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Abstract—RDMA is a kernel-bypass and transport-offload
technology that provides high throughput and low delay for
datacenter networks, and DCQCN is the default and most widely
used congestion control algorithm in large-scale RDMA networks.
DCQCN involves over 10 parameters at RNICs and switches, and
their settings significantly affect network performance, currently
relying heavily on exhaustive manual tuning. Although some
automatic methods are proposed to tune a subset of DCQCN
parameters, none of them comprehensively address all param-
eters at both RNICs and switches, resulting in compromised
network performance. In this paper, we propose PARALEON,
an automatic and adaptive system to tune DCQCN parameters
comprehensively. We design a millisecond-level sketch-based
monitoring mechanism for accurate network-wide measurement,
which collects runtime metrics as feedback to guide the tuning
process. We also analyze the complicated parameter impacts
on network performance, and leverage an improved heuristic
searching algorithm for timely performance optimization with
better efficiency and convergence. We implement PARALEON and
conduct extensive experiments in both NS3 simulations and a
real-world testbed. The results show that PARALEON achieves
3.8% ∼ 61.4% higher performance than existing tuning schemes.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) empowers a net-
work client to directly access the memory of a remote server
without involving its CPU. By offloading I/O responsibili-
ties from CPU into RDMA-enabled network interface cards
(RNICs), RDMA bypasses the network stack and enables zero-
copy networking, achieving a significant enhancement in per-
flow throughput and packet-level latency. With the advent of
RDMA over Converged Ethernet Version 2 (RoCEv2) [1],
the performance benefit of RDMA has been brought to many
datacenter applications, such as large language model (LLM)
training [2]–[5], cloud storage [6], [7], Remote Procedure Call
(RPC) [8]–[10], and various distributed systems [11]–[15].

Generally, to maintain high transport performance, RDMA
requires a lossless fabric, so Priority Flow Control (PFC) [16]
is introduced to eliminate packet loss. Nonetheless, PFC can
cause several practical issues, such as head-of-line block-
ing, unfairness, PFC storm [17], security vulnerability [18],
therefore, congestion control (CC) is integrated to mitigate
these issues. Datacenter Quantized Congestion Notification
(DCQCN) [19], the default CC algorithm in NVIDIA RNICs,
stands as the predominant RoCEv2 CC algorithm embraced
by leading industry companies [2], [6], [7], [20]. DCQCN can
alleviate the network queue length before PFC is triggered,
thereby reducing PFC occurrences.

DCQCN involves 10+ parameters at RNICs and switches
[21], and different network environments require distinct DC-
QCN parameter settings to achieve superior network perfor-
mance. Firstly, the underlying network devices and topology
exhibit heterogeneity across different RDMA clusters, neces-
sitating different DCQCN parameters to align with specific
network capacity and topology. Secondly, and perhaps more
crucially, in RDMA clouds [7], [22], [23], different RDMA
clusters are characterized by heterogeneous workloads, de-
manding distinct DCQCN parameters to satisfy their Service
Level Agreements (SLAs). Even within the same cluster,
diverse traffic patterns coexist and undergo frequent shifts tem-
porally, and they can be launched spatially at any nodes across
network, requiring timely adjustment for DCQCN parameters
to adapt to traffic dynamics.

Current DCQCN parameter setting highly relies on man-
ual efforts of experts [24], [25], which not only imposes a
significant burden on experts, but also can hardly keep pace
with increasing traffic dynamics. To alleviate these problems,
researchers have proposed several automatic methods to tune
a subset of DCQCN parameters. ACC [25] uses multi-agent
reinforcement learning techniques to tune ECN thresholds at
switches. DCQCN+ [26] adjusts rate increase steps and timers
at RNICs according to runtime incast scale. Nevertheless,
these existing methods fail to consider all DCQCN parameters,
leading to compromised network performance.

However, developing an automatic and adaptive system
to tune DCQCN parameters comprehensively is non-trivial
and encounters two key challenges. The first challenge is
to maintain timely awareness of the entire dynamic RDMA
network, including runtime network metrics and traffic pat-
terns. We need a runtime monitor to perceive network-wide
states and frequent changes, so as to guide when and how
to tune these DCQCN parameters. The second challenge is
to conduct timely yet effective searches for comprehensive
DCQCN parameters. Given the large searching space and com-
plex parameter influences, we need an efficient and effective
searching algorithm to rapidly generate performant DCQCN
settings to optimize the network performance.

In this paper, we design PARALEON (PARAmeter
ChameLEON for short), an automatic and adaptive tuning
system for DCQCN parameters, which comprises a Runtime
Metric Monitor module and a Performance-oriented Tuning
module. PARALEON is an event-driven and closed-loop tuning
system: Runtime Metric Monitor collects the network-wide979-8-3503-5171-2/24/$31.00 ©2024 IEEE



TABLE I: Key DCQCN parameters tuned by network experts
(others are remained default).

ai rate hai rate rate reduce
monitor period

min time
between cnps Kmin Kmax Pmax

50Mbps 150Mbps 80µs 96µs 1600KB 6400KB 0.2

metrics periodically to determine whether the tuning process
should be triggered; when triggered, Performance-oriented
Tuning searches new DCQCN parameters for both RNICs
and switches iteratively to adapt to the inputted metrics, until
superior performance is achieved.

Runtime Metric Monitor is responsible for monitoring
millisecond-level network metrics (e.g., throughput, RTT,
PFC) and traffic pattern (e.g., flow size distribution (FSD)).
However, measuring millisecond-level flow statistics is non-
trivial, as commodity RNICs only provide per-port counters
rather than in per-QP (queue pair) granularity, and mature
monitoring tools such as NetFlow [27] and sFlow [28] only
provide O(seconds) and coarse-grained flow statistics based
on packet sampling. To capture accurate flow size distributions
within O(milliseconds) monitor intervals, we modify Elastic
Sketch [29] with a codesign of control plane and data plane:
the control plane 1) periodically collects sketches from the data
plane for every O(milliseconds) monitor interval; 2) maintains
a sliding window to update ternary states of each flow by his-
torical records. This mechanism alleviates the misidentification
of elephant and mice flows, ensuring the accuracy of flow size
distribution within O(milliseconds) monitor intervals.

In Performance-oriented Tuning, we design a utility function
to express the RDMA network performance, with the objective
of maximizing its value by searching for performant DCQCN
parameters. We experimentally observe most single-parameter
impacts can be categorized into throughput-friendly and delay-
friendly directions, which can be used to guide parameter
searching for higher throughput or lower delay. However,
inter-parameter impacts are also non-negligible, since adjust-
ing more than one parameter in the same direction may
result in compromised performance. Therefore, PARALEON
resorts to the simulated annealing (SA) algorithm that mutates
DCQCN parameters in different randomness dimensions to
compensate for potential inter-parameter impacts. For better
searching efficiency and convergence, we further optimize
SA by: 1) adopting guided randomness for reasonable and
focused searches; 2) setting more relaxed temperature for
timely parameter adjustment.

We implement a PARALEON prototype, and evaluate PAR-
ALEON’s tuning performance in both NS3 simulation [30]
and a hardware testbed. Simulation results show that, with
different workloads, PARALEON achieves 3.8% ∼ 61.4%
lower flow completion time (FCT) than static settings (default
[21] and expert in Table I) and automatic tuning schemes
(ACC [25] and DCQCN+ [26]). PARALEON also acquires
higher flow size distribution accuracy than other monitoring
schemes (NetFlow [27] and naive Elastic Sketch [29]), and
better tuning convergence than naive SA searching. Real-
world testbed results show that PARALEON achieves up to
19.5% higher bandwidth than default and expert settings for

TABLE II: NCCL-Tests alltoall performance with two
DCQCN parameter settings.

Settings

Out-of-place
algbw (GB/s)

Size (MB)
512 1024 2048 4096 8192

Default 6.37 4.73 4.73 6.95 11.56
Expert 25.69 12.59 12.97 39.32 40.93

distributed training workloads, and presents better adaptivity
for runtime throughput and latency with coexistence of dis-
tributed training and RPC services. PARALEON has also been
integrated into the toolboxes of Infrawaves currently.

The main contributions of this work include:
• We identify the necessity of DCQCN parameter tuning

and the limitations of existing tuning schemes (§II).
• We design PARALEON to tune DCQCN parameters auto-

matically and adaptively, which monitors O(milliseconds)
runtime metrics and searches parameters to optimize
network-wide performance (§III).

• We implement PARALEON and conduct experiments to
show PARALEON’s advantageous performance on the
NS3 simulation and the real testbed (§IV).

II. BACKGROUND & MOTIVATION

PFC & DCQCN for RDMA. Generally, RDMA is very
sensitive to packet loss [31], and PFC is deployed in RoCEv2
to prevent packet loss. When the queue length surpasses a
predefined PFC threshold, the congested queue signals the up-
stream port to pause for a specified duration. In practical usage,
PFCs can induce severe network-wide performance anomalies
[17], [18], such as head-of-line blocking, unfairness, PFC
storm [17], and even security vulnerability [18]. Therefore, CC
is introduced to reduce PFC triggers, with DCQCN emerging
as the de facto standard in widespread usage. DCQCN is
based on Additive-Increase/Multiplicative-Decrease (AIMD)
and involves three parties: 1) Congestion Point (CP): switches
mark packets with Explicit Congestion Notification (ECN)
when the local queue length exceeds ECN thresholds (lower
than the PFC threshold); 2) Notification Point (NP): the
receiver RNIC sends congestion notification packets (CNPs)
to the sender RNIC when receiving ECN-marked packets; 3)
Reaction Point (RP): the sender RNIC cuts sending rates in an
MD manner upon receiving CNPs, otherwise keeps increasing
rate via a roughly AI mechanism. DCQCN has more than 10
parameters, including RNIC-side parameters categorized into
Rate Increase, Rate Decrease, Alpha Update and Notification
Point to regulate the AIMD process of each QP, as well
as switch-side ECN thresholds Kmin,Kmax, Pmax for ECN
marking rate at CPs. More details can be found here [21].
Effects of DCQCN parameters on performance. As DC-
QCN parameters determine the AIMD process, different pa-
rameter settings can result in varying network performance.
We conduct a real-world experiment where different DCQCN
parameters are applied to a 16-node machine learning training
cluster from our partner company, Infrawaves. Each node
is equipped with 8 NVIDIA H100 GPUs and 8 NVIDIA
ConnectX-7 RNICs. The network follows a 1:1 oversubscribed
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Fig. 1: PARALEON overview.
two-tier CLOS topology where all links are 400Gbps. We
leverage NCCL-Tests [32], a test suite for the famous
inter-GPU collective communication library NCCL, which is
widely used by today’s mainstream machine learning training
frameworks. With a 128 × 128 alltoall collective com-
munication primitive, we compare two DCQCN parameter
settings and record their out-of-place algorithm bandwidth
performances with increasing transmitted data sizes, as shown
in Table II. The first one is default parameter setting provided
by NVIDIA [21]. The second setting is manually tuned
by network experts based on their experience knowledge
and instructions [24] (Table I). Obviously, the expert setting
achieves much higher bandwidth with increasing transmitted
data size, indicating the expert setting can accelerate the
LLM training. The results highlight the substantial effects of
DCQCN parameter tuning, emphasizing the parameter tuning
necessity for superior network performance.
DCQCN parameter tuning approaches. Nowadays, DC-
QCN parameter tuning highly relies on expert knowledge and
manual experience. In industrial environments, a complete
tuning usually consumes weekly manual efforts [24], [25],
and operators have to adjust them frequently with constantly
changing traffic patterns. To alleviate this issue, researchers
have proposed several automatic tuning tools. ACC [25] de-
ploys an agent at each switch control plane to monitor local
port rate, ECN marking rate and queue length, which are taken
as inputs for the Deep Double D-network algorithm to update
local ECN thresholds. DCQCN+ [26] updates the CNP interval
proportionally to congested flow amount, and notifies the RPs
by appending the latest interval in CNPs, based on which the
RPs can adjust rate increase steps and timers. Despite being
automatic, these existing tuning tools only consider a subset
of DCQCN parameters, resulting in compromised network
performance (§IV-B). It is also difficult to combine ACC
and DCQCN+, because ACC periodically collects runtime
metrics from the switch data plane, while DCQCN+ relies on
irregular generation of congestion events from NPs, leading
to incompatible monitoring mechanism and tuning actions.
Therefore, we need a new automatic and adaptive tuning
system, which not only considers comprehensive DCQCN
parameters at both RNICs and switches simultaneously, but
also accommodates to the dynamic RDMA traffic patterns.

III. PARALEON DESIGN

A. Overview

PARALEON has two modules, including:
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Fig. 2: PARALEON runtime metric monitor.

• Runtime Metric Monitor collects runtime metrics to:
1) determine whether network-wide traffic pattern has
significant changes to trigger tuning, and 2) guide the
tuning process.

• Performance-oriented Tuning tunes DCQCN parameters
iteratively to optimize network-wide performance adap-
tive to runtime metrics.

PARALEON has three components depicted in Figure 1. 1⃝
Programmable Top-of-Rack (ToR) switch: the data plane
runs Elastic Sketch [29] to record flow sizes; the control plane
periodically updates flow states based on local sketch, and
uploads throughput, PFC and local flow size distribution to
the centralized controller. 2⃝ RNIC: uploads RTT and PFC
metrics to the controller. 3⃝ Centralized controller: collects
metrics from switches and RNICs, triggers tuning by signifi-
cant traffic pattern change and executes tuning algorithm.

PARALEON leverages Kullback-Leibler (KL) Divergence
[33] to compute the similarity of two successive network-
wide flow size distributions Rt and Rt−1 at sub-second. If
KL(Rt, Rt−1) exceeds a predefined threshold θ, it implies
network-wide traffic has changed significantly within the clus-
ter. Consequently, the tuning process is triggered, and new
DCQCN parameters will be generated iteratively for the new
traffic pattern.

B. Runtime Metric Monitor

The monitor includes two parts, as shown in Figure 2.
The first part, flow size distribution measurement (highlighted
in yellow), operates continuously in a layered style. Every
monitor interval (i.e., λMI ), each ToR switch control plane
retrieves and resets the local sketch recorded in the data plane,
and runs a sliding window to update flow states and local flow
size distribution. The local flow size distributions from all ToR
switches are transmitted to the centralized controller, where
they undergo aggregation to update the network-wide flow size
distribution. The layered flow size distribution measurement
can reduce the data transfer and alleviate the resource burden
of the controller. The second part, runtime metric collection
(highlighted in pink), operates on an event-driven basis: it is
initiated only if parameter tuning is triggered by a significant
flow size distribution change. At the beginning of a monitor
interval, the controller generates new DCQCN parameters, and
assigns them to each switch and RNIC. During the monitor
interval, the switches and RNICs monitor runtime throughput,
RTT and PFC, then upload them to the controller at the end
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Fig. 3: Transition graph of flow ternary states.
of the monitor interval to start a new tuning iteration. Runtime
metric collection stops until a complete tuning process finishes.

For sketch implementation, we use Elastic Sketch [29] in
the data plane as measurement points to capture per-flow size
statistics. Elastic Sketch comprises a Heavy Part to record top-
k elephant flows and a Light Part for mice flows, along with
“Ostracism” voting mechanism to maintain elephant flows in
the Heavy Part. Each bucket stores a flowID f , a flag as well
as vote+ and vote− for positive and negative votes. Upon a
packet arrival, Elastic Sketch hashes it to a designated bucket
and checks for collision. If the original f residing in the
bucket collides too many times (i.e., vote−

vote+ is larger than a
threshold), it is kicked out to the Light Part, and the bucket
is replaced with a new elephant flowID f ′. Elastic Sketch
maintains a provable tradeoff between SRAM utilization and
sketch accuracy to capture per-QP size statistics in high-speed
RDMA networks.

However, relying solely on Elastic Sketch presents two
challenges for accurate flow size distributions. First, as a
packet traverses through multiple measurement points along
the forwarding paths, a flow may be recorded in multiple
switches. This overlap of local flow size distributions, com-
puted by each switch control plane, can result in inaccu-
racies when aggregating them into the network-wide flow
size distribution. Second, to capture frequent O(milliseconds)
workload changes and achieve timely tuning in highly dynamic
RDMA environment, an millisecond-level monitor interval is
necessary, but naive Elastic Sketch cannot identify elephant
and mice flows correctly within such small monitor intervals.
For example, during heavy congestion, an elephant flow may
converge to a low throughput and transmit less than τ data size
(say τ = 1MB [34]) within λMI , and naive Elastic Sketch
will misidentify it as a mice flow. Moreover, if an elephant
flow arrives very shortly before the sketch resets, its measured
data size may not exceed τ , leading to incorrect identification
as well. The root cause is, naive Elastic Sketch differentiates
a flow based on only one single monitor interval, such that
any state transition opportunities after several small monitor
intervals are completely ignored. Therefore, supplements to
Elastic Sketch are necessary for flow size distribution accuracy.
Keypoint 1: insert each packet to only one sketch. One
possible solution is to provide a sketch manifest that assigns
sketching actions for each measurement point [35]. This so-
lution works with sophisticated sketch manifests, but requires
frequent updates by centralized controller to catch up with
dynamic traffics, which is neither flexible nor timely enough.

Instead, PARALEON adopts a decentralized marking solution.
When a packet arrives, each measurement point checks an
unused Type of Service (TOS) bit before insertion. If marked,
it implies the packet has been inserted into a previous sketch
along the forwarding path, and the switch just forwards the
packet. If not marked, it means the packet has not been inserted
into any previous sketch, so the switch inserts this packet
to the local sketch, marks the TOS, and then forwards it.
This marking solution eliminates the sketch overlap, allowing
the controller to simply aggregate local sketch results into
an accurate network-wide flow size distribution. Note that
RoCEv2 protocol does not use TOS to identify packets’
Quality of Service (QoS) by default, therefore our marking
mechanism will not influence the normal QoS functions.
Keypoint 2: update ternary flow states by sliding win-
dow. To capture flow state transition within O(milliseconds)
monitor intervals, PARALEON 1) introduces a third state to
describe flows that are “temporary” mice but likely to evolve
into elephant in future; 2) uses a sliding window to update
flow states with historical monitor intervals. Every λMI after
reading sketches from the data plane, the switch control plane
records the transmitted data size of each flowID in this monitor
interval, and uses history data in previous monitor intervals to
update each flow’s state by the sliding window.

PARALEON introduces ternary states for each flow f : ele-
phant (E), potential elephant (PE) and mice (M), with the
state transition graph shown in Figure 3. 1⃝: f is E if its
aggregated transmitted data Φ(f) ≥ τ . 2⃝: f is PE if
Φ(f) < τ , but remains active within the window, i.e., f ’s
transmitted data stays positive for not less than δ monitor
intervals (δ is the window size). 3⃝: f is M if Φ(f) < τ and
cannot fill the window, i.e., being active for less than δ monitor
intervals. A PE flow can stay in PE if 2⃝ is satisfied, or
transition to E if Φ(f) exceeds τ at a certain monitor interval.

Using the ternary state transition, PARALEON uses a sliding
window to update f ’s ternary states with history monitor
intervals. An illustrative example is given in Figure 4 with
δ = 3 and τ = 1MB. For f1, its data size exceed τ , so f1
is E . For f2, at the first two monitor intervals, its transmitted
data does not exceed τ , so PARALEON regards f2 as M at
MI1 and MI2. At MI3, f2 fills the window and keeps active
for δ monitor intervals, so f2 transitions to PE . From MI3 to
MI6, f2 stays in PE state with 2⃝ satisfied. Finally at MI7,
Φ(f2) exceeds τ , so f2 transitions to E . For f3, it keeps active
and fills the window at MI3, so f3 transitions from M to PE
at MI3. However, no transmitted data is discovered at MI8,
which means f3 is not active (maybe finish), so f3 will not
transition to E . For each PE flow, PARALEON approximates
its contribution to flow size distribution, which is intuitively
proportional to its likelihood of transitioning to E in future,
and the likelihood is refined as more monitor intervals elapse.

C. Performance-oriented Tuning

In this section, we first explain why we choose a
performance-oriented approach, and define a utility function
to characterize the network-wide performance. Then, we pro-
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Fig. 4: Update flow states by sliding window.

vide several observations regarding the impact of DCQCN
parameters on runtime metrics. Finally, based on the above
observations, we design a heuristic tuning algorithm to search
DCQCN parameters to maximize the utility function.
From reactive to performance-oriented. Conventional wis-
dom leverages a reactive approach to adjust DCQCN parame-
ters based on observed network events and expert knowledge.
For example, in DCQCN+ [26], the sender RNICs automat-
ically tune the rate increase steps and timers reactive by
observed incast events for better throughput. However, in com-
plicated scenarios, a network event can be caused by multiple
factors, including but not limited to CNP intervals, steps/timers
at RNICs, and ECN thresholds at switches. It is difficult to
summarize a comprehensive and accurate relationship from
observed events to adjustment actions. Therefore, PARALEON
resorts to a performance-oriented approach [36]–[38]: it takes
runtime metrics as inputs, conducts multiple parameter at-
tempts, and outputs the most performant parameter setting
that maximizes the utility function. This approach offers a
more direct and flexible path from observed metrics to tuning
actions, avoiding predefined tuning principles and rigid actions
from events to specific parameter values.
Utility function. The utility function is defined based on
network-wide runtime metrics, as shown in Equation (1):

U = ωTP · OTP + ωRTT · ORTT + ωPFC · OPFC (1)
OTP = δl is the average bandwidth utilization of each active
uplink l ∈ L connecting RNICs and ToR switches. ORTT =
γ(i, j) is the average normalized RTT of each RNIC pair i, j ∈
C, and each γ(i, j) is computed by Base path delay

Runtime RTTi,j
. Inspired

by Swift [39], Base path delay equals ni,j · di,j , where ni,j

and di,j denote the hop counts (starting TTL minus received
TTL) and minimum link propagation delay between RNIC i

and j, respectively. OPFC = 1 − λxoff

λMI
where λxoff is the

average PFC pause duration of each device within a monitor
interval λMI . ωTP , ωRTT and ωPFC are performance weights
assigned by operators and ωTP+ωRTT+ωPFC = 1. Operators
can customize the weights according to specific scenarios and
preferences. For example, for throughput-sensitive workload
such as LLM training, we can empirically let ωTP = 0.5,
ωRTT = 0.2 and ωPFC = 0.3.

The reasons why we choose these three factors are given as
follows. On one hand, throughput and RTT are the most direct
metrics indicating the network performance. On the other
hand, in RoCEv2 networks, PFC usually implies heavy con-
gestion where queue length is growing very rapidly. Although
RTT can reflect queue buildup, it falls short of identifying
fine-grained congestion levels. For example, a high RTT may
stem from two possible scenarios: 1) the probing packet passes
multiple congestion points with lengthy but still tolerable

queue length; 2) the probing packet is paused in the upstream
device of the incast switch triggering PFCs. Obviously, the
second scenario is severe and risky [17], [18], but RTT vari-
ance alone cannot differentiate them, necessitating OPFC to
identify the second scenario. Furthermore, OPFC can capture
more transient PFC occurrence, whereas throughput and RTT
are average metrics failing to reflect transient anomaly.
Observations on parameter impacts. Before delving into
the tuning algorithm, we empirically investigate how an indi-
vidual DCQCN parameter impacts the network performance,
which is called single-parameter impact. In NS3, we launch
a 20×20 alltoall collective communication in a two-
tier clos topology with 12 switches, and monitor the aver-
age throughput and RTT for several monitor intervals. We
change the values of 4 representative parameters, i.e., hai rate,
rate reduce monitor period, rpg time reset and Kmax, and
the other parameter values remain default as referred to [21].
Figure 5 demonstrates the single-parameter impacts, revealing
significant effect on network throughput and RTT. In general,
the tuning directions of each individual parameter can be
broadly divided into throughput-friendly and delay-friendly
directions, with each being more beneficial to throughput and
RTT, respectively. Taking hai rate as an example, increment-
ing its value is a throughput-friendly direction: increasing
hai rate allows each QP to take a more aggressive increase
step for a rate hyper-increase event, which is helpful to elevate
the network throughput. Conversely, decrementing is a delay-
friendly direction for hai rate: as slower packets are injected
into the network, packet queuing is mitigating at switches,
resulting in decreasing RTT. Similar analysis can apply to
rpg time reset, rate reduce monitor period and Kmax.

Building upon the above observations, a straightforward
tuning scheme seems obvious: when network-wide traffic
pattern is dominated by elephant/mice flows that require higher
throughput/lower delay, we steer all DCQCN parameters in the
throughput/delay-friendly direction accordingly. Nevertheless,
this seemingly intuitive tuning approach overlooks potential
inter-parameter impacts, i.e., driving more than two parameters
in the same direction may lead to a compromised or even con-
tradictory overall performance. To illustrate this, we investi-
gate the inter-parameter throughput impacts of rpg time reset
and Kmax, as shown in Figure 6(a). Obviously, when we drive
rpg time reset and Kmax in the same throughput-friendly di-
rection (i.e., decrement rpg time reset and increment Kmax),
network throughput does not exhibit a monotonic increasing
trend, displaying several convex and concave points. The
reason is, when these two parameters are too throughput-
friendly simultaneously (i.e., the values of rpg time reset and
Kmax are too small and large, respectively), packet injection
is too aggressive and exceeds the equilibrium point. This
aggravates queuing buildup and triggers more CNPs and even
PFCs to slow down the transmission rate instead, resulting in
unexpected congestion and throughput decline. Similar inter-
parameter impacts are observable for RTT in Figure 6(b). As
a result, when adjusting DCQCN parameters, inter-parameter
impacts should be carefully taken into consideration.
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Fig. 5: Single-parameter impacts on network performance.
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Fig. 6: Inter-parameter impacts on network performance.

Improved SA algorithm. The inter-parameter impacts are
non-negligible, but it is difficult to summarize them given
10+ DCQCN parameters and complicated network states. The
optimal algorithm is to explore comprehensive inter-parameter
impacts by traversing all possible DCQCN parameter combi-
nations, but it fails to output timely results. Therefore, we
resort to a simulated annealing (SA) searching algorithm that
introduces randomness to the parameter searching to compen-
sate for the inter-parameter impacts. The rationale is, with
high temperature at the beginning, SA can explore and mutate
new attempts in more random directions and steps, which is
helpful to jump out of the local optima. As the temperature
cools down, the overall system converges toward a lower
energy state and ultimately approaches the optimal solution.
Given the simple but very effective searching benefits, SA can
explore more parameter combinations in various randomness
dimensions, and output suboptimal results within polynomial
time complexity, making it a viable method to compensate for
potential inter-parameter impacts.

Nonetheless, naive SA still cannot satisfy PARALEON’s
timeliness requirement, which takes too many rounds to
converge to a high utility function value. The fundamental
issue lies in the indiscriminate nature of naive SA, which
exhausts too many unnecessary attempts within the entire
search space, without exploiting runtime traffic patterns and
empirical parameter impact observations. As timely adjust-
ment takes precedence over optimal tuning in a practical
RDMA environment, we can “instruct” and prune the SA
searching in more focused and sensible direction for fewer
mutations and faster convergence.

PARALEON introduces two optimizations to improve PARA-
LEON’s SA searching efficiency. Optimization 1 is the guided
randomness. On one hand, by exploiting the empirical param-
eter impacts and runtime traffic patterns, PARALEON drives
each parameter to cater to the dominant flow type with higher
probability, and maintain some level of random exploration

in the anti-dominant direction. For example, if network-wide
flow size distribution is composed of 80% elephant flows and
20% mice flows, for each parameter p ∈ P , PARALEON can
drive p in throughput-friendly direction with 80% probability,
or steer p in delay-friendly direction with 20% probability.
On the other hand, we provide an empirical step sp for each p
based on impact observations, and multiply sp with a random
number in each iteration, making sure the tuning steps can
be random but within a bounded range. This optimization
strikes a balance between exploitation and exploration [40]:
PARALEON exploits empirical observations & runtime traffic
pattern for faster convergence, and maintains native random
exploration of SA. Optimization 2 is to use more relaxed
temperature settings for SA. Since timely adjustment precedes
optimal tuning, we set a more relaxed temperature to jump out
of loops more rapidly, prioritizing responsiveness to dynamic
traffic changes.
Tuning process of SA. Algorithm 1 is the SA tuning process
of PARALEON. For every λMI , the centralized controller
collects throughput, RTT and PFC metrics from switches and
RNICs, and updates the utility function value. Lines 14-22
mutate new DCQCN parameters by Optimization 1. According
to collected flow size distribution from switches, PARALEON
computes the network-wide dominant flow type and its pro-
portion µ. For each DCQCN parameter p ∈ P , SA drives p
in the dominant direction with a probability of min(µ, η), or
steers p in the anti-dominant direction with a (1−min(µ, η))
probability, along with a random step s′p = sp× rand(0.5, 1).
η is an upper bound of exploitation rate, making sure SA
has at least (1 − η) probability to explore the anti-dominant
direction even with imbalanced flow size distributions. New
comprehensive DCQCN parameter setting Pm are dispatched
to RNICs and switches after a tuning round, and controller will
wait for new metric feedback in the next monitor interval. The
tuning process will finish until the temperature is lower than
a predefined value.

IV. IMPLEMENTATION AND EVALUATION

In this section, we evaluate PARALEON in both large-scale
NS3 simulations [41] and a real-world testbed with respect to
the following key questions: (1) How effective is PARALEON
in various workload types (§IV-B1)? (2) How adaptive is PAR-
ALEON to adjust DCQCN parameters with workload dynamic
change (§IV-B2)? (3) How necessary are PARALEON’s designs
for accurate monitoring and efficient tuning (§IV-B3, §IV-B4)?
(4) How about PARALEON’s performance in the real-world
testbed (§IV-C)?



Algorithm 1: SA Tuning Algorithm

1 Initialization for SA parameters;
2 while curr temp > final temp do
3 for i = 0; i < total iter num; i++ do
4 Controller waits λMI to obtain TP , RTT ,

PFC;
5 Update new util by Equation (1);
6 if new util > current util or

e
new util−current util

curr temp > rand(0, 1) then
7 current util = new util;
8 current solution = Pm;
9 end

10 if current util > best util then
11 P = current solution;
12 best util = current util;
13 end
14 Compute dominant flow proportion µ;
15 for each p in P do
16 Update step s′p = sp × rand(0.5, 1);
17 if rand(0, 1) < min(µ, η) then
18 Drive p in dominant direction with s′p;
19 else
20 Drive p in anti-dominant direction with

s′p;
21 end
22 end
23 Dispatch Pm to RNICs and switches;
24 end
25 curr temp = cooling rate × curr temp;
26 end

TABLE III: PARALEON system settings in NS3.
Category Parameter Value

Ternary flow
state update

elephant flow size threshold τ 1MB
window size δ 3

Tuning trigger
threshold & weights

KL divergence value θ 0.01
ωTP , ωRTT , ωPFC 0.2, 0.5, 0.3

SA algorithm

total iter num 20
cooling rate 0.85

initial temperature 90
final temperature 10

Miscellaneous monitor interval λMI 1ms
maximum SA exploitation rate η 0.8

A. Implementation

The NS3 simulation codes are publicly available in [30],
and the PARALEON prototype on the real-world tested is
implemented with 1500 incremental lines of C and Python
codes based on the system of our partner company, Infrawaves.
Each switch control plane and server deploy agents respon-
sible for: 1) reading runtime counters & metrics by device
interfaces; 2) uploading metrics to the controller; 3) receiving
DCQCN parameters from the controller, and updating them
to switch data plane and RNICs. Data transfer between the
controller and switches & servers is via gRPC [42] with TCP
protocol to guarantee reliable transport. To prevent interference
with RDMA traffic, TCP and RDMA traffic are assigned to
different queues. As for O(milliseconds) flow size distribution
measurement, we deploy Elastic Sketch [43] in the data plane.

Meanwhile, the agent in the switch control plane periodically
reads and resets registers of Heavy Part in the data plane, then
updates the ternary flow states by the sliding window.

B. NS3 Large-scale Simulation

Network topologies. We use a two-tier 4:1 oversubscribed
CLOS topology of 8 ToR switches, 4 leaf switches and 128
servers with all 100Gbps links and 5µs propagation delay. The
switch buffer is 12MB.
Workloads. We evaluate two kinds of workloads. The first
workload is a 128-node FB_Hadoop [44] where most flows
are mice but most traffic is contributed by elephant flows, and
we set the default load as 30%. The second workload is an ON-
OFF LLM training workload [45] with 20 workers: during the
ON period, the nodes send the same 12MB flow size to each
other by alltoall; when finishing data transmission, each
node spends 20ms for model update during the OFF period.
We use alltoall due to its network-intensive property
that induces severer incasts than ring- and tree-based traffic
patterns generated by other collectives (e.g., allreduce).
Baselines. We first compare PARALEON with four different
DCQCN parameter settings in terms of FCT and runtime
throughput & RTT: two static parameter settings provided
by NVIDIA [21] and by experts (Table I), as well as two
automatic tuning schemes DCQCN+ [26] and ACC [25]. We
also evaluate the necessity of dynamic tuning of PARALEON
in terms of runtime throughput & RTT. We provide two static
DCQCN parameter settings, which are offline pretrained by
PARALEON, i.e., Pretrained 1 for alltoall LLM training
and Pretrained 2 for FB_Hadoop workload.
Design choices comparison. To prove the necessity and supe-
riority of PARALEON’s designs, we compare PARALEON with
naive Elastic Sketch, and a mature monitoring tool, NetFlow,
in commodity switches, in terms of flow size distribution
accuracy and workload FCT. The packet sampling rate and
monitor interval of NetFlow are 1:100 and 1s, respectively.
We also conduct ablation studies on optimizations of guided
randomness and relaxed temperature for SA tuning algorithm.
The default settings are listed in Table III.

1) Overall performance on various workloads: For
FB_Hadoop workload, Figure 7(a) and (b) show the av-
erage and 99.9-percentile FCT slowdown of different flow
sizes in 30% loads. It is evident that PARALEON exhibits
superior FCT performance compared to other tuning schemes
with different flow sizes. For example, when flow size is
smaller than 120KB, PARALEON’s average FCT is at least
3.8% smaller than other tuning schemes. Notably, for ele-
phant flows exceeding 1MB, PARALEON advantage becomes
more obvious, surpassing others by a maximum of 61.4%.
This is because, when mice flows dominate the traffic at
the beginning, PARALEON can adjust DCQCN parameters
to minimize the RTT and expedite the completion of mice
flows. As most mice flows finish, remaining elephant flows
take dominance, thus PARALEON tunes DCQCN parameters
to maximize the throughput, facilitating faster completion
of elephant flows. For LLM training workload, Figure 7(c)
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Fig. 7: FCT performance for FB_Hadoop and ON-OFF training.
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Fig. 8: Different tuning schemes with FB_Hadoop “influx”.
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Fig. 9: Pretrained vs PARALEON with FB_Hadoop “influx”.

and (d) exhibit the CDF of FCT of different numbers of
involved nodes. For LLM training workload, PARALEON can
tailor parameters to optimize the throughput, empowering
PARALEON to achieve up to a 54.5% reduction for tail FCTs
with different alltoall scales. Since the completion of
each training round depends on the straggler worker, the tail
FCT improvement of PARALEON can greatly accelerate the
training task. Meanwhile, we note that this ON-OFF pattern
of the LLM training workload does not affect PARALEON’s
monitoring and tuning process, because it exhibits a similar
traffic pattern over tens of milliseconds, preventing frequent
fluctuation of network-wide flow size distribution.

2) Traffic dynamics with workload “influx”: We investigate
a workload “influx” scenario: an LLM training workload is at
its ON period as background traffic, and a 30ms FB_Hadoop
workload arrives and competes for network resource with
the training workload. The runtime throughput and RTT are
illustrated in Figure 8 highlighted in yellow. On one hand,
when FB_Hadoop arrives at 2.01s, the dominant flow type
transitions from elephant flows to mice flows. PARALEON is
aware of the transition by flow size distribution variances, so it
adjusts the DCQCN parameters to minimize RTT swiftly, thus
exhibiting lower RTT during the influx phase than other tuning
schemes. As most mice flows conclude, the dominant flow
type transitions to elephant flows again, consisting of training
workload and remaining FB_Hadoop elephant flows. Con-
sequently, PARALEON tunes DCQCN parameters for higher
throughput than other tuning schemes after 2.05s.

The network performance of pretrained schemes and PAR-
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Fig. 10: Monitoring design comparison.

0.5 1 2 5 10 20
λMI (ms)

0.90

0.92

0.94

0.96

0.98

1.00

FS
D 

Ac
cu

ra
cy

Elastic Sketch
Paraleon

(a) Value of λMI

32
4

39
9

49
9

59
8

69
9

99
6 6K 45

K
11

6K 10
M

Flow Size (Bytes)

25

26

27

28

Av
g 

FC
T 

Sl
ow

do
wn Elastic Sketch (λMI = 1ms)

Elastic Sketch (λMI = 20ms)
Paraleon (λMI = 1ms)
Paraleon (λMI = 20ms)

(b) FCT of FB_Hadoop

Fig. 11: Effect of monitor interval.

ALEON are demonstrated in Figure 9. Obviously, PARALEON
outperforms two pretrained settings, which achieves lower
RTT during influx period and higher throughput for remain-
ing elephant flows. This is because, a pretrained parameter
setting can only capture static characteristics and optimize
performance for a known and trained workload. For the
unknown and complicated traffic pattern, e.g., workload influx
in this scenario, the two pretrained schemes fail to adapt
to the dynamic workload changes. Conversely, PARALEON
can capture traffic variance and mutate different parameter
settings according to runtime metrics, therefore obtaining
better runtime performance.

3) Monitoring design comparison: We compare PARA-
LEON’s monitoring design with other three schemes in terms
of flow size distribution accuracy and FCT performance of
FB_Hadoop. The first one is No FSD, where flow size
distribution is unavailable so SA algorithm are agnostic to
runtime flow size distribution. The second one is NetFlow,
which is available in common switches based on packet
sampling and second-level monitor interval. The third scheme
uses naive Elastic Sketch to measure runtime flow size dis-
tribution, without involvement of switch control plane. The
accuracy of flow size distribution and FCT performance of
four schemes are given in Figure 10. In Figure 10(a), with
different traffic loads, PARALEON achieves more accurate flow
size distribution than other monitoring schemes. For one thing,
NetFlow is based on packet sampling, which neglects lots of
flow statistics and information, and Elastic Sketch misses the
intermediate flow status within each single O(milliseconds)
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Fig. 12: Ablation study on SA optimizations.

monitor interval. For another, PARALEON can identify the PE
flow state and use the sliding window to update the ternary
states, thus achieving higher accuracy. As a result, PARALEON
achieves the best FCT performance among these scheme, due
to the most accurate flow size distribution that guides the SA
mutation, as Figure 10(b) shows.

We also evaluate the effect of monitor interval on flow size
distribution and FB_Hadoop FCT performance. We compare
with Elastic Sketch and PARALEON in different millisecond-
level monitor intervals. We ignore NetFlow in this comparison
because it is based on O(seconds) monitor interval. In Figure
11(a), the accuracy of flow size distribution of PARALEON
equals or is very close to 100% correctness in diverse λMI .
Longer λMI is helpful for Elastic Sketch to identify an
elephant, but its accuracy is still lower than PARALEON in
O(milliseconds) λMI , therefore, PARALEON achieves better
FCT performance in Figure 11(b). Meanwhile, we also notice
that smaller monitor interval is beneficial for PARALEON,
because smaller monitor interval can capture more timely
traffic characteristics to guide the SA tuning. Especially when
remaining elephant flows dominate the traffic pattern, a smaller
monitor interval helps PARALEON drive DCQCN parameters
in throughput-friendly direction more swiftly.

4) Ablation study on SA optimizations: We conduct ablation
study on SA optimization, i.e., guided randomness and relaxed
temperature. We compare PARALEON with naive SA, which
follows the original random mutation process for FB_Hadoop
and training workloads. The utility function values are given
in Figure 12, revealing that PARALEON achieves superior
convergence compared to naive SA. This is because naive
mutation prevents naive SA from finding high-quality DC-
QCN parameters within dozens of monitor intervals, which
requires much more iterations to converge to a high utility
function value. Instead, with guided randomness and relaxed
temperature, PARALEON can mutate towards higher-quality
DCQCN parameters more quickly and thus provide more
responsive tuning outputs.

C. Real Testbed Evaluation

Network topology. We use a two-tier CLOS topology with
8 ToR switches, 4 leaf switches and 32 H100 servers. Each
server is equipped with 8 NVIDIA H100 GPUs and 8 NVIDIA
ConnectX-7 RNICs. The ToR switches are Intel Tofino2
switches. Each link is 400Gbps with 1:1 over-subscription
ratio. We set λMI = 30ms in testbed experiments.
Workloads. For elephant flows, we use NCCL-Test [32]
to generate an alltoall collective communication with
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different numbers of workers. The default alltoall work-
load is 32 × 32 with 4GB message size and 1 QP. As
for mice flows, we generate a SolarRPC workload [46],
which is all comprised of mice flows smaller than 128KB.
The controller informs each server’s agent to launch RDMA
WRITE operations with message size following SolarRPC’s
distribution. The WRITE arrival follows a Poisson distribution.
Baselines. We compare PARALEON with the default [21] and
expert (Table I) DCQCN settings, and evaluate the bandwidth
and latency performance, as well as the system overheads in
terms of compute and communication.

1) Bandwidth and latency: The average bandwidth of
alltoall workload with various nodes is presented in
Figure 13. It is obvious PARALEON exhibits superiority and
adaptability to different alltoall scales, surpassing default
and expert settings by up to 19.5%. It also proves PARALEON
can search for performant DCQCN parameters to accommo-
date to diverse training scales, which improves the training
efficiency in real-world LLM training clusters.

Figure 14 shows the runtime bandwidth and latency. An
alltoall workload is running as background traffic, and
a SolarRPC workload arrives at a specific time and lasts
for a duration highlighted in yellow. The results validate
PARALEON’s adaptivity to dynamic traffic changes. When
SolarRPC arrives, flow size distribution undergoes signifi-
cant changes due to the overwhelming mice flows. As a result,
PARALEON quickly drives DCQCN parameters to minimize
the network latency to serve the dominant mice flows. When
SolarRPC completes, flow size distribution changes again
where elephant flows re-dominate the traffic. In response,
PARALEON rapidly recovers the network throughput for the
remaining alltoall elephant flows. Compared with default
and expert settings, PARALEON can automatically tune param-
eters adaptive to runtime flow size distribution.

2) System overheads: We evaluate the system overheads
of PARALEON as listed in Table IV. On one hand, compute
overhead is represented by the CPU utilization of centralized
controller for KL divergence computing and SA tuning, and
switch control plane in relation to ternary flow state updating.
We can see both components have low CPU utilization,
imposing a low level of compute burden for controller and



TABLE IV: PARALEON system overheads.
Category Overhead Value

CPU
utilization

Switch control plane 20.3%
Centralized controller 3.2%

Memory
consumption Switch control plane 9.5MB

Data
transfer

Switches to controller 520B
RNICs to controller 12B

Controller to switches & RNICs 76B

switch control plane. For memory consumption, the flow state
updating has limited memory costs in the switch control
plane, while the sketch occupation in the switch data plane
can refer to Elastic Sketch [29]. PARALEON introduces data
transfer including runtime metrics and DCQCN parameters,
but the data size is quite small, which only takes negligible
communication overhead within each monitor interval.

V. DISCUSSIONS

Relaxation of programmable switches. To obtain accurate
O(milliseconds) flow size distribution, PARALEON employs
sketches in programmable switches to monitor precise per-
flow metrics for DCQCN parameter tuning. It is worth noting
that PARALEON’s “monitoring-tuning” philosophy can still
work even when programmable switches are unavailable. For
example, for more predictable workloads such as LLM training
[47], operators can resort to coarser-grained flow size monitor-
ing and measuring mechanisms by commodity switches, e.g.,
NetFlow or sFlow in O(seconds)-level granularity. Besides,
if future RNICs can provide per-QP counters and statistics,
the monitoring and measurement tasks can be conducted com-
pletely in RNICs, making programmable switches unnecessary
as well. The relaxation of programmable switches can be
beneficial to better deployability in industrial environments.
PFC parameters. Although RoCEv2 lossless transport is a
coupled traffic control system of PFC and DCQCN, PFC pa-
rameters are relatively stable in a given network environment.
Generally, operators need to tune only one PFC parameter,
i.e., α to limit maximum occupation of shared buffer by each
queue, to achieve appropriate PFC triggers. Consequently,
when network topology and device&link capacity are deter-
mined, the value of α can be computed in advance to ensure
lossless transmission, which leaves α a stable setting irrelevant
to DCQCN parameters. Usually, α is set as 1/8 to achieve
appropriate PFC triggers based on empirical studies [7], [19].
Traffic stability. Despite being adaptive to runtime metrics,
PARALEON’s tuning action is based on past network condi-
tions. This necessitates an assumption of a stable network-
wide traffic pattern during SA tuning, e.g., typically tens
or hundreds of milliseconds. In production environment, this
assumption makes sense, as most RDMA workloads usually
last for a long time, and exhibit consistent traffic characteris-
tics [25]. For example, for LLM training workloads, although
periodic, each of them presents a similar traffic pattern over
hundreds of milliseconds. This ensures relative traffic stability
during the tuning process. Nonetheless, there may exist a few
extreme situations where O(microsecond) changes of traffic
pattern (e.g., microbusts) happen [48], resulting in inevitable
tuning leg. We leave the exploration of more timely and
intelligent tuning algorithms to such situations as future work.

PARALEON for large-scale environment. For simplicity,
PARALEON adopts a centralized tuning approach, where the
controller outputs homogeneous DCQCN parameter settings
for all distributed devices. We note that in an extreme large-
scale RDMA cloud, due to the heterogeneous traffic pattern
and network devices, it is difficult to maintain the homo-
geneous DCQCN setting for all devices; meanwhile, using
only one centralized controller can pose great maintenance
challenges as well. As a solution, the operators can divide
the cloud into several clusters, each of which is managed by
an individual controller and applied heterogeneous DCQCN
parameters tailored to its performance preferences.

VI. RELATED WORKS

RDMA CC. Besides DCQCN, there are several CC variants
designed for RDMA. TIMELY [49] and Swift [39] argue the
ECN signal of DCQCN is coarse-grained, and propose RTT
as the congestion signal to adjust AIMD by RTT values or
gradients. HPCC [24] introduces finer-grained congestion sig-
nals through switch in-band telemetry (INT), allowing RNICs
to access more detailed in-network metrics for CC actions. On
one hand, in practical usage, many of them encounter similar
parameter tuning challenges, and PARALEON’s philosophy can
apply to them as well. On the other hand, in RDMA networks,
DCQCN is still the predominant CC algorithm with wide
deployment, attributed to its hardware-friendly implementation
and less dependence on advanced network features like INT.
This is one of the reasons we target DCQCN in this paper.
Sketch for network measurement. Sketch is an efficient
data structure for a variety of network measurement tasks,
such as heavy hitter, flow size distribution, cardinality, etc.
The emergence of programmable switches enables sketches to
be deployed in the data plane, facilitating packet recording
at line rate without missing packet information. Numerous
efforts have been made to optimize sketches across different
dimensions, focusing on accuracy & resource utilization [29],
[29], [50], [51] and generality [35], [52]–[54]. We believe
sketch-based measuring solutions can play a more crucial role
to improve the visibility of high-speed RDMA networks.

VII. CONCLUSION

This paper shows the necessity of DCQCN parameter
tuning, and proposes PARALEON to tune DCQCN parameters
automatically and adaptively. PARALEON uses a sketch-based
design to monitor runtime metrics and flow size distribution
in millisecond-level monitor intervals, and introduces ternary
flow states and the sliding window to ensure flow size distri-
bution accuracy. With runtime feedback, PARALEON employs
an optimized SA searching algorithm with guided randomness
and relaxed temperature, which considers the complicated pa-
rameter impacts and maximizes the utility function with faster
convergence. We implement PARALEON and conduct experi-
ments to show the advantageous performance compared with
other DCQCN tuning schemes. We hope PARALEON can serve
as the foundation for next-generation “zero-configuration”
RDMA networks.
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