
MULTA: Enabling Cost-efficient Multi-task
Network Traffic Analysis

Cheng Guo⋆, Menghao Zhang⋆◦, Guanyu Li⋆†, Mingwei Xu⋆
⋆Tsinghua University ◦Kuaishou Technology †Huawei Technologies Co., Ltd

Abstract—Machine learning based network traffic analysis has
been widely used to combat malicious behaviors in various net-
work scenarios. However, most of the applications are specialized
for a single task and cannot cover a wide spectrum of security
threats. Building a machine learning pipeline from scratch for
each traffic analysis task is painstaking and time-consuming.
And it is not practical to deploy several traffic analysis tasks
together due to the high runtime overhead. In this paper, we
propose MULTA to enhance the deployability of traffic analysis
applications. MULTA is a framework that leverages Multi-Task
Learning (MTL) – an emerging paradigm in machine learning
– to enable the efficient parallel deployment of multiple traffic
analysis tasks. Specifically, we devise a sequence-based traffic
feature representation that is informative and general enough to
serve a diverse range of tasks. Then we use the LSTM-based
Multi-gate Mixture-of-Experts (LMMoE) model to learn task
characteristics and propose a size tuning algorithm to optimize
its performance. Considering different data curating methods,
we also present two different training paradigms to construct
MULTA. Our experiments show that MULTA can reduce the
space occupancy of the model by up to 50% and accelerate the
inference process by more than 100% in multi-task scenarios,
which indicates better deployability in real-world networks.

I. INTRODUCTION

Network traffic analysis refers to a class of tasks that infer
sensitive information from network communication patterns
to identify malicious behaviors. With the rapid deployment
of data encryption technologies (e.g., SSL/TLS), traditional
payload-based traffic analysis approaches are losing efficacy.
In recent years, researchers are turning to machine learning
(ML), especially deep learning, to glean useful information
from encrypted traffic without touching packet payloads.
These ML-powered traffic analysis applications have shown
remarkably high detection accuracy in a wide range of tasks,
such as website fingerprinting [1], [2], convert channel detec-
tion [3], [4], intrusion detection [5] and IoT device fingerprint-
ing [6].

In real-world deployment scenarios, networks are usually
facing complicated security situations and are threatened by
diverse attack vectors, which drives operators to employ
multi-dimensional detection and protection mechanisms. For
example, IoT networks usually raise security concerns for their
vulnerability to attacks. To prevent IoT devices from being
exposed to most common security threats, an IoT gateway

The research is supported by the National Natural Science Foundation
of China under Grant 62221003, China Postdoctoral Science Foundation
(2022M720202), and Beijing Postdoctoral Research Foundation (2022-ZZ-
078).

usually deploys Botnet detection as well as DoS detection
applications [5]. Another example is the gateway of enter-
prise networks, which demands higher security requirements.
Intrusion detection applications are always indispensable, and
covert channel detection, together with fingerprinting-based
systems, are also preferred to strengthen the security guar-
antee [7].

However, it is not easy to integrate multiple ML-based
traffic analysis tasks together at a single deployment point.
In a typical pipeline of ML, feature vectors are extracted
from the raw traffic, and the ML model exploits them for
training and inference. The features specified by each traffic
analysis task are different, and the ML models they use also
vary significantly. Therefore, if we simply put these tasks
together, we need to design them separately and deploy several
ML pipelines in parallel to get the results of each task.
This is not a promising solution because of the following
reasons. First, each ML pipeline is built from scratch, which
needs task-specific expert knowledge to devise a representative
feature extraction scheme and an effective ML model. Second,
parallel ML pipelines require a huge amount of runtime
resources, which raises high costs in real-world networks. In
some scenarios (e.g., IoT gateway), the deployment platforms
have strictly limited resources and cannot afford multiple
traffic analysis applications. Even if the resource is not an
intrinsic restriction, such as enterprise network gateways, the
cost-efficiency of these traffic analysis tasks should also be
considered carefully due to financial issues.

To alleviate the problems caused by parallel ML traffic
analysis pipelines, in this paper, we propose MULTA, a cost-
efficient multi-task traffic analysis framework. MULTA is pow-
ered by Multi-Task Learning (MTL) – an emerging learning
paradigm in machine learning, and can leverage the relevancy
among multiple traffic analysis tasks to fuse them into a single
model. Our key observation is that the traffic analysis tasks
usually have substantial similarities, which makes it feasible
to adopt the methodology of MTL. To implement MULTA, we
generalize the traffic feature extraction process by proposing
a sequence-based feature representation that can be exploited
by different tasks. Then we use the LSTM-based Multi-gate
Mixture-of-Experts (LMMoE) network to discover common
knowledge among tasks and propose a size tuning algorithm to
optimize its cost-efficiency. With these designs, multiple traffic
analysis tasks can share a single feature extraction process and
the same ML model, which means only one ML pipeline is
required. Our design brings substantial benefits to real-world979-8-3503-1090-0/23/$31.00 © 2023 IEEE

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6231

deployment scenarios. First, the construction efforts of traffic
analysis tasks can be significantly reduced, since every phase
of the ML pipeline is general. Second, the information sharing
of both feature representation and the LMMoE model promises
a much lower runtime cost. In practice, network operators
usually employ different methods to collect data for target
tasks. To this end, we propose two paradigms – Aurora and
Rainbow – to train our framework under different dataset
layouts. We set up different experimental configurations to
evaluate MULTA, and the results show that MULTA is highly
effective with lower resource overhead.

II. BACKGROUND AND RELATED WORK

A. ML-based Network Traffic Analysis
Network traffic analysis is the technique that extracts sen-

sitive information from traffic communication patterns. In this
paper, we focus on the works which leverage ML to discover
implicit patterns from the encrypted traffic. Another type of
work that relies on application-level semantics or payload
inspection is out of our scope. Here we present several typical
traffic analysis tasks.

• Website fingerprinting is a traffic analysis task that iden-
tifies the website user visits. Recent researchers extract
sequence-based features from network connections and
use a variety of deep learning models to conduct classi-
fication under different assumptions [1], [2].

• Covert channel detection aims to uncover the stealthy
communications that parasitize legitimate traffic. Attack-
ers usually exploit temporal and spatial features of a
network transmission to build a covert channel, which
leaves chances for researchers to devise ML-based detec-
tion algorithms by analyzing the packet timing and size
properties [3], [4].

• Intrusion detection is vital for high-value networks since
it can fight against malicious activities. By analyzing
the traffic at various granularities, ML-based intrusion
detection systems can discriminate between normal and
abnormal network traffic [5].

Most of the existing works focus on the detection efficacy
rather than the deployability of traffic analysis tasks. Although
in recent years there have been efforts to leverage newly-
emerging hardware to accelerate traffic analysis [8], [9], they
have not addressed the issue of multi-task deployability. For a
practical traffic analysis framework, the task scope it can cover,
the system ease-of-use, and the resource overhead should all
be given attention. We are the first to take these factors into
consideration in ML-based network traffic analysis.

B. Multi-task Learning
Multi-task learning leverages the commonalities among a

series of tasks to fuse them within a single ML model. The
early works of MTL [10], [11] carry out the idea of hard
parameter sharing, which uses a single shared neural network
to hold the common knowledge of all tasks. These approaches
rely on a strong similarity among tasks to harmonize them
within a single model, and are sensitive to outliers since there
is little headroom for task differences.

Online Inference

Offline Training

Flow Table

Metadata
Generation

&
Feature

Extraction

Latecomer
Task

Multi-task
Traffic Dataset

Runtime
Traffic

Rainbow
Training

Incremental
Training

Aurora
Training

Task 1 Task 2

Task 3 (Latecomer)

Deploy

LMMoE

LMMoE

Model Size
Tuning

Model
Building

Fig. 1. MULTA architecture.

Researchers seek for more flexible sharing mechanisms in
recent studies. Soft parameter sharing shares the network
structures in a moderate manner, which enables a better way
to model the complicated relationship of multiple tasks. Lu et
al. [12] propose a greedy method to discover the hierarchical
grouping relationship among tasks during the training process.
Misra et al. [13] introduce cross-stitch units to learn an optimal
split of network layers. Instead of sharing model structures
directly, Duong et al. [14] and Yang et al. [15] choose the
method of regularization. They add constraints to network
layers to bound the distance between their parameters, using
L2 and trace norm respectively. The MMoE model [16] we
leverage in this paper is a variant of the vanilla MoE model
[17]. MMoE employs an ensemble of experts to perform
inference, just like MoE, and adds task-specific gates to realize
a weighted voting mechanism on the results of experts. We
introduce MMoE to multi-task traffic analysis for its flexibility
in modeling complicated task relationships.

III. MULTI-TASK TRAFFIC ANALYSIS

In this section, we present how to build our multi-task traffic
analysis framework MULTA to meet the requirements of real-
world deployment. We illustrate the overall architecture of
MULTA in Fig. 1. Given a set of target tasks, we first perform
a size tuning step to build a suitable LMMoE model. In the
training phase, the traffic feature representations are extracted
from the dataset. The LMMoE model exploits these features to
learn the characteristics of multiple tasks under different train-
ing methodologies. When MULTA gets deployed, it performs
multi-task online inference on the runtime traffic.

A. Informative Feature Representation

To minimize the feature extraction cost of the multi-task
traffic analysis pipeline, we seek a general traffic feature
representation that can serve as many traffic analysis tasks
as possible, and preserve the inherent information of the tasks
for ML training and inference. In some other application areas
of multi-task learning, the input features of tasks are naturally
identical, such as CV [13] and NLP [18]. However, traffic
analysis presents significant differences as the feature sets
claimed by different traffic analysis tasks show a huge va-
riety. For instance, website fingerprinting applications usually
prefer a sequence of packet directions, and intrusion detection

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6232

TABLE I
THE PACKET FEATURE METADATA USED BY TRAFFIC ANALYSIS

APPLICATIONS

Traffic Analysis Application Packet Feature Metadata
Size Interval Direction Headers

Website
fingerprinting

AWF [1] ✓
TF [2] ✓

Botnet
detection

PeerShark [19] ✓ ✓
ODCLA [20] ✓ ✓ ✓

Covert channel
detection

MPTD [3] ✓ ✓ ✓
NPOD [21] ✓ ✓ ✓ ✓

Intrusion
detection

Kitsune [5] ✓ ✓ ✓
HELAD [22] ✓ ✓ ✓

Application
fingerprinting

CAAB [23] ✓ ✓
RSAI [24] ✓ ✓

applications often rely on a range of coarser-grained but more
complicated statistical features. Besides, there are also tasks
that require semantic information derived from packet header
fields. Because of such diversity and specificity, devising a
proper feature set for a given traffic analysis task typically
involves specialized expert knowledge and careful tuning.

Our design of general traffic feature representation is in-
spired by an extensive investigation on state-of-the-art traffic
analysis applications. We observe that four kinds of fundamen-
tal packet feature metadata are vital to profile the behavior
of network traffic. Packet size and packet time interval are
two key elements that can describe the spatial and temporal
characteristics of the traffic. Packet direction is a strong rep-
resentation of the bidirectional communication pattern, while
some specific header fields provide crucial information on
the protocol semantic level. Based on the above packet-level
metadata, traffic analysis applications usually compute a set
of high-level features (e.g., max, mean, etc.). The metadata
picked by different traffic analysis applications are summa-
rized in Table I. To make our design general, we choose to
use the neural network to automatically learn discriminating
high-level features from the feature metadata. Previous works
also proved that the front-part packets of flows are sufficient
to distinguish abnormal traffic effectively [25], which enables
the early detection of malicious behaviors. Therefore, we form
our traffic feature representation as a sequence of metadata
extracted from the first several packets of a network flow.
Specifically, our traffic feature representation F is denoted as
follow

F = {Mk}k=1,2,...,n (1)

where Mk is the metadata unit of k’th packet, composed by

Mk = {sk, ik, dk, hk} (2)

where sk, ik and dk denote the size, time interval and direction
of the packet, and hk denotes the selected header fields.

This traffic feature representation establishes a simple yet
cost-effective feature extraction phase for MULTA. It is easy to
be deployed even on an edge platform with limited resources
(e.g., IoT gateway). And the feature form of sequence-based
metadata is also an informative traffic feature representation
that can be shared among several tasks.

Gate of
Task1

…

Dense Tower Dense Tower

Output1 Output2

Task1

…

LSTM-based Experts

Task2

Input Feature
Representation

Gate of
Task2

Metadata Metadata Metadata… …

Fig. 2. The LMMoE used in MULTA.

B. Cost-efficient LSTM-based Multi-gate Mixture-of-Experts

MULTA employs LSTM-based MMoE network to seek
better cost-efficiency without harming the detection efficacy
in multi-task scenarios. MMoE [16] is proposed to model
complicated relationship among multiple tasks. Along with
the idea of ensemble learning, the cornerstone of MMoE
comprises a set of expert networks, which hold common and
individual knowledge of tasks. The MMoE model we used is
shown in Fig. 2. The experts learn different aspects of the
hidden representation from the multi-task training data, thus
producing differentiated outputs. And the outputs of experts
are weighted by a series of task-specific gates. The ensemble
of experts, along with the gates, takes the traffic feature as
input. Since our traffic feature representation encodes the
sequential order of packets intrinsically, we use LSTMs as
the expert networks to exploit the temporal information of the
metadata sequence (i.e., the LSTM-based MMoE, LMMoE).
For the output of the model, there is a simple header for each
task connected to the gated experts, which is composed of
towered dense layers and an output layer.

MMoE enables a moderate parameter sharing paradigm
among the target tasks. Benefiting from the flexibility of
multiple independent experts, different tasks can hold different
hidden representations inside the network. Suppose that the
tasks are aggregated into several clusters in the latent space,
MMoE can preserve the adjacency by parameter sharing
within an expert, and keep enough tolerance for task variety
among the isolated experts. The gates are trained to selectively
combine the results of experts together and produce task-
specific insights for the output headers, allowing tasks to
consult experts differently.

Multi-task traffic analysis is a cost-intensive scenario that
requires the ML model to hold its efficacy even with limited
size. However, we usually do not have quantitative knowledge
about the internal relevance of traffic analysis tasks, which
prevents us from determining the size of the model a pri-
ori. Enlightened by the structure of MMoE, we propose an

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6233

Algorithm 1: The model size tuning on a task set
Input:

A task set St with cardinality N ,
Expected single-task accuracy atarget,
Acceptable multi-task accuracy drop adrop,
Expert size initial search point sstart.

Output:
Expert size se,
Experts number ne.

begin
/* Search for expert size se. */
se ← 0;
for task in St do

s← sstart;
lb← 0, ub← sstart;
do

a← accuracy of (LSTM, s, task);
if a < atarget then

lb← ub, s← 2 ∗ ub, ub← 2 ∗ ub;
else

s← (lb+ ub)/2;
end

while a < atarget;
if ub < se then

continue; // Pruning.
end
bisearch(LSTM, s, (lb, ub), a ≥ atarget);

// Pruning when ub < se.
se ← max(s, se);

end
/* Search for experts number ne. */
ne ← N/2;
bisearch(LMMoE, ne, (1, N),
a ≥ atarget − adrop);

end
function accuracy of(model, size, task):
/* train task on model sized size and get

the final accuracy. */

function bisearch(model, size, range, cond):
/* conduct binary search to find minimal

size in range that satisfies cond by
training model. */

optimization algorithm to automatically tune the size of the
model for MULTA. In the LMMoE model used by MULTA,
we need to specify two critical hyper-parameters that control
its volume, i.e., the size of an LSTM expert and the number
of LSTM experts. They have different effects in the context
of multi-task traffic analysis. An LSTM expert is basically a
stand-alone component in MMoE, and its size determines the
capability to handle intra-task knowledge. On the contrary,
the number of LSTM experts is tuned to adjust the tolerance
of the inter-task differences. There is a trade-off we should
notice. To retain enough detection efficacy, the values of
these parameters should not be too low. But higher values

Feature set Task 1 Task 3Task 2

Aurora Rainbow

LMMoE LMMoE

①

②

③

① Loss 1

② Loss 2

③ Loss 3

①

① Weighted loss

Training step in an epoch

Data Labels Data Labels

Dataset
Layout

Model
Training

Fig. 3. Two dataset layouts and corresponding training paradigms.

also incur the expansion of model size as well as costs.
Searching exhaustively for the best values of these parameters
is laborious. Our algorithm aims to efficiently find the near-
optimal hyper-parameters considering the balance between
detection efficacy and cost.

The algorithm is substantially based on an observation that
the task whose complexity can be handled by a single expert
will at least not perform worse under multiple experts. Then
we can decouple the size of a single expert and the number
of experts. First, we search for the minimal size of an LSTM
expert that can still hold the most informative task. Given an
expected single-task accuracy, we train the tasks respectively
on an auxiliary single LSTM expert model. For each task, we
use binary search to find the smallest size of the LSTM expert
that can meet the accuracy requirement. To further reduce
the search overhead, the recorded lower bound of previous
tasks can be leveraged to prune the search space in the search
procedure of subsequent tasks. Once the size of an LSTM
expert is determined, we conduct a second step to find the set
of experts with minimal cardinality but can still cover the task
relationships. In this step, we use the LMMoE and fix the size
of a single LSTM expert to the value found previously. We
train all the tasks simultaneously and use binary search to find
a minimal number of experts that guarantee the accuracy of
every task. We limit the upper bound in this step to the number
of tasks in order to stay cost-efficient while leaving enough
headroom. More details are presented in Algorithm 1. Notice
that the task may be not able to reach the target accuracy in
the first step, the algorithm can early stop when the accuracy
doesn’t rise along with the expert size.

C. Flexible Training Paradigms

We propose two paradigms to train MULTA, namely Aurora
and Rainbow. They can cope with two typical deployment
scenarios. As the layouts of datasets vary, the model training
approaches also diverge. We illustrate these two cases in Fig. 3.

In Aurora, the tasks are tightly coupled by a fused dataset.
Every data item in the dataset is multi-labeled by all tasks. This
is a typical way to establish a multi-task traffic analysis dataset.
For example, a network operator may dump raw traffic from
the monitor point, and label them using a variety of analysis
tools. This kind of methodology promises better consistency
between the model training and deployment contexts. In the
training phase of Aurora, the entire dataset is fed to the model,

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6234

0.85 0.90 0.95 1.00
Average AUC of tasks

0

2

4

6

8

of

 m
od

el
 p

ar
am

et
er

s (
ki

lo
)

Kitsunes
LSTMs

MulTA (empirical)
MulTA (optimized)

0.85 0.90 0.95 1.00
Average AUC of tasks

0

1

2

3

4

5

6

of

 C
PU

 c
yc

le
s (

m
illi

on
)

Fig. 4. The AUC-cost balance curves of different model combinations (lower
right is better in both subfigures).

and the model learns from all the tasks simultaneously. The
losses of tasks are weighted to form a global loss to drive the
optimization step.

In Rainbow, however, the origination of the multi-task
dataset can be different. One may acquire single-task datasets
from various sources for each task, and then merge them to
build a huge striped dataset to perform multi-task training.
For example, network operators may utilize some open-source
datasets – which can be more representative and up-to-date –
to equip their model with stronger defense capabilities. And
these datasets are usually customized to cover a specific task.
When a multi-task dataset is merged with several single-task
datasets, each task can only have available labels on part of the
data items, so we choose another training paradigm Rainbow
to update the model. In the training phase of Rainbow, we
split the multi-task dataset into several minisets and ensure the
labels within one miniset all come from the same task. Then in
a single epoch, we train the model on each miniset in a round-
robin manner, while freezing the individual header layers of
the tasks that the current miniset does not involve. Given that
the latecomer tasks may pull down the detection accuracy of
former tasks, one can increase the number of epochs to let the
model better recognize the task commonalities to reduce the
jitter.

IV. EVALUATION

We implement MULTA with Python. The prototype consists
of a feature extractor and an LMMoE model. The feature
extractor can extract feature vectors from raw network traf-
fic. We build the LMMoE model with Keras (Tensorflow
backend). The server we use to train and deploy MULTA
is equipped with Intel(R) Core(TM) i7-10700F CPU and
NVIDIA GeForce GTX 1650 GPU.

The datasets we use are from a state-of-the-art intrusion
detection application, Kitsune [5]. Kitsune performs a series
of attacks on its testbed which consists of an IoT network
and a surveillance network, and then records the attack traffic.
We choose three detection tasks from all of the Kitsune
attack behaviors to form our target task set, i.e., SSDP Flood,
SSL Renegotiation and SYN DoS.

TABLE II
THE DETECTION AUCS OF TWO PARADIGMS DURING THE TRAINING

PROCESS.

Epochs 2 4 6 8 10

Aurora 0.9358 0.9429 0.9633 0.9694 0.9681
Rainbow 0.9407 0.9573 0.9763 0.9710 0.9736

A. Detection Efficacy & Cost-efficiency
To illustrate that MULTA gets a better trade-off between

detection efficacy and cost-efficiency under multi-task sce-
narios, we measure the AUC-cost balance curves of various
methods. We deploy three Kitsune tasks in parallel with the
following model combinations: 1⃝ three single-task Kitsune
models, 2⃝ three single-task LSTMs, 3⃝ MULTA whose model
size is empirically selected and 4⃝ MULTA whose model
size is optimized with our tuning algorithm. We assume an
edge scenario where only weak CPUs are available to deploy
the models. Two performance metrics are used to quantify
the space and time cost-efficiency: the number of model
parameters and the elapsed CPU cycles of a single inference
action. For model combinations 1⃝ 2⃝ 3⃝, we adjust the size
of models to achieve different trade-off decisions between
detection efficacy (AUC) and cost-efficiency. For 4⃝, we pick
the AUC points in 3⃝ as the target accuracy of the size
tuning algorithm and also measure the final cost. The results
are displayed in Fig. 4. The left subfigure shows that since
MULTA enables information sharing among the three tasks, it
needs fewer amount of model parameters to achieve identical
detection AUC, which indicates better space efficiency. In the
right subfigure, we can see that MULTA consumes fewer CPU
cycles to complete an inference action, which means its time
efficiency is also competitive. Such an improvement is not
only brought by the reduction of model size, but also benefits
substantially from the better cache affinity of our single-model
multi-task architecture. Besides, it is shown that our tuning
algorithm is able to further optimize the AUC-cost trade-off on
the basis of empirically determined sizes of models, especially
under high accuracy requirements.

B. Comparison between two Training Paradigms
We evaluate the detection performance of MULTA under

the two training paradigms, Aurora and Rainbow. We organize
the three single-task datasets of Kitsune in two different ways
to form two multi-task datasets. For Aurora, we merge the
three datasets into one and supplement the missing labels in
other task dimensions with negative labels (i.e., mark them
as ”normal” traffic). For Rainbow, we simply stack the three
datasets together. Then we train MULTA on the two multi-task
datasets respectively. We record the average AUCs of three
tasks during the training processes. The results are displayed
in Table II. MULTA achieves pretty good detection accuracy
under both Aurora and Rainbow, while the convergence speeds
also show no obvious distinction. We attribute the lower AUCs
of Aurora to the error-prone label filling procedure during the
dataset merging, and this will not occur in realistic scenarios
of Aurora since the multi-labeled datasets are collected in an
identical position.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6235

0 2 4 6 8 10 12 14 16 18 20
Training Epochs

0.6

0.7

0.8

0.9

1.0

AU
C

Task 1
start

Task 2
start

Task 3
start

Task 1
strengthen

Task 1 Task 2 Task 3

Fig. 5. Detection AUCs of original and latecomer tasks during the incremental
training process.

C. Incremental Deployment

In a real deployment scenario, new security challenges con-
stantly arise, and network operators have to append latecomer
tasks to the running framework. Leveraging the three tasks of
Kitsune, we evaluate MULTA on its stability upon incremental
deployment. We add new tasks to an already trained model and
observe the disturbance it causes to the original tasks. First,
we train the model on a single task, and after it is finished
we keep on training the same model on the second task, and
then the third one. After these steps, we expect the model to
be able to support all three tasks. We measure the AUCs of
each task during the training procedure. The results are shown
in Fig. 5. We can see that different tasks react differently
when a new task joins. The detection efficacy of Task 2 is
maintained during the training of latecomer Task 3, which is
the most ideal case in our expectation. However, Task 1 shows
stronger sensitivity upon the arrival of latecomers, since its
detection efficacy is drastically pulled down by Task 2 and
3. Nevertheless, we use the same dataset to strengthen the
training results of Task 1 (the rightmost part of Fig. 5). It is
effortless for us to bring the accuracy back in merely a single
epoch. This is because the learned knowledge of Task 1 is not
destroyed but hidden inside the multi-task model.

V. CONCLUSION

In this paper, we identify the deployability predicament
of ML-based network traffic analysis applications, which has
become increasingly important due to the growing number of
diverse network security threats. To address this, we propose
MULTA, a multi-task traffic analysis framework to exploit the
underlying relevance among different traffic analysis tasks and
integrate them within a single ML model. To generalize the
feature extraction process, we devise a sequence-based feature
representation to meet the requirements of various tasks. We
leverage the LMMoE model to learn from the input features
and preserve common and task-specific knowledge, and then
use a tuning algorithm to automatically find the suitable size
of the model. We also employ two training paradigms –
Aurora and Rainbow – to train MULTA. The evaluation shows
that MULTA promises close detection accuracy and better
cost-efficiency in comparison with other baseline methods
when serving multiple tasks, and can also comply with the
requirements of practical scenarios. We hope MULTA can help
network operators to consolidate their security systems easily.

REFERENCES

[1] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in NDSS,
2018.

[2] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in CCS, 2019, pp. 1131–1148.

[3] D. Barradas, N. Santos, and L. Rodrigues, “Effective detection of
multimedia protocol tunneling using machine learning,” in {USENIX}
Security, 2018, pp. 169–185.

[4] J. Han, C. Huang, F. Shi, and J. Liu, “Covert timing channel detection
method based on time interval and payload length analysis,” Computers
& Security, vol. 97, p. 101952, 2020.

[5] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” in
NDSS, 2018.

[6] N. Msadek, R. Soua, and T. Engel, “Iot device fingerprinting: Machine
learning based encrypted traffic analysis,” in IEEE WCNC. IEEE, 2019,
pp. 1–8.

[7] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu,
“Tripod: Towards a scalable, efficient and resilient cloud gateway,” IEEE
JSAC, vol. 37, no. 3, pp. 570–585, 2019.

[8] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi,
P. Costa, H. Haddadi, and R. Bifulco, “Re-architecting traffic analysis
with neural network interface cards,” in USENIX NSDI, 2022, pp. 513–
533.

[9] T. Swamy, A. Zulfiqar, L. Nardi, M. Shahbaz, and K. Olukotun,
“Homunculus: Auto-generating efficient data-plane ml pipelines for
datacenter networks,” in ACM ASPLOS, 2023, pp. 329–342.

[10] R. Caruana, “Multitask learning: A knowledge-based source of inductive
bias,” in ICML, ser. ICML’93. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, p. 41–48.

[11] J. Baxter, “A bayesian/information theoretic model of learning to learn
via multiple task sampling,” Machine learning, vol. 28, pp. 7–39, 1997.

[12] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, “Fully-
adaptive feature sharing in multi-task networks with applications in
person attribute classification,” in IEEE CVPR, 2017, pp. 5334–5343.

[13] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in IEEE CVPR, 2016, pp. 3994–4003.

[14] L. Duong, T. Cohn, S. Bird, and P. Cook, “Low resource dependency
parsing: Cross-lingual parameter sharing in a neural network parser,” in
ACL-IJCNLP, 2015, pp. 845–850.

[15] Y. Yang and T. M. Hospedales, “Trace norm regularised deep multi-
task learning,” in ICLR. OpenReview.net, 2017. [Online]. Available:
https://openreview.net/forum?id=rknkNR7Ke

[16] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, “Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts,”
in ACM KDD, 2018, pp. 1930–1939.

[17] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–87,
1991.

[18] A. Søgaard and Y. Goldberg, “Deep multi-task learning with low level
tasks supervised at lower layers,” in ACL, 2016, pp. 231–235.

[19] P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan, “Peershark:
detecting peer-to-peer botnets by tracking conversations,” in 2014 IEEE
S&P Workshops. IEEE, 2014, pp. 108–115.

[20] M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal,
S. Samtani, J. Crichigno, and N. Ghani, “On data-driven curation,
learning, and analysis for inferring evolving internet-of-things (iot)
botnets in the wild,” Computers & Security, vol. 91, p. 101707, 2020.

[21] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing
through network-protocol obfuscation,” in ACM CCS, 2015, pp. 57–69.

[22] Y. Zhong, W. Chen, Z. Wang, Y. Chen, K. Wang, Y. Li, X. Yin, X. Shi,
J. Yang, and K. Li, “Helad: A novel network anomaly detection model
based on heterogeneous ensemble learning,” Computer Networks, vol.
169, p. 107049, 2020.

[23] H. F. Alan and J. Kaur, “Can android applications be identified using
only tcp/ip headers of their launch time traffic?” in WiSec, 2016, pp.
61–66.

[24] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
TIFS, vol. 13, no. 1, pp. 63–78, 2017.

[25] Y.-s. Lim, H.-c. Kim, J. Jeong, C.-k. Kim, T. T. Kwon, and Y. Choi,
“Internet traffic classification demystified: on the sources of the discrim-
inative power,” in Co-NEXT, 2010, pp. 1–12.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

6236

