
Making Multi-String Pattern Matching Scalable and
Cost-Efficient with Programmable Switching ASICs

Shicheng Wang?, Menghao Zhang?◦, Guanyu Li?, Chang Liu?, Ying Liu?, Xuya Jia†, Mingwei Xu?◦
?Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University

◦Department of Computer Science and Technology, Tsinghua University †Huawei Technologies Co., Ltd

Abstract—Multi-string pattern matching is a crucial building
block for many network security applications, and thus of great
importance. Since every byte of a packet has to be inspected
by a large set of patterns, it often becomes a bottleneck of
these applications and dominates the performance of an entire
system. Many existing works have been devoted to alleviate
this performance bottleneck either by algorithm optimization
or hardware acceleration. However, neither one provides the
desired scalability and costs that keep pace with the drastic
increase of the network bandwidth and network traffic today.
In this paper, we present BOLT, a scalable and cost-efficient
multi-string pattern matching system leveraging the capability of
emerging programmable switches. BOLT combines the following
two techniques, a smart state encoding scheme to fit a large
number of strings into the limited memory on the programmable
switch, and a variable k-stride transition mechanism to increase
the throughput significantly with the same level of memory costs.
We implement a prototype of BOLT and make its source code
publicly available. Extensive evaluations demonstrate that BOLT
could provide orders of magnitude improvement in throughput
which is scalable with pattern sets and workloads, and could
also significantly decrease the number of entries and memory
requirement.

I. INTRODUCTION

Multi-string pattern matching serves as a fundamental build-
ing block for many network security applications, especially
network intrusion/prevention systems (NIDS/NIPS) [1], [2],
web application firewalls (WAF) [3], application identifica-
tion systems [4] and some network censorship/surveillance
systems [5], [6]. In these applications, multiple strings are
usually represented as the attack signatures (rules), which
are then used to inspect whether the payload of a packet
matches any of the predefined rules. Since every byte of the
packets has to be scanned by a large set of patterns, this often
becomes a bottleneck of these applications and dominates the
performance of an entire system [7], [8].

Existing works often alleviate this bottleneck with algorithm
optimization [9], [10], [11], [12], [13] or GPU/FPGA/NPU
acceleration [8], [14], [15], [16]. However, neither these
software-improved nor hardware-accelerated solutions provide
the desired scalability or costs that catch up with the drastic
increase of the network bandwidth and network traffic today.
Recently the network bandwidth at traffic aggregation points
in regional ISPs has already reached muti-100s of Gbps [17],
[18]. Many network device providers [19], [20] and stan-
dard organizations [21] are embracing the era of 400Gbps
bandwidth [20], [22]. These high network bandwidths require
that security applications’ ability to maintain network monitor

should also keep pace with such a traffic volume. However,
even when we fully exploit the potential of CPUs on servers, it
is impossible for a pattern matching engine to reach ∼10 Gbps
within a single server [11], [12]. While GPU/FPGA/NPU-
enhanced servers can reach a higher throughput (i.e., at most
100Gbps under state of the art [23]) with these hardwares’
inherent parallelism [24], [10], [13], there is still an impassable
throughput gap. Although we can scale up the pattern matching
capacity by adding more servers, doing so raises the capital
costs and the management complexity significantly [25], [26].

We observe that the emerging programmable switching
ASICs [27] in network community provide an unprecedented
opportunity to bridge this gap. One single programmable
switch could easily process multi-Tbps traffic at line rate,
which has several orders of magnitude higher throughput
than highly-optimized servers. Even for FPGA/GPU/NPU-
enhanced servers, there is still significant gap to match such
a throughput. Besides, these programmable switches allow
programmers to leverage domain-specific languages (e.g.,
P4 [28]) to use underlying hardware features (e.g., a pipeline
of user-defined match-action tables) directly, with the same
level of power consumption and capital costs with regular
switches [29]. These new characteristics of programmable
switches are particularly valuable for next-generation scalable
and cost-efficient multi-string pattern matching.

However, implementing multi-string pattern matching in
the programmable switch (i.e., Protocol Independent Switch
Architecture (PISA)) is non-trivial. First, current security
applications usually maintain a large set of rules (e.g., the
latest community ruleset of Snort has ∼4000 rules), while
the memory resource in the switch is pretty limited (50-
100MB [30]). Simply translating string pattern rules into a
Deterministic Finite Automaton (DFA) and then the corre-
sponding match-action entries, as PPS [31] does, will exhaust
precious resources in switches. Worse yet, a large number of
entries will inevitably increase the time to update the rule
set in switches, making the system less responsive. Second,
the computation model in programmable switches is quite
restricted compared with x86 CPUs. In particular, current
programmable switch cannot support iterations and loops,
which is a key component in the algorithms of the pattern
matching. This indicates that the depth of payload inspection
is limited in one pass of the pipeline. An intuitive method is
to increase the stride of the DFA transition [31], but it will
incur the explosion of entries.

To address these problems, we propose BOLT, a system for
matching multiple string patterns with programmable switches.
First, BOLT develops a fast and efficient state encoding
scheme, to fit a large number of rules into the limited memory
in the programmable switch. Second, BOLT proposes a vari-
able k-stride transition mechanism, to enlarge the throughput
significantly with acceptable entry number increase. We im-
plement a prototype of BOLT in Barefoot Tofino [29], and
make the source code publicly available here [32]1. Extensive
evaluations show BOLT could provide orders of magnitude
improvement in throughput which is scalable with pattern sets
and workloads, and it could also significantly decrease the
number of entries and memory requirement.

In summary, this paper makes the following contributions:

• We highlight the challenges that current multi-string pat-
tern matching faces in dealing with the soaring network
bandwidth today and identify the opportunities provided
by programmable switching ASCIs (§II).

• We propose BOLT, a scalable and cost-efficient multi-
string pattern matching system with programmable
switching ASICs (§III). We design a smart encoding
scheme and a variable k-stride transition mechanism to
overcome the restrictions posed by the memory resources
and the computational model of programmable switches
(§IV, §V).

• We implement an open-source prototype of BOLT, and
conduct extensive evaluations to show the advantages of
BOLT (§VII).

Finally, we make some discussions in §VIII, describe related
works in §IX and conclude this paper in §X.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background of multi-string
pattern matching, highlight the problems of the state of the
art in this field, and discuss the opportunities provided by the
programmable switching ASICs.

A. Multi-String Pattern Matching

Multi-string pattern matching is a well-known research area
that has been extensively studied during the past few decades.
It can be formally defined that, given a text string T = t1...tn,
and a pattern string set P , where every element Pi = p1...pm
means a predefined pattern string and each ti or pi belongs to
the alphabet Σ, the pattern matching algorithm should output
the set of all positions where Pi stands as a substring in T .
The Aho-Corasick (AC) algorithm is an efficient way [33]
for multi-string pattern matching. It builds a non-deterministic
finite automaton (NFA) by constructing goto transitions from a
trie resembling the pattern set, and failure transitions between
nodes sharing a common prefix. The AC algorithm runs in
O(n+m+z) time, where z is the count of matches. Because of
its efficiency, the AC algorithm becomes the de facto standard

1Due to the non-disclosure agreement with Barefoot, we re-implement a
BMv2 version and make it open-source.

for the pattern matching, and is widely used in many state-
of-the-art network security applications, such as Snort [1] and
Suricata [34].

B. Problems of Current Approaches

Since the pattern matching has to inspect every byte of a
packet across a set of patterns, it usually becomes a bottle-
neck of an entire network security application. Many works
have been devoted to alleviate this performance bottleneck
either by algorithm optimization or by hardware acceleration.
Software-based algorithm optimization techniques attempt to
either minimize the memory usage [35], [36], [37] or in-
crease the number of characters per transition [9], [10], [13],
achieving several times larger throughput. However, the packet
processing performance on software is intrinsically limited,
because CPUs on servers are not specialized for high-speed
packet processing. For example, even with highly-optimized
servers [12], it is still impossible for a pattern matching
engine to reach 20Gbps efficiently. Although we could achieve
higher throughput by deploying more servers, doing so would
increase the capital and operational costs drastically, which is
not symmetric to the rapid growth of network bandwidth and
network traffic nowadays.

Besides the solutions to optimize the pattern matching
algorithms on software, utilizing the dedicated hardware to
accelerate the pattern matching has also attracted great at-
tention. GPUs get popular for the pattern matching tasks
because of their high parallelism compared with CPUs. The
single instruction multiple threads (SIMT) architecture could
efficiently execute an algorithm in parallel, thus providing
the throughput up to ∼40Gbps [8], [38], [39]. FPGA-based
solutions also exploit the parallelism to accelerate multi-string
pattern matching and even regular expression matching [14],
[16], [40], achieving high throughput. However, it is still
impossible for these hardware alternatives to match the perfor-
mance or the costs of programmable switches. Worse yet, these
hardware alternatives are usually attached to servers through
PCIe, which makes it difficult to fully explore their potentials
because of the limited PCIe bandwidth.

To summarize, neither algorithm-optimized nor hardware-
accelerated solutions provide the desired throughput or capital
costs that can catch up the drastic increasing of network traffic
and network bandwidth. There is a high desire for a next-
generation high-throughput and cost-efficient pattern matching
engine.

C. Opportunities by Programmable Switches

Programmable switches are an emerging networking tech-
nology that provides hardware programmability without com-
promising performance. In programmable switching ASICs,
there are multiple ingress and egress pipelines, and each
of them has several ingress and egress ports. Incoming
packets will be sequentially processed by multiple stages
in the ingress and egress pipeline respectively. Each stage
is a packet processing unit, with its dedicated resources,
including match-action tables, registers and stateful ALUs.

Match-action tables match certain header fields or meta-
datas in ternary/priority, and perform customized actions,
e.g., modifying headers/metadatas, reading/writing registers.
Stateful ALUs support customized calculation based on head-
ers/metadatas/registers. Registers store states to support state-
ful packet processing. With the programmable switching
ASICs, operators can use domain-specific languages (e.g.,
P4 [28]) to customize the data plane logic. Then the source P4
code is compiled into binaries to be loaded into the switch,
and interactive APIs to be invoked by the control plane to
update the match-action tables and registers during runtime.

The programmable switching ASICs and P4 language make
it straightforward to implement a customized terabit packet
processing device, as long as the defined logic satisfies
the computational model and resource constraints of a pro-
grammable switch. Moreover, programmable switches have
the similar level of power consumption and capital costs as
traditional fixed-function switches, which enables orders of
magnitude cost reduction compared to commodity CPU or
other hardware alternatives (e.g., GPU, FPGA, NPU)2. These
unique characteristics provide unprecedented opportunities for
next-generation scalable and cost-efficient multi-string pattern
matching.

III. DESIGN OVERVIEW

In this section, we describe the expected scenario and the
workflow of BOLT in more detail.

A. Expected Scenario

BOLT focuses on accelerating the core function of many
network security applications, multi-string pattern matching.
It acts as a sub-system or a function instance of a network
security application, inspecting the payload in byte granularity,
and taking the corresponding action defined by the rule (e.g.,
alerting, passing, and dropping, etc.). The switch could be
deployed as a middlebox in the link, or as a dedicated
application analyzing the traffic like a bypass tap. Notably,
programmable switching ASICs will recirculate the packet
for deeper payload inspection, thus discarding the inspected
portion. So when deploying in-line, an additional buffer mech-
anism is required to avoid information loss [42], [43], and we
leave the integration of such works into BOLT as our future
work.

We assume the incoming packet consists of an Ethernet
header, an IP header, a UDP/TCP header and the payload to
inspect3. The packet payload can be encoded in any pattern
(ASCII, UTF-8 or binary data) and we adopt ASCII in our
paper, where the alphabet has 256 elements encoded in 1 byte.

B. Workflow

The workflow of BOLT is illustrated in Fig. 1. Opera-
tors first need to define a list of matching rules from the

2The cost-efficiency of packet processing on programmable switches has
been verified by numerous other recent works [41], [26], as a result, we do
not illurate more in this paper.

3In fact, we can take any layer header as payload.

Controller

PISA Switch

{“she”, “he”, “her”}Pattern Set

Match-Action Tables

String patterns

NFA

Src Char(s) DstState, Stride,
Output

S1 he S3, 2, she, he

S5 r S6, 1, her

……

S0 ** S0, 2, NIL

…

…

Var-Stride

Src Char DstState,
Output

S1 h S2, NIL

S5 r S6, her

……

S0 * S0, NIL

Encode & Arrange

Match
Action

SrcState Char(s)

S1 he SetState(S3), Stride(2), match(she, he)

……

S0 ** SetState(S0), Stride(2)

Fig. 1. BOLT overview and workflow.

signature database (e.g., Snort community rules [44]). Then
the controller extracts string patterns from the matching
rules, constructs an NFA for these patterns using the AC
algorithm [33], and translates the AC NFA into underlying
match-action table entries. Our key enabler here is a fast and
efficient state encoding scheme, which takes advantage of the
"don’t care" feature of TCAMs in the match-action table of
programmable switches (§IV). We also apply a variable k-
stride transition mechanism to enlarge the average transition
stride and the average throughput, with acceptable increasing
of entry number (§V).

With these efficient match-action tables, the data plane
conducts matching for every packet byte by byte in the
pipeline. If any predefined pattern is matched, the data plane
will carry out the corresponding action, such as dropping,
passing or alerting.

IV. PATTERN TABLE ENTRY TRANSITION

In this section, we analyze the shortcomings of existing
DFA-based entry generation methods, and give our observation
that the feature of match-action tables (i.e., ternary match and
entry priority) helps implement the AC NFA efficiently in
the programmable switch. We then elaborate our approach to
translate the AC NFA into match-action table entries below.

A. Problem Analysis

To achieve multi-string pattern matching on hardware, a
typical method [24], [31] is to (1) construct an NFA with the
AC algorithm; (2) convert the NFA into an equivalent DFA;
(3) translate each transition edge in the DFA into a single
entry in match-action tables. However, the NFA-equivalent
DFA is built by powerset construction [33], which has much
more transitions than its corresponding NFA. Fig. 2(a) shows
the NFA for matching {she, her, he} built by the AC algo-
rithm, where the solid lines denote goto transitions and the

si 1 2 3 4 5 6

f(si) 0 4 5 0 0 0

AC NFA

¬{s, h}
S0

S1

S2

s

S3

S4

h

e

S6

h

e r

S5

S0

S1

S2

s

S3

S4

h

e

S6

h

e r

S5

s

s

s

h

h
rs

h

h
s

h

s

AC Equivalent DFA

Failure transitions: Default transition:

S0S*
*

(a) AC NFA

si 1 2 3 4 5 6

f(si) 0 4 5 0 0 0

AC NFA

¬{s, h}
S0

S1

S2

s

S3

S4

h

e

S6

h

e r

S5

S0

S1

S2

s

S3

S4

h

e

S6

h

e r

S5

s

s

s

h

h
rs

h

h
s

h

s

AC Equivalent DFA

Failure transitions: Default transition:

S0S*
*

(b) AC DFA
Fig. 2. AC NFA and AC DFA.

dashed lines denote failure transitions (failure transitions to
s0 are omitted for clarity). Its corresponding DFA is shown
in Fig. 2(b), and we also omit the trivial transitions returning
to the root state s0. From Fig. 2, we can see that the DFA
has much more transition edges than the NFA, which requires
much more table entries in the data plane. Although we
can represent all the trivial transitions to s0 by setting a
default action, the increased non-trivial transitions (lines in
red) still account for a large amount of data plane memory.
While we have seen many existing works [24], [45], [46]
attempting to compress AC DFAs to save memory, it is still
hard for these compression algorithms to achieve an optimal
condition, which would inevitably lead to table entry increase
and resource efficiency degradation.

We observe that the unique features of match-action tables
in the programmable switch, including the ternary match
and the priority entry, provide us an unique opportunity to
directly translate the AC NFA into match-action table entries
efficiently. However, the matching logic of an NFA is hard
to be implemented in the matching semantic of match-action
tables, because it requires iterations and loops, which is quite
difficult to support in the data plane. To illustrate this, we
highlight the key difference between the DFA matching and
the NFA matching here: in the AC DFA matching, the current
state under a current input will move to the next state in a
deterministic manner, by following the transition edge in the
DFA. While in the AC NFA, under the current input, the next
state is not only determined by the goto transitions starting
from the current state, but also the failure transitions. The NFA
will examine the input multiple times along the path defined by
the failure transition. This feature of the NFA means that one
single goto transition could be potentially executed by multiple
states, as long as the source state for this goto transition exists
on the failure transition path. For example, for the DFA in
Fig. 2(b), when state s3 gets input r, it will deterministically
move to s6 according to the transition edges. But in the NFA,
as Fig. 2(a) shows, when state s3 gets input r, s3 itself has
no goto transition matching r, so the current state gets moved
to s5 along its failure transition, which has a goto transition

S0

S4

S2

S5

S3

S1 S6

¬{s, h}

S0
S1 S2

s S3

S4h S6

h e

r
S5

e

State S0 S1 S2 S3 S4 S5 S6

Ternary *** 011 110 000 11* 00* 10*

Exact 010 011 110 000 111 001 100

si 1 2 3 4 5 6

f(si) 0 4 5 0 0 0

Failure transitions:

Match

SrcState
(Ternary)

S2
(110)

S4
(11*)

S1
(011)

S5
(00*)

S0
(***)

S0
(***)

S0
(***)

Char(s) e e h r s h *

Action Set(DstState)
(Exact)

S3
(000)

S5
(001)

S2
(110)

S6
(100)

S1
(011)

S4
(111)

S0
(010)

① Failure
Transition Tree②

Shadow
Encode

③
Table

Entries

AC NFA

Fig. 3. BOLT state encoding and table entry generation procedure.

matching r and going to s6. Therefore, this input is consumed
by the goto transition of s5.

Based on this observation, if we can smartly encode the state
with ternary bits so that the entry for a specific state si could
not only match itself, but also the states who can move to
it along the failure transition (i.e., these states are shadowed
by si), we will only need to convert every goto transition
into an entry, reducing the number of entries drastically.
As discussed above, the encoding scheme should satisfy the
following properties:
• The ternary code of a state si should cover the exact

code of si and every state deferring to si by the failure
function.

• The ternary code of a state si must not cover the exact
code of the states not deferring to si by the failure
function.

• Any two distinct states should have different ternary
codes and exact codes.

B. State Encoding and Table Entry Generation

In this subsection, we elaborate our approach to encode the
states and to generate the table entries, as depicted in Fig. 3:
(1) construct a failure transition tree denoting the deferment
relationship defined by failure transitions. (2) encode the state
with a shadow encoding scheme, which assign each state a
ternary code in the match field and an exact code in the action
field. (3) assign different priority for each entry to achieve
complete semantics of the AC NFA. Details are illustrated
below.

First of all, we build a failure transition tree from the failure
transition table. The failure transition tree holds the property
that every node may move to its ancestors looking for goto
transitions to match an input character. As Fig. 3 shows, s2
has ancestors s4 and s0, because f(s2) = s4, and f(s4) = s0.
Obviously the root state s0 is the root of the failure transition
tree because every state will finally moves to s0 according
to the failure transition table, which is determined by the
construction process of failure transition [33].

Second, we encode each state with two codes, a ternary
code and an exact code, based on the failure transition tree.

Compressed DFA Table

Enlarging

S0
s h

¬{s, h}
S0

S1

*s

S4

*h

**
Action

Output

she, he

she, he

Match
SrcState S2 S2 S2 S2 S2 S2 S2

Char es eh er e* *s *h **

Action

DstState S1 S4 S6 S0 S1 S4 S0

Output she,
he

she,
he

she,
he,
her

she,
he

Entry PriorityHigh Low
Fig. 4. 2-stride DFA table for s2.

For each node, the ternary code should cover the exact
code of itself and also the descendant nodes in the failure
transition tree. To achieve this, we build our encoding scheme
on a classic shadow encoding [45] algorithm, which can
assign codes for each state in a specific failure transition tree
effectively. The shadow encoding algorithm was originally
proposed in the D2FA (Delay-input DFA) [47], which was
introduced to reduce the entry number of DFA. It removes
redundant transitions from the state p whose input character
and destination state are same to the transitions from q, making
this transition deferred to q to be executed. The output of this
algorithm assigns each state a binary exact code and a ternary
code, to make the exact state code of p will be matched by the
ternary code of q, achieving the "delay" matching. We find it
surprisingly satisfies the three properties we claimed in §IV-A.
By utilizing a Hufman coding style algorithm, the shadow
encoding algorithm provides a unique signature to distinguish
different states, while increases the state code width negligibly.

Finally, we convert each goto transition into a table entry.
We assign priorities for the entries in post-order of the failure
transition tree so that the transition entry priority of children
is higher than that of their parents, achieving the logic that
children will look up for matching along the failure transition
path iteratively. Taking Fig. 3 as an example, entries for s2 is
arranged in front of entries for s4, because s2 is the child of
s4. And we place the entries of s0 in the last, because s0 is
the parent of all the other states in the failure transition tree.
As we can see from Fig. 3, the entry number is equal to the
number of goto transitions in the NFA.

V. VARIABLE k-STRIDE TRANSITIONS

In this section, we first identify why the current works that
increase the stride size of transitions add significant memory
costs, and then illustrate our variable k-stride AC NFA method
and why it works correctly.

A. Strawman Methods

Increasing the stride of transitions to k would improve the
throughput by a factor of k. However, naively increasing the
stride size comes at significant memory costs. One common
method is to construct a k-stride DFA from the 1-stride
AC DFA using ternary matching to omit trivial transitions,
to achieve deterministic k characters consumed per match-
ing [31], [48]. Although this method can lower the base

of exponential increase of transition number4, unfortunately,
many redundant transitions are still introduced. Assuming
δk(si, str) = sj denotes a k-stride transition function from si
to sj by string str. For example, in Fig. 2(b), concatenating
δ1(s2, e) = s3 with the transition function of the successive
state, δ1(s3, r) = s6, can obtain a 2-stride transition function
for s2, δ2(s2, er) = s6. 1-stride trivial transitions for s2 (input
is ¬{e}) can be represented by a single one δ1(s2, ∗) = s0 to
concatenate with its successive state, as Fig. 4 shows. But this
method still has many redundancies to optimize. For example,
δ2(s3, sh) = s2 is redundant with δ2(s0, sh) = s2, because
s2 will move along the failure transition to s0 to look for the
next transition, in other word, s2 can be potentially shadowed
by s0 even in 2-stride transition. Such redundancy in k-stride
transition results in extra memory wastes. Worse yet, besides
the transition explosion, enlarging the stride will also lead
to state explosion. A k-stride transition path contains k − 1
intermediate states, and any combination of accepting states on
this transition path implies matching a unique combination of
patterns. For example, in Fig. 4, both input "e∗" (e¬{s, h, r})
and "∗∗" (¬{e}¬{s, h}) lead a transition from s2 to s0, but
state transition with input "e∗" will output matching for pattern
"she" and "he" while "∗∗" not. We need to allocate a new
state for every possible combination of accepting states in
the path [31], [45], causing the state explosion. Alicherry et
al. [24] propose a highly-optimized DFA which has variable
stride length, but it still has much memory usage resulted from
additional states, and the average stride is small because there
could be negative stride in some cases. Backwards packet
inspection is also difficult to be implemented in the switch
pipeline.

In addition to multi-stride DFAs, some works increase the
stride size for AC NFAs by only concatenating the goto
transitions, reducing the redundant transitions. Yun et al. [49]
propose a k-AC NFA constructing method, which consumes
exact k input characters on state transition in a memory-
efficient way. They solve the states explosion by decoupling
the state transition and output into two match-action tables to
achieve simultaneous matching. This requirement is infeasible
in current switching ASICs, because it needs two stages
to implement one complete state transition, leading to k/2
characters consumption per stage. Since the number of stages
is very limited in programmable switches, reducing the bytes
consumed by each stage will increase the recirculation times
in the pipeline and the bandwidth usage per packet, finally
degrading the throughput.

To summarize, currently, neither DFA-based methods nor
NFA-based methods are suitable in the model of pro-
grammable switches. In DFA-based methods, redundant tran-
sitions and new assistant states should be added [24], [45],
[31], whereas in NFA-based methods, this requires two tables
(i.e., two stages in programmable switch) to handle a single
transition [49]. Both methods lead to unnecessary resource

4Assuming an alphabet Σ, in a naive k-stride DFA, each state may have
conceptually |Σ|k transitions outgoing from it.

Match Action

Src Char(s) Dst Stride

S2 e S3 1

S4 e S5 1

S1 he S3 2

S5 r S6 1

S0 sh S2 2

S0 he S5 2

S0 *s S1 2

S0 *h S4 2

S0 ** S0 2

Match Action
Src Char(s) Dst Stride
S0 sh S2 2
S0 he S5 2
S0 ** S0 2

Match Action
Src Char(s) Dst Stride
S0 s* S1 1
S0 h* S4 1
S0 *s S1 2
S0 *h S4 2
S0 ** S0 2

variable
2-stride

transitions
from non-
root states

variable
2-stride

transitions
from the
root state

2-stride
transitions
from the
root state

self-
unlooping
transitions
from the
root state

Fig. 5. Variable 2-stride table.

waste for programmable switches.

B. Variable k-Stride Transitions

In this subsection, we propose a variable k-stride AC NFA,
to increase the average throughput, while ensuring space usage
increasing slowly.

The root drawback in previous approaches is (1) the redun-
dant transitions and (2) accepting state(s) in the intermediate
node(s) on a transition path. Our method constructs the vari-
able k-stride AC NFA whose failure transition is exactly the
same as the 1-stride AC NFA, which means that we could use
the shadow code from the original AC NFA directly. Therefore,
we can avoid redundant transitions by allowing states to
match the variable k-stride goto transitions from the ones
shadowing them, as we do in §IV. Besides, our methodology
in constructing the variable k-stride goto transition will stop
increasing the transition stride once encountering an accepting
state, to capture as many as possible k-stride transitions using
relatively fewer entries. Furthermore, for root state, we deploy
self-unlooping mechanism to unroll the self-loops, increasing
the average stride of transitions from root, while ensuring the
correctness of matching.

Constructing the variable k-stride goto transitions from
non-root states is intuitive but efficient. For example, to get
variable 2-stride goto transitions from s1, we concatenate the
1-stride transition δ1(s1, h) = s2 with the 1-stride transition
for the successive state s2, δ1(s2, e) = s3, to obtain a 2-
stride transition function δ2(s1, he) = s3. In this way, we
could compute the k-stride goto transitions iteratively from
(k − 1)-stride goto transitions. The left side in Fig. 5 shows
the variable 2-stride goto transition from the AC NFA in
Fig. 2(a). The entry stride for s2 is 1, because it encounters
s3, an accepting state within 1 stride. For any state si, we
stop increasing the stride size when encountering an accepting
state on k-stride transition. This can avoid extra states or
table entries to represent the combination of multiple accepting
states in the path, as we discussed above.

The root state s0 is special because when k characters are
processed at a time, the pattern in the pattern set could start
at any position within k block. If we directly expand the
transition stride size to 2 for s0 in the same way as other
non-root states, we can get the table entries for s0 as the
upper right part in Fig. 5 shows. However, this table could

S0

S1 S2

*s
S3

S4*h
e

S6

sh
e

r
S5**

he

he si 1 2 3 4 5 6

f(si) 0 4 5 0 0 0

Failure transitions:

Fig. 6. Variable 2-stride AC NFA.

not carry out the pattern matching correctly. For example, the
input xher could not get matched and the pattern her will
miss. Meiners et al. [45] propose self-loop unrolling mech-
anism to solve this problem in k-stride DFA by prepending
wildcard ∗ to the initial transition table entries, increasing the
stride of the transitions with a linear increasing of number
entries. However, this method does not increases the stride of
transitions evenly. As the lower right part in Fig. 5 shows, the
self-unlooping transitions for s0 provide the stride from 1 to k.
We address this by first constructing k-stride goto transitions
as other states, then deploying self-loop unrolling on them.

To conclude, our method goes as follows. We first increase
the stride of transitions to k for all the states (stopping transi-
tions at accepting states), by concatenating the goto transitions
in the AC NFA, as the upper right side shows in Fig. 5. Then
we unroll the self-loops in s0. We iteratively right-shift the
k-stride-transitions from the root state and prepend them with
wildcards (∗). This method increases the stride to k with only
additional O(k) growth of entry number, scaling linearly with
the stride k. The lower left side in Fig. 5 illustrates a 2-stride
self-loop unrolling table for s0. In these two steps, we get
all the variable k-stride goto transitions. In particular, Fig. 6
shows the final variable 2-AC NFA derived from Fig. 2(a).

C. Correctness Proof

In this subsection, we mainly explain why this variable k-
AC NFA has the same state set and failure transition table as
the original NFA, i.e., why the variable k-AC NFA executes
the pattern matching correctly.

Let string(s0, si) denote the the sequence of input charac-
ters that changes state from s0 to si in the AC NFA. Every
state si is uniquely labeled by the string string(s0, si) in the
AC NFA [50]. In variable k-AC NFA, since our variable k-
stride goto transition function is obtained by concatenating k
consecutive goto transition, so the sequence of input characters
transiting s0 to any state si is the same as in 1-stride AC NFA,
which is the label of the state si. Besides, we stop any state
transition stride increasing at accepting states, so the output
of every state remains unchanged. Therefore, this variable k-
goto transition will not introduce new state, we have exactly
the same state set as the 1-stride AC NFA. In 1-stride NFA,
the failure function f(si) = sj if and only if string(s0, sj)
is the longest suffix of string(s0, si) [33], [49]. In variable
k-AC NFA, the state and its label string(s0, si) is exactly
the same as the AC NFA, so the failure function of variable
k-AC NFA is exactly the same as the failure function in the
corresponding 1-stride AC NFA, i.e., the failure transition tree

and the code for each state in 1-stride AC NFA can be applied
without modification.

VI. IMPLEMENTATION

We implement a prototype of BOLT, including all data plane
and control plane features described above. The data plane
part is implemented in ∼1K lines of P4 code for the Barefoot
Tofino ASIC, while the control plane part is written in ∼2K
lines of Python code. Our code is publicly available here [32].

In the data plane, the match-action table takes the current
NFA state in the metadata and the next k bytes of the packet
payload as match fields. Its actions contain popping bytes of
specific length, changing the current NFA state, and flagging
the packet if some patterns get matched. All are implemented
with the built-in primitives of programmable switches. When
deploying these tables into the switch, we replicate them across
all the stages to increase the throughput, as PPS [31] does.

In the controller, the table entry generator module adopts
the existing library Pyahocoracisk [51] to construct the AC
NFA efficiently, and employ the state encoding (§IV) and the
variable k-stride transition (§V) to generate the final entries
for these tables. The generated table entries are installed into
the underlying switch with the interactive APIs provided by
the Tofino runtime.

The only parameter in BOLT is the stride k, which should
be predefined by operators in terms of the TCAM constraint
of their switches and the number of patterns.

VII. EVALUATION

Our evaluation mainly focuses on the following questions:
• How efficient is the entry generating method of BOLT in

saving memory?
• How effective is the variable k-stride transition optimiza-

tion that BOLT adopts?
• How about the performance and the scalability of BOLT?

A. Experimental Setup

We compile the data plane of BOLT with Barefoot Capilano
software suits [29] and deploy it on a 12-stage 6.4Tb/s
Barefoot Tofino switch. The controller of BOLT runs on a
Dell R730 server, equipped with Intel(R) Xeon(R) E5-2600
v4 CPUs (2.4 GHz, 2 NUMA, each with 6 physical cores and
12 logic cores), 15360K L3 cache, 64G RAM and one Intel
XL710 10GbE NIC to connect to the switch. The pattern sets
used in our experiments are constructed from the rulesets of
Snort 2.9.7.0 and Suricata 5.0 provided by ET-OPENr[52].
We identify and extract string patterns from the ruleset with
the keyword content.

B. Entry Generating Efficiency

To demonstrate the memory efficiency of our entry gener-
ating method, we implement three existing schemes discussed
in §IV and compare them with BOLT: AC DFA, AC DFA
with default actions, and CompactDFA [46] which compresses
AC DFA. For fair comparison, we choose k=1 here. We first
count the number of entries generated by BOLT and other three

500 1000 1500 2000 2500 3000
Number of patterns

103

104

105

106

107

Nu
m

be
r o

f e
nt

rie
s

DFA w/o default
DFA with default

CompactDFA
Bolt

(a) Snort 2.9.7.0

500 1000 1500 2000 2500 3000
Number of patterns

103

104

105

106

107

Nu
m

be
r o

f e
nt

rie
s

DFA w/o default
DFA with default

CompactDFA
Bolt

(b) Suricata 5.0.0

Fig. 7. Entry number on different pattern sets.

500 1000 1500 2000 2500 3000
Number of patterns

103

104

105

106

107

108

TC
AM

 R
eq

ui
re

m
en

t

DFA w/o default
DFA with default

CompactDFA
Bolt

(a) Snort 2.9.7.0

500 1000 1500 2000 2500 3000
Number of patterns

103

104

105

106

107

108

TC
AM

 R
eq

ui
re

m
en

t

DFA w/o default
DFA with default

CompactDFA
Bolt

(b) Suricata 5.0.0

Fig. 8. TCAM requirement on different pattern set.

methods under different numbers of patterns. As Fig. 7 shows,
compactDFA and BOLT always generate the least number of
entries, which is an order of magnitude lower than the AC DFA
with default actions, and two orders of magnitude lower than
the naive AC DFA. Note that Fig. 7 also indicates BOLT will
generate the same number of entries with compactDFA, but it
does not mean these two schemes occupy the same amount of
TCAM memory.

To demonstrate this, we also measure the size of TCAM
required by BOLT and other three methods for different
numbers of patterns, and results are shown in Fig. 8. As we can
see, BOLT only needs half TCAM of compactDFA, and this
is because the code width required for the BOLT to encode
DFA/NFA states is only half of compactDFA. In addition,
compared with the other two schemes based on the AC DFA,
BOLT just takes up a really small amount of TCAM. Both
experiments show BOLT is able to generate entries efficiently
and save precious TCAM memory resources.

C. Variable k-Stride Effectiveness

To evaluate the effectiveness of the variable k-stride tran-
sition mechanism in BOLT, we not only count the number of
generated entries, but also analyze and compute the average
number of characters (average stride) that each stage matches
with the Snort pattern set. As shown in Fig. 9(a) and Fig. 9(b),
although employing the strawman 5-stride method discussed in
§V-A directly increases the average stride to 5, it will introduce
several orders of magnitude more extra table entries, leading
to unacceptable memory waste. In contrast, only applying
self-unloop unrolling algorithm just bring very few new table
entries, but will increase the average stride greatly. Compared
with only-self-unloop method, our variable k-stride transitions
do not bring too many extra entries, but can further increase

500 1000 1500 2000 2500
Number of patterns

102

103

104

105

106

107

Nu
m

be
r o

f e
nt

rie
s

1-stride
only-self-unloop

strawman 5-stride
variable 5-stride

(a) Entry number of variable 5-stride
AC NFA

500 1000 1500 2000 2500
Number of patterns

 0

 1

 2

 3

 4

 5

 6

Av
er

ag
e

st
rid

e
pe

r m
at

ch

1-stride
only-self-unloop

strawman 5-stride
variable 5-stride

(b) Average stride of variable 5-stride
AC NFA

Fig. 9. Entry number and average stride.

IA

IB

EA

EB

Tx Tx’

Tr

T1

T1’

T2

T2’
Tout

(a) Simulation scenario

 500 1000 1500
Payload Length (Bytes)

 0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (G

bp
s)

B = 12
B = 36
B = 60
B = 84
B = 120

(b) Simulation throughput

Fig. 10. Throughput over traffic with different payload.

the average stride to close to 5 at the same time, which is
the theoretical maximum value for 5-stride based methods.
To summarize, the variable k-stride optimization in BOLT
achieves an excellent trade-off between memory usage and
throughput gain.

D. Performance and Scalability

To demonstrate the performance and the scalability of
BOLT, ideally we should measure the highest pattern matching
throughput that one Tofino switch [29] could provide, and how
this throughput scales to different pattern sets and traffic traces.
However, restricted by the capability of the traffic generator
in our lab, we cannot fully cover the bandwidth of the switch.
Therefore, we simulate the upper limit of throughput of BOLT,
under different pattern sets and workloads.

We assume BOLT can inspect B-byte payloads each time
the packet passes an ingress/egress pipeline, and B is the
product of the average stride for NFA matching tables and
the number of pipeline stages. To inspect more bytes in the
payload, BOLT recirculates the packet to pass the pipeline
again, leading to extra bandwidth occupation. Obviously, the
effective throughput of BOLT is affected by the times of
recirculation each packet requires. Assuming the packet header
is H bytes, and the payload is P bytes, we can obtain the
recirculation number for the packet, denoted as n, by the
inequality 2nB < P ≤ 2(n+1)B, and thus n = dP/2Be−1.
To recirculate packets in a switch, we set some ports in
loopback mode, where all packets will only be bounced into
the ingress pipeline (i.e., recirulation ports) [53]. Assuming
that a programmable switch provides Tm throughput, we set
Tr throughput for recirculation, and the remaining ports offer
Tx throughput for external traffic. Obviously, Tx + Tr = Tm.
Fig. 10(a) shows an illustration of recirculation for n = 2

times. Packets recirculating for the first and the second time
will compete for bandwidth of reciuculating ports. We observe
that egress B is the bottleneck in switch whose pipeline
throughput is the first to be exhausted. When egress B arrives
at the maximum throughput, we get Tr = T

′

x+T
′

1. At this time,
the pps (packets per second) of traffic is constant, but every
pass of ingress/egress pipeline will pop B bytes of payload,
so we derive:
pps(Tx) = Tx

H+P =
T

′
x

H+P−B = T1

H+P−2B =
T

′
1

H+P−3B =

T2

H+P−4B =
T

′
2

H+P−5B .
According to the equations above, we can calculate Tx, the

maximum throughput a switch can provide, with no packet
drop in internal pipelines. So, generally, when recirculating for
n (n ≥ 1) time(s), the following equations can be obtained:

pps(Tx) = Tx

H+P =
T

′
x

H+P−B = Ti

H+P−2iB

=
T

′
i

H+P−(2i+1)B (i = 1, 2, . . . , n− 1)

Tr = T
′

x + Σn−1
i=1 (T

′

i)

Tm = Tx + Tr

(1)

Solving the equations above, the upper bound of input
throughput with no packet loss is Tx = Tm

n+1−n2B/(H+P) (n =

d P
2B e−1). Fig. 10(b) shows the maximum effective throughput

of BOLT based on the equations above. For the Tofino switch
we employed, Thm is 6.4Tb/s and the number of stages is 12.
This simulation is reasonable, because once the P4 program is
compiled successfully into the switch pipeline, the switch is
guaranteed to run at terabit line rate with bounded memory
access time [28], [29], [31]. According to the this figure,
for larger payload and fewer bytes inspected per pass, BOLT
requires more recirculations, which would reduce performance
super-linearly. Even so, it can still provide ∼1000 Gbps
throughput in the case of medium-length payload and medium
transition stride.

We also apply different k, pattern sets and traffic traces to
demonstrate the performance and scalability of BOLT. The first
trace is composed of short UDP packets, with a header of 42
bytes and a randomly generated payload of 200 bytes. The
second one is a real trace collected from an enterprise sliced
evenly, consisting of HTTP packets with a header length of
54 bytes and an average payload length of 1000 bytes. The
effective throughput of BOLT over short packets is shown
in Fig. 11. BOLT can provide high throughput for short-
packet workloads, because they require only a few or even no
recirculations and waste negligible bandwidth. Fig. 12 displays
the effective throughput of BOLT over large packets. BOLT
provides poorer performance on large-packet workloads due
to more recirculations. In addition, increasing the stride k can
improve the effective throughput of BOLT significantly, and
BOLT scales well with pattern sets and the number of patterns.

We also conduct another experiment to explore how the
proportion of packets containing patterns influences the perfor-
mance. To do so, we modify the content of payload to contain
some patterns, with the payload remaining 200 bytes. Fig. 13
demonstrates BOLT can still keep a line-rate throughput when

 0 500 1000 1500 2000 2500 3000
Pattern number

 0
1000
2000
3000
4000
5000
6000
7000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(a) Snort 2.9.7.0

 0 500 1000 1500 2000 2500 3000
Pattern number

 0
1000
2000
3000
4000
5000
6000
7000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(b) Suricata 5.0.0

Fig. 11. Throughput over short-packet traffic.

 0 500 1000 1500 2000 2500 3000
Pattern number

 0

1000

2000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(a) Snort 2.9.7.0

 0 500 1000 1500 2000 2500 3000
Pattern number

 0

1000

2000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(b) Suricata 5.0.0

Fig. 12. Throughput over large-packet traffic.

injecting more pattern-contained packets.
In a word, BOLT can achieve high throughput performance

and scale well with different pattern sets and workloads.

VIII. DISCUSSION

Further optimizations. Our encoding-based method makes
the entries number equal to the edge number of the trie
composed of pattern set, which has much less edges than any
AC DFA. For further optimization on entries number, Liu et
al. [54] provide another entries compressing method based on
the redundancy where transitions share the same source state
and destination state, but only character differs. This method
works well for regular expression matching table compression,
but not so effective in mult-string pattern matching because
this kind of redundancy is sparse in string matching. Our
experiments shows that this method could reduces the entry
number by a few percent. Besides, we can also split a large
rule set into multiple smaller ones, as PPS does [31], which
is orthogonal to our work and left as future work.
Extensibility of BOLT. Although multi-string pattern match-
ing is devoted to security applications in this paper, it can
also be used in many other fields. For information retrieval and
text-editing applications, the pattern matching is used to locate
the occurrences of user-defined string (e.g., words, phrases)
in text, which also dominates the performance of the entire
system. BOLT can be leveraged to improve the throughput of
these applications as well.

IX. RELATED WORK

Besides the most relevant works discussed in the main text,
our work is also inspired by the following topics.
NIDS/NIPS acceleration. There are many works that at-
tempt to accelerate NIDS/NIPS with dedicated computation
hardware, such as FPGA, GPU, NPU and ASICs. Barker et

 0 20 40 60 80 100
Percent of Pattern Packet (%)

 0
1000
2000
3000
4000
5000
6000
7000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(a) Snort 2.9.7.0

 0 20 40 60 80 100
Percent of Pattern Packet (%)

 0
1000
2000
3000
4000
5000
6000
7000

Th
ro

ug
hp

ut
 (G

bp
s)

K = 10
K = 7
K = 5
K = 3
K = 1

(b) Suricata 5.0

Fig. 13. Throughput on traffic with different pattern-packet percentage.

al. [55] and Mitra et al. [56] leverage FPGAs to accelerate the
Snort NIDS. MIDeA [57] and Kargus [8] demonstrate that
a single GPU-enhanced servers can achieve a much higher
throughput. Liu et al. demonstrate NPU-enhanced servers can
also significantly enhance the throughput [58]. Tan et al.
propose a new ASIC design to accelerate NIDS [59]. However,
as we discussed in §II, none of them provides the scalability
or the costs that can compete with programmable switches.
Programmable switch. BOLT builds on the recent trends that
leverage programmable switches to accelerate various applica-
tions in networking [30], [60], [61], distributed systems [62],
[63] and security [64], [26], [65], [66], but focuses on a
different problem: multi-string pattern matching. To this end,
we also design various techniques to translate string patterns
into the match-action entries and increase the throughput with
acceptable memory costs.

X. CONCLUSION

In this paper, we highlight the challenges that current
multi-string pattern matching faces in dealing with the high-
speed large-volume network traffic today, and identify the
opportunities that programmable switches provide to resolve
such issues. To this end, we present BOLT, a scalable and cost-
efficient multi-string pattern matching system that overcomes
several constraints of the computational model and memory
resources of programmable switches. In particular, we design
a smart state encoding scheme to fit a large number of rules
into the limited memory on the programmable switch and a
variable k-stride transition mechanism to enlarge the through-
put significantly with acceptable memory costs. We implement
an open-source prototype of BOLT and conduct extensive
evaluations. These evaluations show that BOLT offers orders of
magnitude improvements in throughput, and scales well with
pattern set size/type and workload traffic.

ACKNOWLEDGMENT

We sincerely thank anonymous reviewers for their valuable
comments, and also would like to thank Yangyang Wang from
Tsinghua University, Hongxin Hu from Clemson University,
Guofei Gu from Texas A&M University, Ang Chen from
Rice University for joining some discussions of this paper.
This work is supported in part by the National Key R&D
Program of China (2017YFB0801701, 2018YFB1800405) and
the National Science Foundation of China (No. 61625203, No.
61772307, No. 61832013). Menghao Zhang and Ying Liu are
the corresponding authors.

REFERENCES

[1] M. Roesch and et al., “Snort: Lightweight intrusion detection for
networks.” in Lisa, vol. 99, no. 1, 1999, pp. 229–238.

[2] T. Z. Project, “Zeek,” https://zeek.org/, 2020.
[3] Trustwave, “Modsecurity,” https://modsecurity.org/, 2020.
[4] ntop, “nDPI,” https://www.ntop.org, 2020.
[5] Stanford, “How the great firewall works,” https://cs.stanford.edu/people/

eroberts/cs201/projects/international-freedom-of-info/china_2.html,
2020.

[6] E. F. Foundation, “How the nsa’s domestic spying program works,” https:
//www.eff.org/nsa-spying/how-it-works, 2020.

[7] S. Antonatos and et al., “Generating realistic workloads for network
intrusion detection systems,” in WOSP, 2004, pp. 207–215.

[8] M. A. Jamshed and et al., “Kargus: a highly-scalable software-based
intrusion detection system,” in CCS, 2012, pp. 317–328.

[9] L. Vespa and et al., “Ms-dfa: Multiple-stride pattern matching for
scalable deep packet inspection,” The Computer Journal, vol. 54, no. 2,
pp. 285–303, 2011.

[10] X. Wang and et al., “Kangaroo: Accelerating string matching by running
multiple collaborative finite state machines,” JSAC, vol. 32, no. 10, pp.
1784–1796, 2014.

[11] B. Choi and et al., “{DFC}: Accelerating string pattern matching for
network applications,” in NSDI, 2016, pp. 551–565.

[12] X. Wang and et al., “Hyperscan: a fast multi-pattern regex matcher for
modern cpus,” in NSDI, 2019, pp. 631–648.

[13] E. Sadredini and et al., “Impala: Algorithm/architecture co-design for
in-memory multi-stride pattern matching,” in HPCA. IEEE, 2020, pp.
86–98.

[14] C. R. Clark and et al., “Scalable pattern matching for high speed
networks,” in FCCM. IEEE, 2004, pp. 249–257.

[15] R. Sidhu and et al., “Fast regular expression matching using fpgas,” in
FCCM. IEEE, 2001, pp. 227–238.

[16] D. Sidler and et al., “Accelerating pattern matching queries in hybrid
cpu-fpga architectures,” in ACM MOD, 2017, pp. 403–415.

[17] H. Dreger and et al., “Operational experiences with high-volume network
intrusion detection,” in CCS, 2004, pp. 2–11.

[18] V. Stoffer and et al., “100g intrusion detection,” LBL, 2015.
[19] Cisco, “High capacity 400g data center network-

ing,” https://www.cisco.com/c/en/us/solutions/data-center/
high-capacity-400g-data-center-networking/index.html, 2020.

[20] NVIDA, “Nvidia mellanox bluefield-2 dpu,” https://www.mellanox.com/
files/doc-2020/pb-bluefield-smart-nic.pdf, 2020.

[21] “IEEE Standard for Ethernet - Amendment 10: Media access control
parameters, physical layers, and management parameters for 200 Gb/s
and 400 Gb/s operation,” IEEE Std 802.3bs-2017, pp. 1–372, 2017.

[22] Accton, “The new world of 400 gbps ethernet,” https://www.accton.com/
Technology-Brief/the-new-world-of-400-gbps-ethernet/, 2020.

[23] Z. Zhao and et al., “Achieving 100gbps intrusion prevention on a single
server,” in OSDI, 2020, pp. 1083–1100.

[24] M. Alicherry and et al., “High speed pattern matching for network
ids/ips,” in ICNP. IEEE, 2006, pp. 187–196.

[25] S. K. Fayaz and et al., “Bohatei: Flexible and elastic ddos defense,” in
USENIX Security, 2015, pp. 817–832.

[26] M. Zhang and et al., “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in NDSS, 2020.

[27] P. Bosshart and et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” ACM SIGCOMM Com-
puter Communication Review, vol. 43, no. 4, pp. 99–110, 2013.

[28] ——, “P4: Programming protocol-independent packet processors,” SIG-
COMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[29] B. Networks, “Tofino: World’s fastest p4-programmable ethernet switch
asics,” https://barefootnetworks.com/products/brief-tofino/, 2020.

[30] R. Miao and et al., “Silkroad: Making stateful layer-4 load balancing
fast and cheap using switching asics,” in SIGCOMM, 2017, pp. 15–28.

[31] T. Jepsen and et al., “Fast string searching on pisa,” in SOSR, 2019, pp.
21–28.

[32] S. Wang, “Bolt,” https://github.com/wangshicheng1225/BOLT, 2020.
[33] A. V. Aho and J. D. Ullman, The theory of parsing, translation, and

compiling. Prentice-Hall Englewood Cliffs, NJ, 1973, vol. 1.
[34] Open Information Security Foundation, “Suricata: Open Source IDS,”

https://suricata-ids.org/, 2020.

[35] N. Tuck and et al., “Deterministic memory-efficient string matching
algorithms for intrusion detection,” in IEEE INFOCOM, vol. 4. IEEE,
2004, pp. 2628–2639.

[36] M. Becchi and et al., “Memory-efficient regular expression search using
state merging,” in IEEE INFOCOM. IEEE, 2007, pp. 1064–1072.

[37] J. Yu and et al., “Memory efficient string matching algorithm for net-
work intrusion management system,” Tsinghua Science and Technology,
vol. 12, no. 5, pp. 585–593, 2007.

[38] N. Jacob and et al., “Offloading ids computation to the gpu,” in ACSAC,
2006, pp. 371–380.

[39] G. Vasiliadis and et al., “Parallelization and characterization of pattern
matching using gpus,” in IISWC. IEEE, 2011, pp. 216–225.

[40] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” in CoNEXT, 2007, pp. 1–12.

[41] Y. Tokusashi and et al., “The case for in-network computing on demand,”
in EuroSys, 2019, pp. 1–16.

[42] D. Kim and et al., “Tea: Enabling state-intensive network functions on
programmable switches,” in SIGCOMM, 2020, pp. 90–106.

[43] S. Goswami and et al., “Parking packet payload with p4,” arXiv preprint
arXiv:2006.05182, 2020.

[44] Cisco, “Snort,” https://www.snort.org/, 2020.
[45] C. R. Meiners and et al., “Fast regular expression matching using

small tcams for network intrusion detection and prevention systems,”
in USENIX Security, 2010, pp. 8–8.

[46] A. Bremler-Barr and et al., “CompactDFA: Generic state machine
compression for scalable pattern matching,” in INFOCOM. IEEE, 2010,
pp. 1–9.

[47] S. Kumar and et al., “Algorithms to accelerate multiple regular expres-
sions matching for deep packet inspection,” SIGCOMM CCR, vol. 36,
no. 4, pp. 339–350, 2006.

[48] C.-C. Chen and et al., “An efficient multicharacter transition string-
matching engine based on the aho-corasick algorithm,” TACO, vol. 10,
no. 4, pp. 1–22, 2013.

[49] S. Yun, “An efficient tcam-based implementation of multipattern match-
ing using covered state encoding,” IEEE Transactions on Computers,
vol. 61, no. 2, pp. 213–221, 2010.

[50] A. V. Aho and et al., “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975.

[51] W. MuÅĆa, “Pyahocorasick 1.4.0,” https://pypi.org/project/
pyahocorasick/, 2019.

[52] E. T. Rule, “Emerging threats open ruleset,” https://rules.
emergingthreats.net/OPEN_download_instructions.html, 2020.

[53] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang, “Accelerated service
chaining on a single switch asic,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, 2019, pp. 141–149.

[54] A. X. Liu and et al., “Tcam razor: A systematic approach towards
minimizing packet classifiers in tcams,” vol. 18, no. 2. IEEE, 2009,
pp. 490–500.

[55] Z. K. Baker and et al., “Time and area efficient pattern matching on
fpgas,” in FPGA, 2004, pp. 223–232.

[56] A. Mitra and et al., “Compiling pcre to fpga for accelerating snort ids,”
in ANCS, 2007, pp. 127–136.

[57] G. Vasiliadis and et al., “Midea: a multi-parallel intrusion detection
architecture,” in CCS, 2011, pp. 297–308.

[58] R.-T. Liu and et al., “A fast string-matching algorithm for network
processor-based intrusion detection system,” TECS, vol. 3, no. 3, pp.
614–633, 2004.

[59] L. Tan and et al., “A high throughput string matching architecture for
intrusion detection and prevention,” in ISCA. IEEE, 2005, pp. 112–122.

[60] S. Narayana and et al., “Language-directed hardware design for network
performance monitoring,” in SIGCOMM, 2017, pp. 85–98.

[61] A. Gupta and et al., “Sonata: query-driven streaming network telemetry,”
in SIGCOMM. ACM, 2018, pp. 357–371.

[62] X. Jin and et al., “Netcache: Balancing key-value stores with fast in-
network caching,” in SOSP, 2017, pp. 121–136.

[63] ——, “Netchain: Scale-free sub-rtt coordination,” in NSDI, 2018, pp.
35–49.

[64] R. e. a. Meier, “Nethide: Secure and practical network topology obfus-
cation,” in USENIX Security, 2018, pp. 693–709.

[65] Q. Kang and et al., “Programmable in-network security for context-
aware byod policies,” in USENIX Security, 2020.

[66] G. Li and et al., “NetHCF: Enabling line-rate and adaptive spoofed ip
traffic filtering,” in ICNP. IEEE, 2019, pp. 1–12.

