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ABSTRACT

Network scanning has been a standard measurement tech-

nique to understand the network’s security situations, how-

ever, probing a large-scale scanning space with existing net-

work scanners is both difficult and slow. To address this issue,

we introduce IMap, a fast and scalable in-network scanner

based on programmable switches. In designing IMap, we

overcome key restrictions posed by computation models and

memory resources of programmable switches, and devise

numerous techniques and optimizations to turn a switch

into a practical high-speed network scanner. We conduct

preliminary experiments on the open-source prototype of

IMap and evaluation results show that IMap can survey all

addresses (i.e., 6 Class B Addresses) and all ports of our

campus network in 8 minutes, nearly 4 times faster than

state-of-the-art network scanners. As an ongoing work, we

plan to continuously improve the design and implementa-

tion of IMap, and hope IMap can serve as a foundation for

designing next-generation terabit network scanners.
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1 INTRODUCTION

Network scanning is a typical procedure to discover active

hosts, ports, and services in the network, which is mainly
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used by network operators/researchers for security assess-

ment and systemmaintenance of a network. Enabled by tools

such as Nmap [24], ZMap [13] and Masscan [22], network

scanning has become a standard measurement technique

to understand the security situations of the target network,

even the entire Internet. Recent studies have demonstrated

that network scanning can help reveal new security vulnera-

bilities [3, 6, 9], monitor service deployment [2, 12, 16, 26]

and shed light on previously opaque distributed systems [15].

Today’s network scanners, however, cannot keep pace

with today’s soaring scanning space and provide a timely

security snapshot. Recently IPv6 has proceeded to the stage

of large-scale deployment, and reports show that IPv6 has

been used by 18.7% of all the websites [28]. In addition, along

with the adoption of 5G networks, more and more Internet-

of-Things (IoT) devices and mobile devices are connecting

online [4]. The increased address space and the numerous

online devices mean that the network scanner should be

scalable to this much larger scanning space easily. Moreover,

since these IoT and mobile devices go online and offline

frequently, it is necessary for network scanners to complete

a comprehensive scanning as fast as possible. Otherwise, a

large number of security snapshots cannot be captured in

time, and numerous security incidents may be missed [27].

However, a closer look into today’s network scanners

shows that they are far from being fast and scalable because

of implementation targets and deployment locations. First,

in terms of implementation targets, current network scan-

ners are all implemented on commodity servers. As CPUs on

servers are not specialized for high-speed packet processing,

the scanning speed of these CPU-based network scanners

is intrinsically limited. Second, in terms of deployment loca-

tions, state-of-the-art network scanners are all allocated at

the network edge. Scanning from the edge is usually limited

by the upstream bandwidth of the end host, which inevitably

constrains the utmost scanning speed for network scanning

tasks. Besides, the end-to-end scanning paths indicate more

bandwidth waste for edge networks and larger possibilities

of dropping probe/response packets.

In this paper, we propose IMap, a fast and scalable in-

network scanner to address the aforementioned issues. The
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technology enabler for IMap is the emergence of programmable

switches [8], which offer unprecedented programmability

and flexibility without sacrificing performance. Generally

speaking, one single programmable switch could provide a

packet processing capability as high as multiple Tbps, which

is several orders of magnitude higher than highly-optimized

servers. Besides, such switches support stateful packet pro-

cessing with domain-specific languages (e.g., P4 [7]), which

allows programmers to enforce user-defined packet process-

ing logics in the switch pipeline directly. Moreover, switches

(especially core switches) provide a unique vantage point

for network scanning, which is no longer constrained by the

upstream bandwidth of the end host or plagued by the band-

width waste of the end-to-end scanning paths. These unique

characteristics of programmable switches are incredibly valu-

able for next-generation high-speed network scanners.

Nevertheless, designing IMap is a non-trivial effort. As

an in-network scanner, when sending probe packets, IMap

must cover the scanning space completely, and also be aware

of network conditions to avoid affecting the normal packet

routing functionality. Besides, once response packets arrive,

IMap should distinguish normal packets and response pack-

ets correctly, and also process response packets efficiently to

avoid saturating the storage server. However, switches only

have constrained computational models and limited memory

resources, which cannot satisfy these requirements easily.

To meet these requirements, IMap designs a set of tech-

niques and optimizations, i.e., an address-random and rate-

adaptive probe packet generation mechanism, and a correct

and efficient response packet processing scheme, to turn a

switch into a high-speed network scanner. We implement a

prototype of IMap and make the source code publicly avail-

able [17]. Our preliminary evaluations show that IMap is

nearly 4 times faster than state-of-the-art network scanners.

We hope these results can inspire further works in designing

next-generation terabit network scanners.

2 MOTIVATION AND OBSERVATION

2.1 Limitations of Current Scanners

With the rapid growth of scanning spaces and security

incidents recently, today’s network scanners are falling be-

hind the times, especially in terms of scanning scalability

and scanning speed. First, network scanners should be able to

scale to large scanning spaces. Recently IPv6 has been in the

stage of large-scale adoption, for instance, Google’s statistics

show that around 35% of its users access Google via IPv6 [19].

Since IPv6 has a much larger address space than IPv4, the

scanning space increases drastically. Besides, along with the

deployment of 5G networks, more and more IoT and mobile

devices are connecting online [4]. All these require network

scanners should be able to cover a large scanning space

easily. Second, network scanners should be fast enough to

provide timely security snapshots. Today’s networks become

more and more dynamic, and IoT/mobile devices switch be-

tween online and offline frequently. Meanwhile, we have

also witnessed that security incidents occur more and more

frequently, and some of them occur in a very small time scale

(e.g., from tens of seconds to several minutes). For example,

according to Cybint’s monthly newsletter, since COVID-19,

the frequency of cybercrimes increases 300%, and hackers

attempt to attack vulnerable home networks as people are

working from home [27]. As a consequence, network scan-

ners should be able to complete a comprehensive scanning as

fast as possible. Otherwise, some security snapshots cannot

be captured and important security incidents may be missed.

However, today’s network scanners are intrinsically slow,

which is limited by two factors fundamentally. First, in terms

of implementation targets, current network scanners are all

implemented on commodity servers. Packet processing on

commodity servers is intrinsically slow, since CPUs are not

specialized for high-speed packet processing. Even with soft-

ware optimizations like DPDK [11], the throughput cannot

reach more than 40 Gbps easily [20, 25, 30]. Second, in terms

of deployment locations, today’s network scanners are all

located at the network edge. Scanning from the edge not

only is limited by the upstream bandwidth of the end host,

but also incurs longer scanning paths and non-negligible

bandwidth waste. As a result, even the scanners can scan

at higher rate (e.g., 40 Gbps), the scanning results may suf-

fer from low hit rate because of undesirable probe/response

packet drops on the end-to-end scanning paths.

2.2 Opportunities

Programmable switches [8] bring unprecedented opportu-

nities to address the limitations of current network scanners.

High packet processing capability. Switching ASICs are

specialized for high-speed line-rate packet processing, which

can provide several orders of magnitude higher throughput

than highly-optimized servers [20]. Specifically, today’s lat-

est CPU-based network scanner, Zipper ZMap [1], could

only provide a scanning rate at 14.2 Mpps and a scanning

throughput at 10 Gbps. In contrast, switching ASICs can

easily process a few billion packets per second, which show

great potentials to be a terabit network scanner. Other hard-

ware alternatives, such as FPGA and NPU, cannot match the

performance of switching ASICs [20], thus not promising

for a high-speed network scanner.

Flexibility to support scanning tasks. The most promi-

nent characteristic of the new-generation switching ASICs is

programmability. Such switching ASICs can be programmed

with domain-specific languages like P4 [7], and also support

stateful packet processing with user-defined logics. Besides,
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programs can run collaboratively between the data plane

switching ASICs and the control plane switch CPUs, en-

abling advanced and flexible packet processing. As a result,

diverse scanning tasks can be implemented in programmable

switches, which would potentially be the foundation of next-

generation high-speed network scanners.

Vantage points to conduct network scanning. Existing

network scanners are all located at network edges and im-

plemented in end hosts, where the utmost scanning rate

is usually constrained by the bandwidth of the end host.

Worse yet, scanning from the end host requires the end-to-

end scanning path, which inevitably results in the waste of

bandwidth resources and the degradation of scanning hit

rate. In contrast, switches provide a unique vantage point

for network scanning tasks, which is no longer plagued by

the aforementioned issues. Core switches usually have huge

spare bandwidths (i.e., more than 50% spare bandwidth [10]),

which shows substantial potentials for network scanners to

tap. This scanning vantage point is particularly valuable for

next-generation high-speed network scanners.

3 IMAP DESIGN

3.1 IMap Overview

Deployment Scenario. Our scenario focuses on a network-

centric deployment model, where administrators of an ISP

or a cloud network deploy IMap to understand their own

network’s security situations. IMap could also be used for

Internet-wide scanning, but this should avoid any ethical is-

sues, as pointed out in ZMap [13]. For example, the purposes

and the detailed descriptions of IMap scans should be pre-

sented clearly; the close coordination with admins of local

and neighbour networks is also necessary to reduce ricks.

Ideally, IMap should be built on a core network switch, which

provides the scanning functionality and the routing services

simultaneously. In other words, the IMap switch should first

preserve the functionality of packet switching, and also be-

have as a high-speed network scanner when there are spare

bandwidths. Note that the assumption of spare bandwidths

in core switches is reasonable, and reports show that the

bandwidth occupation ratio for core switches is usually less

than 50% [10]. Besides, in-core-network scanners also raise

the bar for attackers to take advantage of this powerful net-

work scanner, as it is difficult for normal attackers to obtain

such a deployment location.

Workflow. IMap is designed to be a high-speed, easy-to-use

network scanner, so the usage of IMap is similar to traditional

network scanners, such as ZMap [13] and Masscan [22]. As

shown in Figure 1, operators should first specify the scanning

address spaces and scanning port ranges beforehand. Then

IMap control plane programs parse these configurations and

issue the parsed parameters into the IMap packet process-

ing logics. After that, IMap data plane programs generate

high-speed probe packets and process response packets ac-

cordingly. Finally, the scanning results, i.e., the information

extracted from the response packets, are written into a per-

sistent database, such as a Redis in-memory data store [21].

Module Overview. IMap is a high-speed in-core-network

scanner, including a probe packet generation module, which

is responsible to generate high-speed probe packets with

random address and adaptive rate, and a response packet

processing module, which processes the response packets in

a correct and efficient manner. In the following part, we will

describe the detailed design of these two modules.

3.2 Probe Packet Generation

The switch is designed to be a packet forwarding device,

not a packet generation device, thus cannot generate probe

packets without ground. Inspired by HyperTester [29], we

also leverage the template-based packet generation mecha-

nism to generate high-speed probe packets. First, the switch

CPU prepares a set of template packets with initialized head-

ers and injects them into the switchingASICs. After receiving

these template packets, the switching ASICs keep looping

these packets in the switch pipeline. Each packet experiences

three sequential steps in the journey of switch pipeline: an

accelerator in the ingress pipeline to accelerate the template

packets to the 100 Gbps line rate, a replicator in the traf-

fic manager to replicate the template packets into several

switch ports, and an editor in the egress pipeline to modify

the headers of replicated template packets into desired probe

packets. With the steps above, we obtain continuous probe

packets at line rate in multiple egress ports. Nevertheless, to

be a practical high-speed network scanner, IMap should be

able to generate probe packets to cover the scanning space

(i.e., |address space| × |port space|) completely, and adapt

the scanning rate according to network conditions.

3.2.1 Random probe address. To cover the scanning ad-

dress space completely, an intuitive way is to scan from the

start IP address to the end IP address one by one. Neverthe-

less, in the high-speed scanning, simply probing IP addresses

in numerical order would overwhelm target networks with

scanning traffic, which may produce inconsistent probing re-

sults and incur complaints from the target networks. To avoid

this, IMap should be able to scan the addresses according to

a permutation of the address space, without duplications and

omissions. However, the switching ASICs only have limited

programmability and memory resources, which cannot sup-

port complex calculations or maintain massive states. The

address generation approach in ZMap [13] requires calcula-

tions such as multiplication and modulo, thus is not feasible

in the switching ASICs.
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./imap

--ip-list ip.txt

--port-range 

0:65535
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Figure 1: The workflow of IMap.
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To address this problem, we leverage the flexibility of the

switch CPUs to supplement the switching ASICs to gener-

ate line-rate address-random probe packets. In the editor

of the switching ASICs, we design a Probe IP Range (PIPR)

table based on register arrays. In the switch CPUs, we have

a PIPR Entry Producer module. Using the address genera-

tion method similar to ZMap [13], the PIPR Entry Producer

module can generate a random permutation of the probe IP

ranges for any given address space. After the PIPR Entry Pro-

ducer module fills part of the generated probe IP ranges into

the PIPR table, probe packets can iterate through the PIPR

table to obtain random destination IP addresses. As the data

plane scanning is fast, a PIPR table with the entry size of 1

will be scanned quickly, so we store a probe IP range in each

entry of the PIPR table. To implement this, our PIPR table

consists of two register arrays: one is a PIPR_Start array, to

store the start of the probe IP range; the other is a PIPR_End

array, to store the end of the probe IP range. Before the PIPR

table, we have a PIPR_Index register, which is used to index

the PIPR table. The initial value of the PIPR_Index register

is set to 0 by the control plane; upon an incoming probe

packet, the value of PIPR_Index increases by 1, until the size

of the PIPR table; after that, the PIPR_Index is reset to 0

again and another loop starts. When PIPR_Index is looping,

for the PIPR_Start array, upon each incoming packet, the

corresponding PIPR_Start register increases by 1, until the

PIPR_End register. When the value of the last PIPR_Start

register is equal to the value of the last PIPR_End register,

the scanning for the entire PIPR table is finished, and the

PIPR Entry Producer module should fill a new round of probe

IP ranges into the PIPR table. To send the finish signal to the

control plane, we leverage the egress to egress mirror primi-

tive in the switch pipeline, which carries a predefined flag to

the switch CPUs to notify the PIPR Entry Producer module.

However, conducting a new round of PIPR table filling is

a time-consuming task. According to our test on the Tofino

switch [18], even with batching optimizations, filling a PIPR

table with the size of 65,536 requires about 0.3 seconds. This

indicates that, after a round of scanning, we have to wait for

more than 0.3 seconds to start the next round of scanning,

which is unacceptable for high-speed scanning. To resolve

this problem, we introduce two PIPR tables and PIPR_Index

registers. When one PIPR table is being scanned, the other

PIPR table is being filled with the next round of probe IP

ranges. To make the two PIPR tables handoff seamlessly, we

design a Probe_Table register in the first stage of the egress

pipeline, which is switched between 0 and 1, and controls

the flow of probe packets. The switch of the state in the

Probe_Table register is triggered by the finish signal of the

egress to egress mirror primitive.

Until now, the designs above only consider one port sce-

nario, which should be extended to support a port range

scenario, e.g., scanning from port 22 to port 80. Since the

address of probe packets already has good randomness, we

choose to scan ports one by one. However, updating the

Port register from the control plane would bring about race

conditions, as the high-speed probe packets are already loop-

ing in the switch pipeline. To address this, we design a port

self-increment mechanism in the data plane. As the control

plane knows in advance the number of times the scanning

address space needs to loop in the PIPR table, we design a

Port_Stride register in the switch pipeline, which is filled

with the number of loop times by the control plane. Every

time the scanning of one PIPR table finishes, the correspond-

ing counter increases by 1, until the value of the Port_Stride

register. Then, the Port register increase by 1 and the counter

is set as 0 again. With all the mechanisms above, the final

design of our random probe address is described in Figure

2, which can generate probe packets to cover the scanning

space completely, without overwhelming target networks.

3.2.2 Adaptive probe rate. To avoid affecting the normal

packet routing functionality of the network, IMap desires a

network-aware method to generate high-speed probe pack-

ets with adaptive rate. The "adaptive" here has two kinds of

meanings. First, the control plane of the IMap switch should

be aware of the bandwidth usage of local switch ports and

nearby network conditions, for further scanning rate ad-

justment. Furthermore, the IMap data plane should have a

rate-adjusting interface, which can receive commands from

the control plane to accurately adjust the scanning rate.

To be control plane awareness, there are two essential fac-

tors that must be carefully considered. First, the IMap control
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plane should acquire the bandwidth usages of each port in

the local switch accurately. To achieve this, we introduce a

counter for each port, which records the accumulated tx/rx

traffic of each port. By reading the value of each counter

periodically, we can estimate the current bandwidth usage of

each port. Being aware of the bandwidth usage in the local

switch is not enough. Sometimes even the local switch has

sufficient spare bandwidths, the nearby networks may be in a

poor condition. This raises our second requirement, the IMap

control plane should also be able to estimate the nearby net-

work conditions. We leave the exploration of nearby network

condition estimation as our future work.

To make the scanning rate of IMap adjustable, we add a

throttle in the switch pipeline, which can be adjusted from the

control plane dynamically. Located in the ingress pipeline,

the throttle is used to determine when the replicator could

replicate the template packets. In general, the switching

ASICs could provide a per-port 100 Gbps packet processing

capability, thus enabling nanosecond-level (e.g., ∼6 nanosec-

onds for 64-byte packets) timestamp for each incoming packet.

Our throttle consists of two registers in the switch pipeline.

The first one is a timestamp register, which is used to record

the timestamp of the last template packet that is successfully

replicated and sent out to the editor. For every incoming

template packet, we calculate the difference between the

timestamp of the current packet and the timestamp recorded

in the timestamp register. Upon the difference exceeds a cer-

tain threshold, we pass the template packet to the replicator

and update the recorded timestamp. The second one is a rate

register, which is used to make the aforementioned threshold

configurable from the control plane. In the ingress pipeline,

the rate register resides in the front of the timestamp register,

and the control plane programs can fill a certain value into

the rate register to achieve the rate control.

3.3 Response Packet Processing

As an in-network scanner, the input for IMap has both

normal packets and response packets. IMap should be able to

distinguish normal packets and response packets correctly.

Meanwhile, since the throughput of response packets may be

large, IMap should be able to efficiently process the response

packets to avoid saturating the storage server.

3.3.1 Distinguishing normal/response packets. To distin-

guish response packets from normal packets, one approach

is to maintain a secret state for each probe packet, and then

verify whether the response packet is valid to the secret state

accordingly. However, the switching ASICs only have limited

memory, which cannot maintain massive secret states.

To resolve this, we design a stateless connection mecha-

nism similar to SYN cookies [5]. Rather than maintaining

states in the switching ASICs, we encode the secret state into

the mutable fields of each probe packet. The fields should

have recognizable effects on fields of the corresponding re-

sponse packets. Specifically, for TCP scanning, we choose

the source port and initial sequence number; for ICMP, we

use the ICMP identifier and sequence number. Taking TCP as

an example, in the egress pipeline, when IMap sends a probe

packet, the editor sets 𝑆𝑟𝑐𝑃𝑜𝑟𝑡 as ℎ𝑎𝑠ℎ(𝐾𝑒𝑦, 𝑃𝑟𝑜𝑡𝑜, 𝑆𝑟𝑐𝐼𝑃,

𝐷𝑠𝑡𝐼𝑃), and 𝑆𝑒𝑞𝑁𝑜 asℎ𝑎𝑠ℎ(𝐾𝑒𝑦, 𝑃𝑟𝑜𝑡𝑜, 𝑆𝑟𝑐𝐼𝑃, 𝐷𝑠𝑡𝐼𝑃, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡,

𝐷𝑠𝑡𝑃𝑜𝑟𝑡), where 𝐾𝑒𝑦 is a secret key maintained in the reg-

ister of the switching ASICs. Accordingly, in the ingress

pipeline, IMap has a verifier, which checks the 𝐷𝑠𝑡𝑃𝑜𝑟𝑡 and

𝐴𝑐𝑘𝑁𝑜 to determine whether the received packet is a valid

response to the probe packet. ICMP scanning works in a

similar manner, except for different packet fields. After the

verifier checks the validation of the response packets, similar

to ZMap [13], IMap also responds a TCP RST packet to each

SYN-ACK packet to close the TCP connection.

One potential issue with the method above is the security

of the verifier. As the switching ASICs only support fairly

simple cryptography operations (e.g., CRC32), attackers may

perform chosen plaintext attacks to restore the𝐾𝑒𝑦, and delib-

erately inject forged response packets to pollute the scanning

results. To further enhance the security of the verifier and

enable pollution-free scanning results, we plan to make IMap

update the 𝐾𝑒𝑦 every 𝑡 seconds. This can reduce the damage

caused by compromised secret keys to a large extent: even

if an attacker somehow manages to obtain the current key,

such knowledge will become useless after at most 𝑡 seconds.

However, simply updating the 𝐾𝑒𝑦 would result in inconsis-

tent scanning results. For example, 𝐾𝑒𝑦1 is updated to 𝐾𝑒𝑦2

after IMap sends the probe packet. Soon the response packet

arrives, the verifier determines this packet is invalid as the

current key cannot obtain a correct validation for packet

headers. We leave the detailed exploration of these security

issues as our future work.

3.3.2 Aggregating response packets. To avoid saturating

the storage server, IMap desires an efficient response packet

processing approach. One intuitive approach is to use hash

mechanisms [14, 23, 29]. However, as the key set is really

large in IMap (e.g., the size of the scanning address space),

even only storing a 2-bit value for each key requires GB-

level memory, which exceeds the memory resources of the

switching ASICs (i.e., 50-100MB [23]) significantly.

To resolve this problem, instead of seeking to store all

the keys/values, we adopt a response packet aggregation

mechanism that is compatible with the current switching

ASICs. More specially, as shown in Figure 3, IMap designs

a dedicated 𝑁 -size register array to temporarily store the

scanning results. For each incoming response packet, IMap

extracts its source IP, source port and state (i.e., active or

inactive), and stores this information in one register. When
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the register array is filled up, the certain response packet

carries all the results from the register array and goes to the

storage server. To determine which register stores which

result, we implement a counter in the ingress pipeline. Upon

an incoming response packet, the counter increases by 1. The

information extracted from the 𝑖-th packet will be stored in

the 𝑖-th register. The 𝑁 -th response packet will trigger the

replication and be sent to the switch port connected with

the storage server, carrying all the results from the register

array. Meanwhile, the counter is reset as 0 and another ag-

gregation loop starts. With this approach, IMap achieves a

𝑁 to 1 aggregation, reducing the pressure for the storage

server significantly. On the side of the storage server, we use

DPDK [11], a high-performance I/O framework, to parse the

result packets and extract the scanning results. Finally, the

scanning results are written into a persistent database.

4 PRELIMINARY EVALUATION

Implementation.We implement a prototype of IMap and

make our source code publicly available here [17]. The data

plane part is implemented with ∼2K lines of P4-16 code for

the Intel Tofino ASIC. In the probe packet generation module,

we set the size of PIPR tables as 65536 and the size of PIPR

table entry as 256. In the response packet processing module,

we set the register array to store results temporarily with a

size of 16 (i.e., N=16). The control plane part is written in ∼3K

lines of C code. It is responsible to initialize the data plane,

receive update notifications and update entries/registers in

the switch pipeline via Barefoot Runtime. To improve the

efficiency of PIPR table updating, we compute all PIPR entries

in advance and adopt batching APIs of Barefoot Runtime

to install entries. Besides, the backend agent running on

the storage server is implemented with DPDK [11], which

extracts the scanning results from the aggregated response

packets and writes the results into a Redis database.

Experimental setup. Our testbed consists of one 3.3 Tbps

Intel Tofino switch and two Dell R730 servers. Both servers

are equipped with Intel(R) Xeon(R) E5-2620 v3 CPUs and

64 GB memory, connected to the switch via 40 Gbps Intel

XL710 NICs. In particular, one server runs as the storage

server and the other server runs as the relay node to bridge

IMap with our campus network, where we can collect and

analyze probe packets generated from IMap. The scanning

target is configured to all ports (0-65535) of our campus

network including 6 Class B IP addresses, a total of up to 25

billion scanning space. The scanning rate is set to 55 Mpps.

Performance. First, wemeasure the scanning throughput to

demonstrate the scalability and fastness of IMap. As shown

in Figure 4, with only one switch port enabled, IMap is able

to generate probe packets at 40 Gbps, which is a 4 times

improvement compared to Zippier ZMap [1, 31]. Besides,

Figure 4: Scanning

throughput.

Figure 5: Probe packet

pressure.

from this figure, we can also see the rolling PIPR filling op-

timization (§3.2) helps IMap achieve high-speed scanning

continuously. With such high-performance scanning, our

campus network can be fast surveyed within 8 minutes. Note

that 40 Gbps is not the upper limit of IMap; instead, when

we enable all ports in the IMap switch, IMap can generate

probe packets at terabit line rate, potentially achieving two

orders of magnitude improvement than the state of the art.

Currently, we do not have such a deployment location and

leave such pressure test as our future work. Second, we ana-

lyze the pressure IMap brings to edge networks to validate

the effectiveness of our random probing technique. Figure 5

shows that several /24 networks in the scanning space only

receive hundreds of probe packets per second even though

the scanning throughput of IMap reaches as high as 40 Gbps.

Such pressure brought by scanning traffic is negligible for

most edge networks.

5 CONCLUSION AND FUTUREWORK

In this paper, we identify the limitations of current net-

work scanners, and sketch the design of IMap, a fast and

scalable in-network scanner with programmable switches.

We conduct preliminary evaluations on the open-source pro-

totype of IMap, and verify its functional correctness and ad-

vantages. In our ongoing work, we are planning to improve

the design and implementation of the IMap prototype, de-

ploy IMap in a large ISP, and conduct extensive experiments

and measurements. We hope IMap can be the cornerstone of

next-generation high-speed network scanners.
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