
P2

SW2.
P3

F17

F18
1042 8110

193459

99060 97321

208225

29
13388
0

0
85406

1

�(�, �)
�(�, �)
�(��, ��)

(b)

Fig. 14. Case study. (a) Waiting graph. (b) Network provenance example.

switches along the PFC backpressure path are traced, and the
root cause is not identified. This issue can be resolved by
increasing the number of detections.

D. Case Study

In the topology shown in Figure 2a, a collective commu-
nication running the Ring algorithm is executed with each
step involving 360M flow size, and the two interference flows
(BF1 and BF2) depicted in the figure are injected. BF1 is
approximately 90M in size, and BF2 is approximately 450M
in size. Figure 14a shows the diagnostic results of the waiting
graph, where nodes with an in-degree of 0 (i.e., nodes that are
not waited for by any other) are removed. The graph visually
reveals the dependency relationships among flows during ex-
ecution, facilitating the analysis of latency and critical paths.
In this example, F17 is identified as the key factor slowing
down the entire collective communication. Figure 14b is one
of the provenance graphs, providing further analysis of F17.
It can be observed that F17 collides with BF1 at Switch 6
Port 2, which triggers PFC, causing Switch 2 Port 3 to be
halted and further impacting F17. Our rating design assigns
higher scores to flows that have a greater impact. In Figure
14b, BF2 scores 248,489 for F17 and 8,110 for F18. For the
collective communication in this example, BF1 scores 698 and
BF2 scores 104,095. Details are available on GitHub [24].

V. DISCUSSION

Non-network root cause diagnosis. Beyond network perfor-
mance anomalies, collective communication anomalies may
stem from other sources such as slow computation. VEDR-
FOLNIR provides a novel perspective for diagnosing network
performance anomalies and can seamlessly integrate with
host-based diagnostic systems to achieve comprehensive root
cause diagnosis. We leave a full integration of these two
methdologies as our future work.
Extensibility to anomaly types. Our current evaluations cover
four anomaly types, yet VEDRFOLNIR enables straightforward
incorporation of additional types based on their distinctive sig-
natures. Although VEDRFOLNIR’s adaptive mechanism may
be ineffective for anomalies such as PFC deadlocks (which
stall multiple collective flows), its flexibility allows simple
fixes, e.g., immediately triggering an investigation when a flow
remains stalled for an extended period.
Extensibility of algorithm decomposition. VEDRFOLNIR
primarily characterizes execution flows through an algorithm’s
wait-dependency relationships. Given that synchronization is

fundamental to most collective communications, VEDRFOL-
NIR applies broadly across nearly all collective algorithms.
Applicability in large-scale scenarios. The computational
and storage complexity of the waiting graph is O(NnS), where
Nn denotes the number of nodes in the set communication
and S represents the number of steps. The computational and
storage complexity of the provenance graph is O(NsT ), where
Ns denotes the number of relevant switches and T represents
the number of switch reports. In large-scale scenarios, the cen-
tralized analyzer may become a bottleneck, requiring further
design to address storage demands.

VI. RELATED WORK

RDMA performance anomalies. Hostping [35] detects per-
formance anomalies in different PCIe and NVLink pathways
within the machine by performing internal loopback tests.
R-Pingmesh [36], through full mesh connectivity testing, di-
agnoses performance anomalies between machines. However,
most performance anomalies are derived from internal ma-
chine issues or misconfigurations, and they do not address the
impact of complex traffic patterns in the network.
Model training performance anomalies. Holmes [37] and
Aegis [38] detect anomalous nodes in the training cluster
by analyzing the patterns of collective communication calls.
The goal of this detection is to identify problematic nodes
or links, considering both computational and communication
performance. However, there is no in-depth analysis of the
root causes of network performance anomalies.
Root cause diagnosis. Both Hawkeye [17] and SpiderMon
[18] can perform root cause localization based on different
anomaly types. However, when evaluating contributions, Spi-
derMon treats all detected flows equally and cannot evaluate
the contribution of individual flows. Hawkeye traces root
causes via PFC causality but fails to quantify the impact of
contributions under collective communications.

VII. CONCLUSION

The co-flow pattern of collective communications introduces
new complexities for RDMA NPA diagnosis. We present
VEDRFOLNIR, an accurate and efficient anomaly diagnosis
system for RDMA NPAs in collective communications. It
employs algorithm decomposition to characterize collective
communication processes, step-aware adaptive detection to
minimize redundant overhead, and comprehensive diagnosis
to identify the root causes. Evaluation demonstrates that VE-
DRFOLNIR accurately generates diagnostic results with low
overhead. The authors have provided public access to their
code and data at https://github.com/Networked-System-and-
Security-Group/Vedrfolnir.

ACKNOWLEDGMENTS

We thank the anonymous INFOCOM reviewers for their
valuable comments. This work is supported in part by the Na-
tional Natural Science Foundation of China (No. 62402025),
the Open Research Fund of State Key Laboratory of Internet
Architecture (HLW2025ZD01) and the Huawei-BUAA Joint
Lab. Menghao Zhang is the corresponding author.



REFERENCES

[1] InfiniBand Trade Association, “InfiniBand Architecture Specification
Release 1.4 Annex A17: RoCEv2,” 2020.

[2] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan, F. Feng, Y. Zhuang, F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu,
Z. Cao, C. Tian, J. Wu, J. Zhu, H. Wang, D. Cai, and J. Wu, “When
cloud storage meets RDMA,” in NSDI 2021, 2021, pp. 519–533.

[3] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye et al., “Rdma over commodity
ethernet at scale,” in ACM SIGCOMM 2016, 2016, p. 202–215.

[4] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl et al.,
“Empowering azure storage with RDMA,” in NSDI 23, pp. 49–67.

[5] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,
S. Clark, M. M. K. Martin, M. McLaren, P. Chandra, R. Cauble, H. M. G.
Wassel, B. Montazeri, S. L. Sabato, J. Scherpelz, and A. Vahdat, “1rma:
Re-envisioning remote memory access for multi-tenant datacenters,” in
SIGCOMM 2020, 2020, p. 708–721.

[6] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang et al., “Rdma over ethernet
for distributed training at meta scale,” in ACM SIGCOMM 2024, 2024,
pp. 57–70.

[7] J. Cao, Y. Guan, K. Qian, J. Gao, W. Xiao, J. Dong, B. Fu, D. Cai,
and E. Zhai, “Crux: Gpu-efficient communication scheduling for deep
learning training,” in ACM SIGCOMM 2024, 2024, p. 1–15.

[8] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified
architecture for accelerating distributed DNN training in heterogeneous
GPU/CPU clusters,” in OSDI 20, 2020, pp. 463–479.

[9] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng, X. Li,
C. Xie, S. Nong, Y. Jia, S. He, H. Chen, Z. Bai, Q. Hou, S. Yan, D. Zhou,
Y. Sheng, Z. Jiang, H. Xu, H. Wei, Z. Zhang, P. Nie, L. Zou, S. Zhao,
L. Xiang, Z. Liu, Z. Li, X. Jia, J. Ye, X. Jin, and X. Liu, “MegaScale:
Scaling large language model training to more than 10,000 GPUs,” in
NSDI 2024, 2024, pp. 745–760.

[10] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudigere,
Y. Zhang, and A. Kewitsch, “TopoOpt: Co-optimizing network topology
and parallelization strategy for distributed training jobs,” in NSDI 23,
2023, pp. 739–767.

[11] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou, “Fast
distributed deep learning over rdma,” in EuroSys 2019, 2019.

[12] K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao, C. Wang, P. Wang, P. Zhang, X. Zeng, E. Ruan, Z. Yao, E. Zhai,
and D. Cai, “Alibaba hpn: A data center network for large language
model training,” in ACM SIGCOMM 2024, 2024, p. 691–706.

[13] IEEE, “IEEE 802.1 Qbb - Priority-based Flow Control,” https://1.
ieee802.org/dcb/802-1qbb/, 2011.

[14] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in ACM SIGCOMM 2015, 2015.

[15] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay is
simple and effective for congestion control in the datacenter,” in ACM
SIGCOMM 2020, 2020, pp. 514–528.

[16] X. Li, S. Wang, M. Zhang, Z. Wang, M. Xu, and J. Yang, “Poster:
Rdma network performance anomalies diagnosis with hawkeye,” in ACM
SIGCOMM 2024, 2024.

[17] S. Wang, M. Zhang, X. Li, Q. Peng, H. Yu, Z. Wang, X. Hu, J. Yang, and
X. Shi, “Hawkeye: Diagnosing rdma network performance anomalies
with pfc provenance,” in ACM SIGCOMM 2025, 2025.

[18] W. Wang, X. C. Wu, P. Tammana, A. Chen, and T. S. E. Ng, “Closed-
loop network performance monitoring and diagnosis with SpiderMon,”
in USENIX NSDI 2022, Apr. 2022.

[19] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network telemetry,” in
ACM SIGCOMM 2018, 2018.

[20] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow,” in USENIX ATC 2018, 2018.

[21] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, p. 49–66, Feb. 2005.

[22] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: using packet histories to
troubleshoot networks,” in USENIX NSDI 2014, 2014.

[23] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic in-band network telemetry,” in ACM SIG-
COMM 2020, 2020.

[24] Vedrfolnir, “Vedrfolnir: Rdma network performance anomalies
diagnosis in collective communication,” https://github.com/
Networked-System-and-Security-Group/Vedrfolnir, 2025.

[25] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better netflow for
data centers,” in USENIX NSDI 2016, 2016.

[26] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with switchpointer,” in USENIX NSDI 2018, 2018.

[27] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in ACM SOSR 2017, 2017.

[28] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in ACM SIGCOMM 2015, 2015.

[29] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in ACM SIGCOMM 2016, 2016.

[30] Y. Lei, L. Yu, V. Liu, and M. Xu, “Printqueue: performance diagnosis
via queue measurement in the data plane,” in ACM SIGCOMM 2022,
2022.

[31] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. Liu, J. Padhye, B. T. Loo,
and G. Outhred, “007: democratically finding the cause of packet drops,”
in USENIX NSDI 2018, 2018.

[32] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the data
plane,” in ACM CoNEXT 2019, 2019.

[33] Y. Wu, A. Chen, and L. T. X. Phan, “Zeno: diagnosing performance
prob- lems with temporal provenance,” in USENIX NSDI 2024, 2024.

[34] H. Liao, B. Liu, X. Chen, Z. Guo, C. Cheng, J. Wang, X. Chen,
P. Dong, R. Meng, W. Liu et al., “Ub-mesh: a hierarchically lo-
calized nd-fullmesh datacenter network architecture,” arXiv preprint
arXiv:2503.20377, 2025.

[35] K. Liu, Z. Jiang, J. Zhang, H. Wei, X. Zhong, L. Tan, T. Pan, and
T. Huang, “Hostping: Diagnosing intra-host network bottlenecks in
{RDMA} servers,” in USENIX NSDI 2023, 2023, pp. 15–29.

[36] K. Liu, Z. Jiang, J. Zhang, S. Guo, X. Zhang, Y. Bai, Y. Dong, F. Luo,
Z. Zhang, L. Wang, X. Shi, H. Xu, Y. Bai, D. Song, H. Wei, B. Li, Y. Pan,
T. Pan, and T. Huang, “R-pingmesh: A service-aware roce network
monitoring and diagnostic system,” in ACM SIGCOMM 2024, 2024,
p. 554–567.

[37] Z. Yao, M. C. Hu, Pengbo and, X. Jia et al., “Holmes: Localizing
irregularities in llm training with mega-scale gpu clusters,” in USENIX
NSDI 2025, 2025.

[38] J. Dong, K. Qian, P. Zhang et al., “Evolution of aegis: Fault diagnosis
for ai model training service in production,” in USENIX NSDI 2025,
2025.


