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Abstract—Traffic classification provides substantial benefits for
service differentiation, security policy enforcement, and traffic
engineering. However, accurately classifying large volumes of
network traffic using existing solutions is pretty challenging,
as they are typically implemented on commodity servers with
slow CPUs for packet processing. To address this, we leverage
the opportunity provided by emerging programmable switches
and propose HyperClassifier as a solution to achieve accurate,
extensible, and scalable traffic classification. HyperClassifier
designs an efficient classifying table with an effective flow
expiration mechanism that enables lightweight packet inspection
on resource-limited switches. We implement an open-source
prototype of HyperClassifier on a hardware Tofino switch and
conduct extensive evaluations. The results of our evaluation
demonstrate that, compared to existing solutions, HyperClassifier
can provide orders of magnitude higher classification throughput
with comparable classification accuracy.

I. INTRODUCTION

Traffic classification plays a crucial role in a variety of
networking applications, such as network intrusion detection
systems (NIDS) [1], quality of service (QoS) [2] and net-
work management [3]. The goal of traffic classification is
to identify the category (e.g., application protocol) that each
flow belongs to, according to which operators are able to
manage the network more efficiently and appropriately. For
instance, administrators can selectively install only necessary
rules for Snort [1] based on the results of traffic classification
to improve the efficiency of NIDS.

Currently, increasingly rich network applications are putting
higher demands on traffic classification systems (TCS). First
of all, TCS should be accurate enough to identify the ap-
plication protocol for each flow. Otherwise, the incorrect
identification information may lead to unexpected results in
subsequent applications, e.g., attacks bypassing NIDS. Second,
TCS should be extensible to accommodate diverse emerging
application protocols. So users can easily extend TCS on-
demand to support and recognize application protocols under
different scenarios. Finally, as the bandwidth and size of the
network increase rapidly, TCS, which is usually deployed at
the gateway of the target network, should also be scalable to
process the massive amount of network traffic efficiently.

There have been many traffic classification methods, all of
which fall into one of four categories, as shown in Table I.
First, traditional port-based classification methods [4] classify
traffic into different protocols by the port number. They are
easy to be integrated in hardware and thus have high scalabil-
ity. However, since they rely on the port numbers specified

TABLE I: Comparison of existing methods and our goal for
HyperClassifier.

Methods Accuracy Extensibility Scalability

Port-based [4] #   
Machine learning [7]–[10]  # #

DPI [11]–[13]   #
LPI [14]–[16]   G#

HyperClassifier    

by Internet Assigned Numbers Authority (IANA) [5], they
can only identify well-known applications or protocols, and
the accuracy drops drastically for applications (especially P2P
applications) using dynamic ports [6], which are becoming
increasingly popular. Second, Machine learning (ML)-based
methods [7]–[10] achieve high accuracy by extracting flow or
packet features from raw network traffic and using well-trained
ML model to classify flows. However, the classification results
derived from ML-based methods have poor interpretability,
which prevents us from improving the model and extending the
well-trained model to other application protocols. Third, DPI-
based methods [11]–[13] further resolve the extensibility issue
in ML-based methods by inspecting packet payload and com-
paring it with application signatures in the database. However,
they have significant performance issues because each byte of
the payload has to be inspected and compared with a large set
of application patterns. Finally, although some efforts [14]–
[16] propose lightweight packet inspection (LPI) mechanisms
that inspect limited portion of packet payload to improve
the performance of DPI-based methods, such software-based
solutions still have inherent limitations on packet processing
capability and cannot sustain large-volume network bandwidth
nowadays. In summary, there remains a gap between the
requirements for traffic classification and existing methods.

The emergence of programmable switches provides an
unprecedented opportunity to bridge this gap. On one hand,
one single programmable switch can easily process multi-
Tbps traffic at line rate, which has several orders of mag-
nitude higher throughput than highly-optimized servers. On
the other hand, programmable switches allow customizing
packet processing with domain-specific languages (e.g., P4
[17]), which enables us to implement user-defined traffic
classification logic. The high throughput and high flexibility of
programmable switches make it possible to design an accurate,
extensible and scalable traffic classifier.

However, implementing traffic classification logic in the
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programmable switch is a non-trivial effort. A naive method is
to maintain a large set (e.g., O(1K)) of classification rules and
then translate them into match-action table entries, which can
easily exhaust the scarce memory resources in programmable
switches. Besides, since the flow number may be quite large
and it is too expensive to maintain per-flow states, we should
design appropriate mechanisms to identify uncorrelated pack-
ets and clear inactive flows to avoid occupying too much
switch memory. However, such mechanisms are challenging
to be implemented in the constrained programming model of
programmable switches.

To address these problems, we propose HyperClassifier,
an accurate, extensible and scalable traffic classification sys-
tem driven by programmable switches. First, to handle the
limited memory on programmable switches, HyperClassifier
proposes a memory-efficient table structure to accommodate
a large number of classification rules. Second, to make our
system scalable to massive flows, HyperClassifier overcomes
the limited programmability of programmable switches and
designs an efficient flow expiration mechanism. Third, to avoid
potential flow table flooding attacks, HyperClassifier designs
a self-defense strategy by monitoring half-open connections to
adapt to adversarial scenarios. We implement a prototype of
HyperClassifier on an Intel Tofino switch [18]. Extensive eval-
uations show HyperClassifier (1) provides orders of magnitude
improvement in throughput with equally detection accuracy;
(2) presents high scalability with increasing classification rules
and workloads; and (3) robustly filters out the malicious traffic
with low overheads.

II. BACKGROUND & RELATED WORK

A. Libprotoident

Libprotoident [14] is a representative LPI-based traffic clas-
sification library, supporting over 200 application protocols. To
alleviate both the privacy and performance concerns associated
with DPI-based methods, libprotoident is designed no longer
to inspect each byte in the payload of every packet. Instead,
libprotoident only captures the first payload-bearing packet
observed in each direction (i.e., key packets) for every flow
and checks whether their port number, packet length and the
first four bytes of payload match the rule of an application pro-
tocol. Compared with DPI-based traffic classification methods,
libprotoident provides comparable classification accuracy with
a much smaller memory footprint [14].

Though libprotoident is more lightweight and performant
than DPI-based methods, its scalability is still limited by
CPU-based implementation [14], [15], since CPUs are not
specialized for high-speed packet processing. But considering
that libprotoident only needs to extract necessary information
from key packets and check whether it matches the rule of
an application protocol, both of these tasks can be supported
by the programmable parser and programmable match-action
pipelines of programmable switches separately. Therefore,
we seek to improve the scalability of libprotoident with the
opportunities brought by programmable switches.

Classification Rules
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Classifying 
Table
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Fig. 1: HyperClassifier overview and workflow.

B. Hardware Acceleration

Many existing works have proposed to accelerate traffic
classification using hardware. For example, Leira et al. [9]
and Sun et al. [19] proposed to accelerate ML-based methods
on GPU, which significantly speed up traffic classification
using Single Instruction Multiple Data (SIMD) and mul-
tiple threads architecture. However, these methods face a
performance bottleneck due to feature extraction and data
exchange between main memory and video memory [19], [20].
There are also FPGA-based acceleration methods [21], [22],
which accelerate machine learning algorithms on FPGA to
achieve higher throughput. However, the hardware acceleration
methods listed above mainly focus on accelerating machine
learning algorithms but they do not resolve the problems
of interpretability and extensibility associated with machine
learning. Moreover, these accelerations still cannot reach Tbps
level traffic classification.

C. Opportunities by Programmable Switches

Programmable switching ASICs are specialized for high-
speed packet processing, which can provide several orders
of magnitude higher throughput than highly-optimized servers
[23] and shows great potential for terabit TCS. With domain-
specific languages like P4 [17], developers can easily deploy
stateful packet processing with user-defined logics on the ded-
icated resource in programmable switches including match-
action tables, stateful memory and ALUs. Besides, programs
can also run collaboratively between the switching ASICs and
the control plane switch CPUs, enabling advanced and flexible
packet processing. As a result, these unique characteristics
bring unprecedented opportunities to address the limitations
of current traffic classification methods.

III. SYSTEM DESIGN

A. HyperClassifier Overview

HyperClassifier is designed to be an accurate, extensible and
scalable traffic classifier based on the programmable switch.
The switch can be deployed as a middlebox in the link, or
as a dedicated application analyzing the traffic like a bypass
tap. HyperClassifier can offer simple analysis to classification
results in the data plane directly [24], [25], e.g., the amount of
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Endpoint 1 Endpoint 2

First 4-bytes
payload

First 4-bytes
payload Port Action

0x47455420 0x48545450 80 Match_HTTP

0x4e4f5449 - 1900 Match_SSDP

0x**faceb0 0x**faceb0 443 Match_QUIC

Pkt Length Range Checking

38 50

Fig. 2: HyperClassifier’s classifying table.

each protocol in received traffic. Besides, operators can also
deploy more advanced tools on CPUs to analyze classification
results obtained from the switch.

The workflow of HyperClassifier is illustrated in Fig. 1.
Operators need to provide a list of traffic classification rules
(i.e., rules from libprotoident [14]) for application protocols.
Our rules translator in the control plane will translate these
classification rules into underlying match-action table entries
for the traffic classifying table. To avoid misclassification
caused by packets HyperClassifier does not care about, we
design a flow table and completion list to let the system focus
on only key packets that contribute to traffic classification
in libprotoident’s rules. To scale to a huge amount of flows
with limited memory resource, the flow activeness checker
recycles the flow entries that inactive flows occupied and
interact with the flow status check module to dynamically
update the completion list. Furthermore, a self-defense module
is designed and integrated to make our system more robust
when facing potential malicious attacks.

B. Classifying Table

To install all the classification rules completely, an intuitive
way is to directly translate all the rules into match-action
entries of the classifying table. However, simply translating
classification rules into match-action table entries will exhaust
the precious TCAM memory resource in switches. TCAM
resource is very scarce in programmable switches and equally
distributed to multiple stages in each pipeline. The classifica-
tion rules usually require that the first 4-bytes payload, port
number, and packet length of key packets should match a
given pattern value. For example, payload matching requires
ternary matching because some bytes of payload may be
ignored by rules. Furthermore, range matching is required by
packet length matching, but the TCAM resource consumed
by range matching is at least four times than that required
by ternary matching, which further exacerbates the TCAM
resource shortage problem.

To address the problem, we convert the range matching
of packet length to range checking instead of using TCAM
resource. Fig. 2 illustrates our design of classifying table.
Classifying table only takes payload and port as matching
fields, and no longer matches packet length. Accordingly,
packet length range matching is converted to range checking.
We set two arrays to represent the upper and lower bound
of the range and the packet length is compared if it meets
this range. The traffic classification is successful only when
the table matching and range checking are both passed. In
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Hit
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Module
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Fig. 3: The key packets tracking design of HyperClassifier.

this way, we reduce the requirements for TCAM resource
significantly.

C. The Key Packets Tracking

To accurately classify flows based on rules, HyperClassifier
should focus on only key packets that indeed contribute
to traffic classification accuracy. Libprotoident requires that
only the first payload-bearing packet sent from each direction
of every flow contribute to the traffic classification and we
call them key packets. Feeding other packets instead of key
packets into the classifying table may lead to the flow being
misclassified to an incorrect application protocol, which will
then induce operators to configure wrong strategies.

To resolve the problem of key packet tracking, we maintain
a state for each flow to indicate whether its key packets
are both observed. The flow state has 3 values: 0, 1, 2. As
shown in Fig. 3, all the states are initialized as 0, which
means no key packet is observed in any direction and is
ready for accepting the key packet of incoming direction.
The state will transition from 0 to 1 when the key packet of
incoming direction is first seen so any subsequent packet of
this direction will be ignored. And we also need to temporarily
buffer the key packet of incoming direction until the key
packet of outcoming direction is seen. We use a table called
flow table to buffer key packet and flow state, which contains
first 4 bytes-payload, port number, packet length and flow
state. Upon receiving the outcoming direction’s key packet,
HyperClassifier will transition the flow state from 1 to 2, which
represents it is ready for traffic classification. Then our system
loads information of incoming direction’s key packet and feeds
information of both key packets to the classifying table for
matching. Similarly, any subsequent packet of the outcoming
direction will be ignored.

The memory resource in programmable data plane is lim-
ited and equally distributed to each stage in pipelines so
HyperClassifier cannot store states of all flows. As a conse-
quence, we employ the hash table as the table structure of
flow table and each flow state is indexed by the hash value
of flow’s 5-tuple (i.e., srcIP, dstIP, srcPort, dstPort, protocol).
The hash collision occurs when two different flows obtain the
same hash value as the index, which will reduce the accuracy
of our system. For example, flow A and flow B are mapped
to the same position in flow table. Flow A’s packet arrives
first and sets the flow state to 2, then flow B will be ignored
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because the flow state indexed by flow B is 2 which means
flow B is considered to have completed traffic classification.
To address this issue, we design a completion list in the data
plane, which uses match-action table to record the flows that
have completed traffic classification (i.e., flow’s state is 2),
so HyperClassifier can distinguish which flow has completed
classification. Any packet entering in the data plane will be
firstly checked whether it is in the completion list, and will
bypass the flow state transition and classifying table matching
when it matches the completion list. By distinguishing flows
that have completed traffic classification, these flows will not
contend for the flow table. The flow status check module will
insert the flow that has completed traffic classification (i.e.,
transition) into the completion list as soon as possible, in order
to make room for new flows in flow table. Due to the hardware
constraints, it cannot directly add or remove entries of match-
action table in data plane. So we utilize a hardware mechanism
in the switch called ”digest” to send only 5-tuple to control
plane and let the control plane issue the corresponding flow
entry into the complete list.

D. Flow Expiration Mechanism

Control Plane

Data Plane

Timeout mechanism

15

Update Flow

if (current_time – time > 200) -> 
Flow Expire

Flow Time

F1 90

F2 200

F5 290

Completion List

Flow Status Check
Module

Flow Expire

Digest: F1Delete F1

Flow
Activeness

Checker

FlowF6

: 300

: 350 350

(a) Expiration for completed classification flow.

Data Plane

Flow ID Flag Time

H(F4) 1 70

H(F5) 1 180

H(F6) 2 270

Flow State

Timeout mechanism

Update Flow

320

if (current_time – time > 200) 
-> Flow Expire

Flow Expire

Flow
First 

4-bytes 
Payload

Packet 
Length

Port

F4 0x430029ae 400 80

F5 0x13224957 210 443

F6 0xb34f039d 230 137

Flow Table

• Recycle in data plane

Flow
Activeness

Checker

FlowF6

: 300

: 320

(b) Expiration for incomplete classification flow.

Fig. 4: Flow expiration mechanism.

To scale to the huge amount of flows and traffic size with
limited memory resources, an intuitive way is to scan the flow
table and the completion list periodically to clear the inactive
flows. Nevertheless, scanning and updating a large number of
entries via control plane will be inevitably time-consuming
and make the system less responsive [26].

To resolve this problem, instead of running in control plane,
we design a flow activeness checker, which scans and clear

Attacker

Forged Ports1

Forged Ports2

Endpoint1:
SrcIP3, DstIP

SrcIP #Half-
Connections

SrcIP1 5

SrcIP2 1

SrcIP3 3

SrcIP4 2

Attack!

Endpoint2:
SrcIP4, DstIP

Inbound: -= 1

Outbound: += 1
2

3

>= Threshold=5

SrcIP1

Fig. 5: Half-connection table for self-defense.

inactive flows in data plane periodically. We correlate each
flow in the flow table and the completion list with a timestamp
to represent a flow’s latest active time. And each packet of a
flow will automatically update the timestamp in data plane. To
scan all entries in the completion list and flow table efficiently,
the flow activeness checker periodically generates packets
from the hardware internally, which are generated in the data
plane within nanoseconds, and an entry is scanned by a packet.
A flow is considered inactive when the flow activeness checker
found its inactive time has exceeded the timeout threshold.
The inactive time can be calculated by subtracting the latest
active time from the current time. Fig. 4 illustrated how to
recycle flows in the completion list and the flow table. The
flow activeness checker informs the flow status check module
in control plane to remove it from completion list and reset
the timestamp. For inactive flows in the flow table, the flow
activeness checker will reset the flow’s timestamp and flow
state so that any new flow can store its flow state in flow table.
Besides, the checker will also recycle the memory occupied by
key packets. With designs above, the flow expiration process
can be executed entirely in data plane.

E. Self-Defense Strategy

To mitigate potential malicious attacks, HyperClassifier re-
quires a robust self-defense strategy. As detailed in § III-C,
when HyperClassifier receives the key packet from the in-
coming direction, it temporarily buffers the packet. However,
one potential issue arises with respect to the security of the
flow table: upon the arrival of the key packet at the data
plane, HyperClassifier cannot distinguish whether the flow is
legitimate or malicious. As a result, an attacker could generate
numerous packets belonging to different flows to flood the flow
table, resulting in no available space for legitimate flows. This
type of attack is known as flow table flooding.

To solve this problem, we can easily ignore unestablished
connections for TCP flows as SYN and SYN+ACK packets
carry no payload. However, for UDP flows, the attacker may
forge the source IP address or port number of the key packet
to trick HyperClassifier into treating them as new flows and
buffering them. One intuitive approach is to forward the first
UDP key packet to the control plane and perform traffic
classification after receiving the key packet from the outgoing
direction. However, the bandwidth between the data plane
and control plane constrains the performance of this method.
Recent research efforts, NetHCF [27], [28] have tried to filter
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spoofed IP traffic with programmable switches, which are easy
to be integrated into our system to filter spoofed IP flows.
However, an attacker can still launch flooding attacks for flow
table by generating key packets with forged port number and
real IP address. To mitigate this issue, HyperClassifier employs
a half-open connection table that records the number of half-
open connections per IP address, where ”half-open” refers to
a state in which the key packet from the incoming direction
has been seen and buffered, but another key packet has not
yet been received. Note that the concept of connection is also
applied to UDP flows. As shown in Fig. 5, we increment the
count of half-open connections by one upon seeing the first key
packet and decrement it by one when the second key packet
arrives. When the count exceeds the threshold, HyperClassifier
identifies the flow table flooding attack, adds the IP address
to a blacklist, and terminates its traffic classification for that
IP address.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement a prototype of HyperClassifier, including
all data plane and control plane features described in § III.
Our code is publicly available here [29]. The data plane part
is implemented in ∼1K lines of P4 [17] code for the Intel
Tofino switch [18]. The classifying table will take first 4 bytes-
payload, port number and packet length of key packet as match
fields. Its actions contain match success and match fails. We
set the size of flow table as 65536. We use periodic timer
pktgen in Tofino to implement flow activeness checker, which
can periodically generate packets to scan inactive flows in data
plane.

The control plane part is written in ∼600 lines of Python
code. It is responsible for converting the classification rules
into match-action table entries in Classfying table, enabling the
flow activeness checker, and dynamically update the comple-
tion list. Besides, we implement a simple traffic classification
results analyzer in the backend server, which extracts the
classification result set by HyperClassifier in packet header.

B. Experimental Setup

Our testbed is composed of one 3.3 Tbp/s Intel Tofino
switch (Wedge 100BF-32X) and two Dell R740 servers. All
servers are directly connected to the switch and both servers
are equipped with Intel(R) Xeon(R) Silver 4216 CPU @
2.10GH and 64 GB memory and connected to the switch
via 40 GbE Intel XL710 NICs. The classification rules in our
experiments are provided by libprotoident [30].
Traffic workloads. We use the packet trace collected from
a campus network [31], which is a publicly available traffic
trace and contains 18 applications’ traffic of UDP or TCP.
We replay the traces using DPDK-pktgen [32] on the packet
generator node.
Baseline. We use libprotoident [30] as our baseline in our
experiments. It’s deployed in a Dell R740 server with a 40
GbE Intel XL710 NIC to connect to packet generator node.

TABLE II: Evaluated accuracy on different applications.

Application Accuracy Application Accuracy

TCP

HTTP 99.47%

UDP

USP UDP 100%
Facebook 100% mDNS 100%
HTTPS 97.57% NTP 98.9%

WhatsAPP 100% DNS 99.76%
SIP 100% STUN UDP 100%

IMAPS 100% DropBox 100%
STUN TCP 100% QUIC 99.43%

XMPP 100% SSDP 100%
NetBIOS UDP 100%

ISAKMP 100%

TABLE III: Switch resource utilization.

Computational Memory

Resource
Usage

HashBits VLIWs Gateways SRAM TCAM
11.34% 8.33% 7.81% 31.06% 7.28%

We follow the recommended configuration for the baseline
traffic classifier to get the best performance.

C. Overall Effectiveness

Classification accuracy. To determine whether HyperClas-
sifier can correctly perform traffic classification based on
libprotoident’s [14] rules, we examine the results that
HyperClassifier generates against the same trace and calculate
the classification accuracy by baseline (libprotoident). We
replay the trace for 60 seconds and collect the results gen-
erated from HyperClassifier and baseline. Table II shows that
HyperClassifier is capable of discovering nearly all samples
and achieving high traffic classification accuracy compared
to baseline (libprotoident is set as ground truth, so it always
has 100% accuracy). The performance of HyperClassifier may
not achieve perfect accuracy in certain applications due to the
presence of a subset of rules that necessitate more intricate
comparisons beyond the capabilities of match-action tables.
Resource overhead. To evaluate the resource consumption of
HyperClassifier, we measure the resource usage of our switch
based on compiler’s log. Table III shows the overall hardware
resource utilization of switch. As we can see, HyperClassifier
occupies less than 32% SRAM and 8% TCAM to accom-
modate libprotoident’s classification rules. The TCAM usage
is far less than SRAM because we convert most TCAM-
consuming range matching for packet length to exact, so the
result shows that our classifying table is high memory efficient.

D. System Performance

Scalability. To demonstrate the scalability of our system, we
measure the classification accuracy under varying workloads.
For each workload, we replay the trace at different speeds
and collect the results obtained by both our system and
baseline. As shown in Fig. 6, the accuracy of libprotoident
drops drastically because CPU cannot afford high-speed packet
processing and ignores classification for a lot of flows. In
contrast, HyperClassifier can achieve almost same accuracy
under varying workloads and find all potential samples. Note
that 40Gbps is not the upper limit of HyperClassifier, and this
is limited by the speed of our available trace replay tool.
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Fig. 8: Flow table flooding attacks.

Flow expiration mechanism. To evaluate how flow expiration
mechanism clears inactive flows, we conduct a trace replay
over a 20-second interval and measure the number of available
table entries. To assess the impact of the flow expiration
mechanism, we set the timeout for flow activeness check-
ing to 2 seconds. Our experimental results, as illustrated in
Fig. 7, demonstrate that in the absence of flow expiration, the
available table entries steadily decrease, ultimately resulting
in only 60% of the table being available. In contrast, the use
of the flow expiration mechanism enables the timely removal
of inactive flows, thereby maximizing the number of available
table entries and reducing the occurrence of hash collisions.

E. System Robustness

The attacker could generate a large number of flows to
flood the flow table, which can accommodate 65k active flows.
HyperClassifier employs half-open connection table for self-
defense, which limits the maximum number of connections
per endpoint could establish and let flow activeness checker
periodically remove the inactive connection in case of false
positives. We use DPDK-pktgen to generate a large number of
fake key packets and send them to switch. The result is shown
in Fig. 8, without self-defense, the available space of flow
table decreases quickly and eventually is fully occupied by
malicious traffic so that any normal flow cannot be classified.
Self-defense strategy could effectively limit the amount of
entries that a flow can occupy.

V. CONCLUSION

In this paper, we propose HyperClassifier , an accurate, ex-
tensible and scalable traffic classifier driven by programmable
switches. We design a set of techniques and optimizations:
with an efficient classifying table, our system can accommo-
date a large number of classification rules; by tracking key
packets, our system can enable accurate, lightweight packet
inspection; with an effective flow expiration mechanism, our
system is scalable to massive flows. We implement an open-
source prototype of HyperClassifier on Tofino switch [18]. Our
evaluation shows HyperClassifier can accurately, effectively
and safely conduct traffic classification with low overheads.
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