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Abstract

The feature extractor component in today’s ML-based traf-
fic analysis applications is becoming a key bottleneck. While
mainstream software-based approaches can support flexible
feature extraction, they fail to scale to multi-100Gbps net-
work speed easily. Meanwhile, hardware-accelerated solu-
tions can scale to high throughput, but cannot flexibly support
generic traffic analysis applications. In this paper, we pro-
pose SuperFE, a feature extraction framework that allows
users to extract traffic features efficiently and flexibly. Su-
perFE leverages the capabilities of both new-generation pro-
grammable switches and SmartNICs, with three key designs.
First, SuperFE presents a user-friendly and extensible inter-
face to support customized feature extraction policies, shield-
ing underlying hardware implementation details and complex-
ities. Second, SuperFE introduces a high-performance multi-
granularity key-vector cache system in the programmable
switches to batch necessary feature metadata for massive
amounts of packets. Third, SuperFE exploits the multi-core
parallel and hierarchical memory of SoC-based SmartNICs to
achieve efficient feature computation with diverse streaming
algorithms. Evaluations using our prototype demonstrate that
SuperFE enables various state-of-the-art traffic analysis ap-
plications to efficiently extract features from multi-100Gbps
raw traffic without compromising detection accuracy, and
achieves nearly two orders of magnitude higher throughput
than the software-based counterparts.

CCS Concepts: • Networks → Programmable networks;
In-network processing; Network security.
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1 Introduction

Traffic analysis [25, 46] refers to a class of applications
that infer sensitive information to identify malicious behav-
iors from network communication patterns. With the preva-
lence of encryption and other evasion techniques that make
traditional payload-based analysis of network traffic infea-
sible, machine learning (ML), especially deep learning, is
becoming the de facto solution to achieve superior accu-
racy [1, 41, 45, 55, 61]. By using ML-based traffic analysis
techniques, network administrators can identify cybercrimi-
nals (e.g., botmasters) that proxy their attack traffic via com-
promised machines or public relays in order to conceal their
identities [29, 53, 64, 74, 79], pinpoint individuals engaged
in illegal activities within privacy technologies such as Tor
(The Onion Router) [24, 49, 68], detect covert channel attacks
that exfiltrate confidential information from compromised ma-
chines [10, 21], and prevent malicious activities that intrude
the network [41].

A common ML-based traffic analysis application [25, 46]
typically comprises two components: a feature extractor that
extracts necessary traffic features – in the form of feature vec-

tors – from raw network traffic, and a behavior detector com-
ponent that leverages ML algorithms to identify desired net-
work behaviors. For instance, Kitsune [41], a neural network-
based network intrusion detection system, first employs a
feature extraction framework to obtain 115-dimension traf-
fic feature vectors with incremental statistics over a damped
window, and then uses an online detection algorithm (an en-
semble of autoencoders) to take feature vectors as input to
detect abnormal packets that have high root mean squared
error (RMSE) values. As another example, a website finger-
printing approach on Tor [45] extracts a set of features from
raw network traffic and uses a k-NN classifier to identify
which website an individual accesses.

https://doi.org/10.1145/3689031.3696081
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However, a closer look into today’s ML-based traffic anal-
ysis applications shows that the feature extractor components
are becoming a key bottleneck. While various studies (e.g.,
via GPUs [12], TPUs [32]) are manifested to accelerate ML-
based behavior behaviors, the status quo of feature extractors
has not experienced much progress. Existing mainstream fea-
ture extractors [29, 41, 46, 68] usually use port mirroring to
duplicate collected network traffic, and leverage a large set of
servers to store large volumes of network traffic and extract
the desired traffic features. These software-based solutions
incur substantial communication, storage, and computation
overheads, especially for multi-100Gbps networks. Some re-
cent works [8, 15, 28, 59, 71, 73, 81] attempt to accelerate
the feature extractor with specialized network hardware, and
implement the feature extractor, even the entire traffic anal-
ysis task in the data plane, which significantly reduces the
requirements for extra bandwidth and servers. However, re-
stricted by the computational model and memory resources
of the network hardware, none of them are flexible enough to
support generic and versatile traffic analysis applications.

In this paper, we present SuperFE, a feature extraction
framework that enables the generation of desired traffic fea-
tures efficiently and flexibly, and provisions feature extraction
as a service to ML-based traffic analysis applications. By
leveraging the capabilities of new-generation programmable
switches and SmartNICs, SuperFE is able to extract feature
vectors from multi-100Gbps network traffic efficiently. Be-
sides, by providing expressive policy interfaces and designing
smart data structures and algorithms in the underlying pro-
grammable switches and SmartNICs, SuperFE is able to sup-
port generic ML-based traffic analysis applications flexibly.

In particular, SuperFE’s improved performance and flexibil-
ity are derived from the following three key techniques. First,
SuperFE presents a user-friendly and extensible interface to
help users write their own feature extraction policies, without
regard to underlying hardware implementation and complexi-
ties in programmable switches and SmartNICs. Second, Su-
perFE introduces a high-performance multi-granularity key-
vector cache system in the programmable switches to batch
necessary feature metadata for massive amounts of packets,
in order to significantly reduce the workload for SmartNICs.
Third, SuperFE exploits the multi-core parallel and hierar-
chical memory of SoC-based SmartNICs to achieve efficient
feature computation with streaming algorithms, in order to
produce feature vectors based on batched metadata from the
switches. We implement a proof-of-concept prototype of Su-
perFE and conduct extensive experiments. Evaluation results
show that SuperFE empowers various state-of-the-art traf-
fic analysis applications to efficiently extract features from
multi-100Gbps raw traffic with nearly no detection accuracy
degradation, and also exhibits nearly two orders of magnitude
higher throughput than their software-based counterparts. To
the best of our knowledge, although programmable switches

and SmartNICs have been used together in some certain traf-
fic analysis applications [50], SuperFE is the first research
work that leverages both of them to support generic ML-based
traffic analysis applications.

In summary, this paper makes the following contributions:

• We show the background of ML-based traffic analysis
applications, and illustrate the design goals for an ideal
feature extractor (§2).

• We propose SuperFE, a feature extraction framework
that enables users to generate traffic features efficiently
and flexibly (§3). SuperFE provides a set of policy
interfaces for users to express the traffic feature ex-
traction policy flexibly (§4), a high-performance multi-
granularity key-vector cache system to batch packet
feature metadata in programmable switches (§5), and a
set of efficient streaming algorithms to compute feature
vectors in SmartNICs (§6).

• We implement a prototype of SuperFE, and conduct
extensive experiments to demonstrate the flexibility and
performance of SuperFE (§7, §8).

Finally, we make some discussions in §9, summarize the
related works in §10, and conclude this paper in §11.

2 Background and Motivation

In this section, we introduce the background of ML-based
traffic analysis applications, and present the design goals and
how existing systems fall short that motivates this work.

2.1 ML-based Traffic Analysis

Herein we review a few popular types of ML-based traf-
fic analysis and discuss the pertaining applications. Traffic
analysis that focuses on application-layer protocol semantics
without ML algorithms [66] is out of the scope of this paper.
Botnet Detection. Botnets are severe threats to organizations,
and they are becoming more difficult to be taken down with
the emergence of decentralized P2P and stealthy communica-
tions. To mitigate this, researchers have proposed to identify
bots through analysis of packet sizes and packet time inter-
vals [43]. These techniques can help network administrators
prevent and mitigate stealthy botnet threats effectively.
Website Fingerprinting. Privacy-enhancing technologies
such as VPNs and Tor enable attackers to hide their source or
destination IP addresses and the content of the visited web-
sites, posing significant challenges for authorities in terms of
accountability. Fortunately, website fingerprinting is a promis-
ing technique to identify which websites attackers access by
feeding the collected traffic features to ML pipelines [24,
49, 68]. This can assist authorities in pinpointing individuals
engaged in illegal activities.
Covert Channel Detection. Attackers can exfiltrate confiden-
tial information from compromised machines in organizations
through timing covert channels, without being detected by
classic firewalls or intrusion detection systems. Nevertheless,
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network administrators can still uncover stealthy communica-
tion patterns by capturing packet time intervals and analyzing
them with ML techniques [10, 21], which is invaluable for
protecting the property of assets in organizations.
Intrusion Detection. Network intrusion detection systems are
of great importance to monitor traffic for malicious activities.
State-of-the-art intrusion detection systems extract contextual
features from network traffic and use ML algorithms to differ-
entiate normal and abnormal traffic patterns [20, 41], which
is crucial to guarantee the security of the protected networks.

From these applications, we can see that feature extrac-
tor plays a crucial role in the procedure of ML-based traffic
analysis. Although we have seen a trend from manual fea-
ture engineering to fully learned feature extraction by neural
networks in the deep learning field, fully learned feature ex-
traction does not mean that raw packets can be input into
neural networks directly. Some typical feature extraction pro-
cedure is still required to convert raw packets into feature
vectors that are ready to be used by deep learning algorithms,
such as packet arrival times, sizes, directions, etc. As a result,
we believe a powerful feature extractor is necessary to enable
next-generation ML-based traffic analysis applications.

2.2 Design Goals

We aim to build a feature extractor solution that can achieve
the following two design goals.
Scalable to multi-100Gbps with low overheads. Recently
the network bandwidth at the network aggregation points in
regional ISPs has already reached multi-100s of Gbps [54, 70].
Many network device providers [13, 48] and standard organi-
zations [2] are embracing the era of 800Gbps network speed.
Such a high network bandwidth necessitates the feature extrac-
tor to extract feature vectors from raw traffic whilst keeping
pace with the traffic volume. However, current mainstream
software-based feature extraction approaches [29, 41, 46, 68]
usually use port mirroring at switches to steer network traffic,
and also require a set of servers to store the intercepted traffic
and extract the desired feature vector, which incurs consider-
able communication, computation, and storage overheads. Be-
sides, such approaches usually make an after-the-fact analysis
assumption [11] that is not real-time and cannot catch mali-
cious network activities timely. While recent proposal [46]
tries to alleviate this problem by compressing traffic features
with linear projection compression algorithms, it is still dif-
ficult, and often infeasible, to scale to multi-100Gbps with
this pure algorithmic solution. Hence, it is imperative for
the feature extractor to be scalable to multi-100Gbps traffic
processing in real-time with low overheads.
Flexible to support generic traffic analysis applications.

Recently researchers are turning to extract more ingenious
features from raw network traffic and devise more powerful
behavior detection algorithms to achieve satisfactory detec-
tion results. For example, in intrusion detection, researchers
have extracted 115-dimension features from each packet to

identify malicious activities; in website fingerprinting, re-
searchers have turned from traditional machine learning tech-
niques [24, 49, 68] to deep learning algorithms [1, 55, 60,
61] to achieve better classification results. However, current
hardware-accelerated feature extractors lack the generality to
support various traffic analysis algorithms and applications
flexibly. For example, FlowLens [8] only supports the fea-
ture vector of packet length and inter time arrival distribution,
N3IC [59], Mousika [71], NetBeacon [81], HorusEys [15],
Leo [28] and BoS [73] merely supports one specific simpli-
fied neural network. We aim to build our feature extractor
to be generic in terms of feature extraction and behavior de-
tection. In this way, users can run custom machine learning
algorithms on user-defined features to conduct their traffic
analysis tasks.

3 SuperFE Overview

3.1 Design Principle

To realize the design goals above, we introduce SuperFE,
a feature extraction framework that allows users to extract
traffic features efficiently and flexibly. The key technology en-
abler is the new-generation programmable switches and Smar-
NICs, which offer us an unprecedented opportunity to achieve
scalability and flexibility with low overheads. Programmable
switches are designed to process traffic at multiple Tbps, but
have a restrictive programming model and limited memory
resources [36, 62, 63, 78]; SmartNICs are able to flexibly sup-
port more powerful programming models with hierarchical
memory, but can only scale to tens of Gbps traffic [26, 50].
At the core of SuperFE is to leverage SmartNICs’ capability
of programmability in supporting more operations [47] to
complement the programmable switches’ scalability in terabit
packet processing [27].

Based on the study of the feature extractor component in nu-
merous traffic analysis applications, SuperFE chooses to place
simple, basic, frequent feature extraction operations in pro-
grammable switches and put complex, computation/memory-
intensive operations in SmartNICs. In other words, SuperFE
uses programmable switches to select and aggregate the basic
packet feature metadata from raw network traffic, and em-
ploys SmartNICs to process the basic feature metadata into
feature vectors that are directly usable for ML algorithms.
The selection and aggregation operations on switches can
also reduce the traffic transferred to SmartNICs significantly.

3.2 Deployment Scenario and Workflow

SuperFE is devised to be the feature extractor of an ML-
based traffic analysis application, which can be used by ad-
ministrators of an ISP or cloud network to infer sensitive
information from raw network traffic. Based on the appli-
cation requirements, SuperFE can be deployed into one or
multiple locations of the target network. At each location,
as shown in Figure 1, one switch is connected with multiple
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Figure 1. The overall workflow and architecture of SuperFE.

SmartNICs (in one or multiple servers) regarded as a whole,
and aggregated packet feature metadata is transferred in be-
tween. The input to SuperFE is raw network traffic to the
switches, and the output of SuperFE are feature vectors from
the SmartNICs. SuperFE does not use port mirroring to dupli-
cate the raw network traffic; instead, the switches in SuperFE
first preserve the functionality of packet switching and then
behave as a traffic feature aggregator to batch feature meta-
data. Note that the deployment of programmable switches
and SmartNICs is not a new requirement – several ISPs/cloud
networks have already deployed such programmable network
devices in their networks [6, 56, 57], which we believe can
also be used to support traffic analysis tasks.

Figure 1 depicts the workflow of SuperFE. The procedure
is similar to the classic feature extractor component of traffic
analysis applications. First, based on the property of the traffic
analysis application, network administrators should specify
the traffic features they want to extract and the approaches to
extract these features from raw network traffic using the Su-
perFE policy interfaces. Then, SuperFE translates the policy
into data structures and algorithms running in the underlying
programmable switches and SmartNICs (named FE-Switch

and FE-NIC, respectively). Finally, after the raw traffic flows
through the switches in SuperFE, the feature vectors will be
evicted from the SmartNIC of SuperFE, ready to be used for
the behavior detector of the traffic analysis application.

During the full workflow of SuperFE, there are three key
designs that help SuperFE achieve scalability and flexibil-
ity simultaneously. First, SuperFE presents a user-friendly
and extensible interface to help users write their own fea-
ture extraction policies, shielding the underlying hardware
implementation and complexities in programmable switches
and SmartNICs (§4). Second, SuperFE introduces a high-
performance multi-granularity key-vector cache system in the
programmable switches to batch feature metadata for massive
amounts of packets, thereby significantly reducing the work-
load for SmartNICs (§5). Third, SuperFE exploits the multi-
core parallel and hierarchical memory of SoC-based Smart-
NICs to achieve efficient feature computation with stream-
ing algorithms, which can produce feature vectors based on
batched metadata from the switches (§6).

Table 1. Summary of key operators in the SuperFE interface.

Operator Description

groupby(g) Group input packet/group tuples by the granularity g

filter(p) Filter input packet/group tuples satisfying predicate
p

map(d, s,mf ) Apply mapping function mf to s and emit d for each
member tuple

reduce(s, [rf ] ) Conduct a set of reducing functions [rf ] to aggre-
gated s for each input tuple

synthesize(sf ) Utilize synthesizing function sf to process features
generated by reduce

collect(u) Indicate SuperFE to produce the final feature vector
with features from reduce and synthesize per unit u

4 Programming Feature Extractor

SuperFE presents a high-level interface to help users write
their own feature extraction policies. Instead of exposing low-
level interfaces that normally require expertise in hardware
details, e.g., P4 for programmable switches or Micro-C for
SmartNICs, SuperFE learns from modern stream processing
to enable users to easily apply familiar dataflow operators
(e.g., groupby, map, reduce) over packet streams without
regard to their implementation. Users can also extend the
interface to support more feature computation methods easily.

4.1 SuperFE Policy Interface

At first glance, different traffic analysis applications seem
to adopt different ways to generate their feature vectors, as
they require different protocol semantics and traffic charac-
teristics, and also apply to different application scenarios.
However, we observe a common feature extraction procedure
underneath these different applications – selecting interested
traffic, grouping traffic into multiple sets, mapping intermedi-
ate statistics, and producing and composing the final feature
vectors. This commonality suggests an opportunity to express
the feature extraction procedure with a high-level abstraction.
User-friendly streaming interface. Inspired by recent works
introducing Spark-style stream processing operators [76] to
network telemetry (e.g., Sonata [22], Marple [44]) and DDoS
defense (e.g., Ripple [72]), we choose these functional op-
erators as the starting point due to their high expressiveness
for packet stream processing. To fit the commonality of the
feature extraction in traffic analysis applications, we employ
several customizations based on original dataflow operators to
simplify the programming interface of SuperFE. A summary
of key operators in SuperFE is shown in Table 1.
Tuple-based packet abstraction. Similar to recent works
above, SuperFE also abstracts a single packet to a key-value
tuple, consisting of two types of key-value pairs. One type
takes the header fields of the packet as the keys, and the cor-
responding values come from the packet itself, e.g., source
and destination IP addresses. The other type takes the meta-
data about the packet as keys, and the corresponding values
are filled by the programmable switch, e.g., packet size and
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packet arriving timestamp. SuperFE further allows users to
extend this tuple abstraction to include any field that can be
parsed or reached by the programmable switch. The input to a
SuperFE policy is a stream of packets, i.e., a series of packet
key-value tuples, represented by pktstream in the SuperFE
interface. The data transferred among operators of SuperFE
is also expressed in the form of key-value tuples.
Group-based stream processing. Feature extraction in traffic
analysis applications is a specific kind of stream processing,
indicating that SuperFE can adopt some particular optimiza-
tions on the abstraction and the interface. As traffic analysis
applications observably extract and compute features for just
a few common granularities, e.g., packet rate per IP address
or per flow, we are motivated to propose a group-based packet
stream processing model. As shown in Figure 2, the input
pktstream, i.e., packet key-value tuples (aka packet tuples),
can be partitioned into different groups with the operator
groupby(g) by the specified granularity g. The output of
groupby is also in the form of key-value tuples (aka group
tuples), and each key-value tuple corresponds to a different
group consisting of packet tuples with the same granularity
value. Each output group tuple contains two key-value pairs:
the "granularity" key-value pair, and the "member" pair whose
value is a list of packet tuples included by this group. The
group tuples can be further grouped with a more coarse gran-
ularity in the same way, so that traffic analysis applications
can extract features like the number of TCP flows that each IP
address establishes. The operator groupby(g) can be easily
extended to support more group granularities g on demand.
Based on the group-based processing model, users are able to
intuitively describe the feature extraction logic of their traffic
analysis applications.
Efficient stream operators. The operator filter(p) is used
to select the packets or group tuples satisfying the predicate
p from the input key-value tuples and feed them to the next
operator. This can help users filter out the traffic they are
interested in. Considering the unique group-based processing
model of SuperFE, we confine the operation scope of other op-
erators (map, reduce, synthesize, collect) within the group
to simplify their utilization. Figure 2 presents an example
application of these operators. The operator map(d, s,mf )

applies the mapping function mf to the source key-value pair
s and emits the new destination key-value pair d. And map

conducts this mapping operation to each (packet/group) key-
value tuple in the "member" list for every input group tuple.
It allows users to pre-process some intermediate statistics
from the original traffic for subsequent feature computation.
Moreover, the feature computing is realized by the operator
reduce(s, [rf ]). Specifically, it aggregates all key-value pairs
s in each "member" tuple for each input group tuple and ap-
plies a set of reducing functions [rf ] to these key-value pairs
to compute the desired features, which are added into each
input group tuple as new key-value pairs. Additionally, users
can utilize the operator synthesize(sf ) followed by reduce to

post-process the feature key-value pairs generated by reduce

with the synthesizing function sf . Currently supported map-
ping / reducing / synthesizing functions are listed in Table
5 in Appendix A, and they can also be extended by users.
SuperFE also provides the operator collect(u) to indicate how
to produce the final feature vector with the obtained features
earlier. If collect is called after reduce or synthesize, the ob-
tained features will be added to the final feature vector. The
parameter u can be either pkt or the "granularity" g – corre-
spondingly, the final feature vector is produced per packet or
per group. These operators are detailed with concrete exam-
ples in §4.2.
Natural support to SuperFE architecture. The policy in-
terface provides great intuition for us to partition a SuperFE
policy across the programmable switch and SmartNIC. Since
groupby and filter have simple and fixed processing logic,
they can be well supported by the programmable switch. More
importantly, deploying these two operators on the switch
can significantly reduce the traffic transferred to the Smart-
NIC (§5). The rest of the operators are utilized after them
in the policy and are often required to use complex comput-
ing functions, which are impossible to implement with the
programmable switch. Consequencely, we implement map,
reduce, synthesize and collect on the SmartNIC (§6).

4.2 SuperFE Policy Examples

To illustrate the simplicity and expressiveness of SuperFE
policy interface, we now describe three sample feature ex-
tracting policies that are utilized by state-of-the-art traffic
analysis applications.

Basic statistical features are the most commonly used in
traffic analysis applications. Figure 3 describes an example
policy extracting basic statistical features for each TCP flow,
which is a part of the feature extractor of a covert channel
detection application [7]. This policy first filters out TCP
packets and groups them by flow to get tcp_flow which is
composed of group tuples (lines 1-3) and reused in the fol-
lowing codes. Then it counts the number of packets of each
flow by mapping "one" to each packet and summing them for
every flow (lines 5-7). Finally, it computes the mean, variance,
minimum, and maximum of packet size (line 10-11) and inter-
packet time (line 14-16) for each flow respectively, where
the inter-packet time is figured out according to the arriving
timestamp of packets. Besides, this policy instructs SuperFE
to produce a feature vector composed of these features for
each TCP flow (lines 8, 12, 17).

Packet frequency distributions have been proved to be criti-
cal for traffic analysis applications [8]. SuperFE supports this
feature extraction by providing a specific reducing function
ft_hist, which captures the histogram of the given data to rep-
resent its distribution. Compared with other generic reducing
functions, ft_hist requires users to provide two parameters to
specify the width and the number of bins for the histogram.
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Figure 2. Example application of operators in SuperFE.

1 tcp_flow = pktstream
2 .filter(tcp.exist)
3 .groupby(flow)
4
5 tcp_flow
6 .map(one, _, f_one)
7 .reduce(one, [f_sum])
8 .collect(flow)
9

10 tcp_flow
11 .reduce(size, [f_mean, f_var, f_min, f_max])
12 .collect(flow)
13
14 tcp_flow
15 .map(ipt, tstamp, f_ipt)
16 .reduce(ipt, [f_mean, f_var, f_min, f_max])
17 .collect(flow)

Figure 3. Basic statistical features with SuperFE.

1 pktstream
2 .groupby(flow)
3 .map(ipt, tstamp, f_ipt)
4 .reduce(ipt, [ft_hist{10000, 100}])
5 .reduce(size, [ft_hist{100, 16}])
6 .collect(flow)

Figure 4. Packet frequency distributions with SuperFE.

As shown in Figure 4, this example policy selects the distri-
bution of packet size and inter-packet time for each flow as
the feature vector. It uses a histogram with 100 bins of width
10000 (ns) for inter-packet time (line 4) and a histogram with
16 bins of width 100 (bytes) for packet size (line 5).

1 pktstream
2 .filter(tcp.exist)
3 .groupby(flow)
4 .map(one, _, f_one)
5 .map(direction, one, f_direction)
6 .reduce(direction, [f_array])
7 .collect(flow)

Figure 5. Packet direction sequences with SuperFE.

Packet direction sequences are usually used as the feature
representation for deep learning-based website fingerprint-
ing [55, 60, 61]. Figure 5 presents a policy showing how to
extract directional features in SuperFE. The flow granularity is
used to preserve the directional information when conducting
the group operation. Moreover, users can adopt directional
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Group Keys
Packet Feature Metadata
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Figure 6. GPV in *Flow and MGPV in SuperFE.

mapping functions to apply the directional information. For
example, this policy utilizes f_direction to generate "1" for
ingress packets and "-1" for egress packets by multiplying
"one" and the direction factor (line 5). To generate the di-
rection sequence, this policy employs the reducing function
f_array to just pack the given data into an array (line 6).

5 Batching Feature Metadata on Switches

At the core of SuperFE is to identify groupby and filter

that appeared in the policy, generate the corresponding P4
program, and deploy the program on the switch to batch
necessary feature metadata for the input traffic. Technically,
the switch first parses the header fields used in the policy from
the received packet, then determines whether this packet is
filtered out by the policy, and finally groups and caches the
required information and metadata, which are soon evicted
to the SmartNIC in order. The filtering is realized with a
single match-action table matching a set of header fields and
converting the predicate to the rule. To achieve grouping
and batching, SuperFE introduces a key-vector cache system
that supports multi-granularity traffic features and achieves
efficient resource utilization.

5.1 Enable Multi-Granularity Traffic Features

Recent telemetry system (*Flow [63]) proposes the Grouped

Packet Vector (GPV) format for the storage and transmission
of streamed packet metadata. As depicted in Figure 6, a GPV
is a hybrid between a packet record and a flow record, and it
contains a flow key (e.g., 5-tuples) and a variable-length list
of packet feature metadata (e.g., packet length, timestamps).
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It is demonstrated that GPV is flexible and efficient for the
programmable switch to group and batch packet feature meta-
data for the back-end processing. However, GPV does not
natively support multi-granularity packet feature metadata,
which is commonly required by feature extractors of traffic
analysis applications [38, 41, 80]. For example, Kitsune [41]
and HEALD [80] are all designed to compute the same packet
features for at least three granularities, including per host (i.e.,
the source IP), channel (i.e., the source IP and destination IP
pair), and socket (i.e., the 5 tuples).

We observe that there are usually dependencies among the
granularities used in these feature extractors, and multiple
granularities employed in a traffic analysis application can
be often modeled into a dependency chain. The existence
of dependency chains is common in traffic analysis applica-
tions [38, 41, 80], as traffic analysis applications prefer to
use features that are correlated with each other. For the de-
pendency chain of granularities extracted from the feature
extractor, we indicate its head and tail with the coarsest gran-
ularity (CG) and the finest granularity (FG). Since GPV only
supports single granularity packet feature metadata, one naïve
approach is to allocate memory for each granularity respec-
tively, which wastes a tremendous amount of switch memory.

To address this, we propose Multi-granularity GPV (MGPV)
to support multi-granularity packet feature metadata with ef-
ficient memory utilization, which stores only one copy of
feature metadata for each packet. To achieve a certain granu-
larity’s packet grouping results, one can aggregate the corre-
sponding groups at the finer granularity into one group. For
instance, we can merge all packets from group socket into
group channel. However, when each socket runs out of its
buffer space, the packet metadata is evicted from the switch
to the SmartNIC. Such cache eviction is driven by the traf-
fic within each socket, so the packet metadata evicted to the
NIC may not be ordered. Traffic analysis tasks accessing
across these streams would then face inaccuracy caused by
out-of-order packet arrival. And introducing the timestamp
and complex re-ordering mechanisms like TCP to solve this
disorder issue would impose extra computational burdens and
communication latency on the SmartNIC.

To resolve the issues above, MGPV turns to another way,
achieving packet grouping for a finer granularity based on the
results from a coarser granularity. To do so, as shown in Figure
6, on the switch, packets are grouped at the CG level, while
each packet’s feature record points to its corresponding FG
group key. These FG group keys are stored only once, from
which the SmartNIC can recover grouping at intermediate
granularity levels. Retaking host, channel and socket as an
example, as shown in Figure 7, SuperFE regards host as the
CG and socket as the FG, groups packets by the source IP,
and stores the 5 tuples of each packet on the switch. Then on
the SmartNICs, the 5 tuples of all the packets (i.e., FG group
keys) will be used to split the packet feature metadata of the
host group into the channel and socket groups respectively.

CG Group Keys

IPx

Packet Feature Metadata

FG Group Keys
Long Buffers

Short Buffer 

Mapping Stack

5-Tuplem 5-Tuplen

sync with NIC

Feature Item: FG Group Keys Index ⁞ Packet Feature (e.g., Pktlen + Tstamp)

Short Buffers

Figure 7. Memory allocation of MGPV on switch. Keys and
Metadata with the same color belong to one CG group (i.e.,
one source IP). The stack is used to store the top pointer that
tracks the long buffer that a short buffer owns. Each packet
feature metadata has an index to the FG Group Key table

(only show 5 brown arrows here for simplicity), and many
metadata items share the same FG Group Key.

Furthermore, MGPV adopts a memory-efficient way to
store these FG group keys. MGPV introduces a separate hash
table to store these FG group keys for all packets, which
are synchronized between the switch and SmartNIC, i.e., all
changes to this table on the switch are notified to the Smart-
NIC for synchronous updates. The feature metadata of each
packet records an additional index pointing to the FG Group
Keys in the hash table, and many packet feature metadata
items share the same FG Group Key. For example, in Fig-
ure 7, for the CG group key �%G , the feature metadata of
the first packet points to the FG group key 5-Tuple< , and
the feature metadata of the next four packets points to the
FG group key 5-Tuple=. Since the SmartNIC maintains an
FG Group Keys table that is synchronized with the switch,
the SmartNIC can easily access the FG group keys for each
packet with the corresponding index and conduct group split-
ting and subsequent operators, when the packet vector of a
group is evicted from the switch and arrives at the SmartNIC.
With all the techniques above, SuperFE is able to offload
groupby to the programmable switch in a memory-efficient
and order-preserving manner.

5.2 Optimize Resource Utilization

We propose a series of novel mechanisms to optimize
MGPV resource utilization in the programmable switch.
Memory allocation. Considering the long-tail nature of flow
length distribution, inspired by *Flow [63], SuperFE adopts
a hierarchical hash-based cache system to store MGPVs as
shown in Figure 7. Since most flows are short flows consist-
ing of a few packets, SuperFE allocates a short buffer for
each coarsest group to store their vector feature metadata. For
those long flows, SuperFE prepares a stack of long buffers to
cache more packet feature metadata with MGPV, which can
effectively reduce the overall rate of messages to SmartNICs.
To adapt to flow length distributions, the size of long buffers is
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set to be much larger than that of short buffers, while the num-
ber of long buffers is set to be much smaller than that of short
buffers. When a flow fills its short buffer for the first time, it is
likely to be a long flow and SuperFE attempts to pop a pointer
from the stack to keep caching its packet feature metadata
on the long buffer. The stack is implemented with a pointer
register and a register array, which needs resubmit to com-
plete its allocation and release semantic [63]. In addition to
the feature metadata, SuperFE needs to allocate memory to
store FG Group Keys, which is realized with a hash table.
Whenever the FG Group Keys table is updated, the switch
sends a notification to the SmartNIC for synchronization.
MGPV eviction. There are three cases where feature meta-
data in MGPV on the switch will be evicted to SmartNICs.
The first and the most common case is caused by hash col-
lision. When a packet from a group not recorded by MGPV
arrives at the switch, the data will be inserted into the cache
directly if the corresponding slot is empty; otherwise it will
be inserted after the older group entry is evicted to the Smart-
NIC, including its feature metadata in the short buffer and
long buffer if it owns. It is a simple yet effective approach in
practice, since the collision eviction policy highly matches
the procedure of LRU updating [44, 63].

The second case is when the short or long buffer is filled
up. When a packet from a group recorded by MGPV arrives
at the switch and happens to fill up the corresponding short
buffer, a long buffer is allocated to this group if there is still
one in the stack; otherwise, the feature metadata of this group
in its short buffer is evicted to the SmartNIC. When a packet
happens to fill up the corresponding long buffer, the feature
metadata of its group in the short buffer and the long buffer is
both evicted to the SmartNIC. Such an eviction policy ensures
these buffers on the switch can be reused. The third case is
caused by the aging mechanism designed for MGPV (see
details below).
Aging mechanism. We introduce an aging mechanism for
MGPV to recycle expired entries in the cache, which should
be released and reused after the corresponding flow becomes
inactive. To achieve this, SuperFE maintains a timestamp for
each cache entry and evicts the group entry from the cache if
it has not been accessed for more than a period T. The aging
mechanism helps the switch keep track of real active flows,
and further improves memory utilization. In particular, the
occupied long buffers can be released in a timely manner and
reused by other long flows, which enables SuperFE to handle
more long flows and increase its memory efficiency.

However, monitoring the accessing states of all cache en-
tries periodically on the control plane is CPU-intensive and
consumes most of the control channel. To resolve this chal-
lenge, SuperFE leverages some "internal" packets which are
constantly recirculated within the switch pipeline to conduct
such monitoring entirely in the data plane. These packets stay
in the switch through the recirculation port, check the cache
entry in turn at a high frequency to determine whether it is

timed out, and evict the outdated entry with its packet feature
metadata in the short buffer and long buffer if it owns.

6 Computing Features on SmartNICs

SuperFE extracts the rest of the operators from the pol-
icy, i.e., map, reduce, synthesize and collect, and offloads
them to SmartNICs by generating the corresponding Micro-
C program. The SmartNIC receives the aggregated MGPV
evicted from the switch, traverses each MGPV cell storing
the separate packet feature metadata, updates the statistics
of corresponding groups by applying mapping / reducing /
synthesizing functions, and finally collects feature vectors as
indicated and sends them to the behavior detector component.
During this process, mapping, synthesizing, and collecting
usually do not involve too complex arithmetic operations,
which are intuitive to implement on the SmartNIC. However,
reducing especially reducing functions, which are responsible
for feature computing, are generally computationally complex
to adapt to the architecture of SmartNIC. To achieve efficient
reduction, SuperFE applies powerful streaming algorithms
and optimizes their resource utilization on the SmartNIC.

6.1 Enforce Streaming Algorithms

SoC-based SmartNICs enclose programmable general-purpose
SoC cores, which are specifically optimized for packet pro-
cessing tasks. Compared with x86 CPU cores, these SoC
cores usually have lower performance characteristics and con-
strained programming models. To implement reduce with
limited hardware resources, we, therefore, employ techniques
adapted from the streaming algorithms literature within the
context of SmartNICs. With data arriving one at a time in a
"stream", streaming algorithms just require restricted states
and make only one pass over the stream to approximate var-
ious statistics. In this subsection, we facilitate some of the
most commonly used reducing functions in SuperFE with the
help of streaming algorithms.
Sum & Maximum & Minimum. f_sum, f_max and f_min

represent the simplest reducing functions in SuperFE, and it
is unnecessary to use streaming algorithms for them. They
only need to save one state for each group and perform one
add or compare operation for each packet feature metadata.
Mean & Variance. f_mean and f_var compute the mean and
variance of a data stream (G1, ..., G=) within the group respec-
tively. A naïve method may involve a two-pass algorithm: the
first pass applies f_sum to the data stream and divides the
sum by the weight = to acquire the mean Ḡ ; the second pass
iterates over the data stream again to calculate

∑
(G8 − Ḡ)2.

Conducting two passes requires a significant amount of stor-
age to store all entire data streams, which may exceed the
capacity offered by common SmartNICs. Therefore, we turn
to the streaming algorithm from Welford [69], which aims to
compute the mean and estimated variance in a single pass in
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terms of the following formulas:

Ḡ= =

(= − 1)Ḡ=−1 + G=

=
= Ḡ=−1 +

G= − Ḡ=−1

=
(1)

f2

= =

(= − 1)f2

=−1 + (G= − Ḡ=−1) (G= − Ḡ=)

=

= f2

=−1 +
(G= − Ḡ=−1) (G= − Ḡ=) − f2

=−1

=

(2)

Compared with the two-pass algorithm, Welford’s online
algorithm requires only a small amount of storage to record
=, Ḡ= and f2 for the data stream of each group at the expense
of slightly increased computation costs.
Cardinality. f_card is used to count the number of unique
elements in the given group, which is often used to figure
out the number of flows or connections established by each
IP. SuperFE applies the streaming algorithm adapted from
HyperLogLog [18] to implement f_card. The basic idea is to
calculate the maximum number of leading zeros in the binary
hash representation of each element in the group. If the ob-
served maximum number of leading zeros is =, an estimate
for the number of distinct elements is 2

=. This approach is
memory-efficient but suffers from high variance for the ap-
proximation. The variance can be minimized by splitting the
incoming stream into numerous buckets, estimating the car-
dinality of each bucket by calculating the maximum number
of leading zeros separately, and combining them by taking
the mean to derive the cardinality of the whole group. In prac-
tice, SuperFE computes a 32-bit hash for each packet data,
where the first : bits are used to index the bucket and the last
32 − : bits are used to count leading zeros. Hence, f_card

only maintains 2: states to record the maximum number of
leading zeros of each bucket, and the exponential and division
operations it performs can both be replaced with much faster
shift operations.
Distribution-related features. ft_hist, ft_percent and f_cdf

are provided to compute distribution-related features, where
ft_hist is considered as the basis implementation for the rest
of the functions. This is because the mission of ft_hist is to
capture the histogram of the given data to approximate its
distribution, and other distribution-related features can be
computed from the histogram. In particular, f_cdf can be
achieved by executing the cumulative sum to all bins of its
histogram and then conducting normalization to the result,

and ft_percent can be calculated by adding up those bins
lower than that data. To realize ft_hist, SuperFE allocates an
array of states for each group to store their bins whose width
and number are specified by the parameters. Furthermore,
SuperFE also conducts variable bin width [14] to improve the
accuracy of features computed through the histogram.

6.2 Optimize Resource Utilization

Considering the unique hardware architecture of SoC-based
Netronome NFP SmartNICs, as shown in Figure 8, we intro-
duce several optimizations to exploit architectural features of
SmartNICs to improve offloading performance.
Computational cycle optimization. Netronome NFP Smart-
NICs contain tens of RISC cores for parallel packet pro-
cessing, and each core is capable of executing 8 hardware
threads at 800 MHz. The number of cycles the processing
core executes for each packet directly determines the overall
performance of SmartNICs. As a consequence, we propose
three optimizations dedicated to reducing the processing cy-
cles of SuperFE. First, we reuse the hash value computed by
the switch to eliminate the hash computation overhead on
SmartNICs. The 32-bit hash index value used by the switch
cache system is sent to the SmartNIC along with the evicted
MGPV. Second, we exploit the threading mechanism to hide
the memory access latency. Concretely, the cores are config-
ured to run the same SuperFE program for all threads and
switch to run another thread to process other packets when the
current thread is waiting for memory access. Since context
switching only takes 2 cycles, it can efficiently save cycles
caused by memory access latency.

Third, we optimize the usage of complex computational
operations, especially division. Considering the cores are
designed for packet processing, they lack support for floating-
point data types and complex operations like division. Though
the compiler provides division support through algorithmic
implementation, it takes 1500 cycles to perform such com-
putation on SmartNICs [58], which significantly slows down
the performance. To resolve this problem, we simplify our
dependence on division with the deep analysis of streaming
algorithms. Take computing mean as an example, Equation
1 involves a division operation per packet. Since (G= − Ḡ=−1)

is often not very large and = gets larger with more packets
received, the result of this division is usually 0 or 1. So we re-
place this division by comparing = and (G= − Ḡ=−1) to achieve
the result when = is large.
Group table implementation. map, reduce and synthesize

need to maintain states for each group to execute correspond-
ing functions, so we design an efficient hash table structure
for group state management on the SmartNIC. We observe
that the width of the data bus between processing cores and
the memory sub-system is 512-bit (64-byte), which is usually
large enough to cover simultaneous state access of several
groups. For instance, if the given policy requires 12-byte
states for each IP host, then the entry size of its host-based
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group table is 16-byte, including a 4-byte IP address and its
states, which means the core can load states of 4 hosts from
the memory at once. To leverage this hardware feature, we
employ the hash table with fixed-length chaining to organize
group states, as illustrated in Figure 8, which enables both
fast parallel lookup and low collision rate [77]. The width of
the group table, i.e., the number of entries at each index, is
determined by users based on their requirements. To resolve
hash collisions, we utilize the external DRAM to extend the
group table to save entries not accepted by hashing. When
there is a hash collision in entry insertion, SuperFE stores
the new entry into DRAM; when there is a hash collision in
table lookup, SuperFE turns to DRAM to search the target en-
try. Though accessing DRAM is slow, there is no significant
performance drop as long as the collision rate is low.
Hierarchical memory allocation. Netronome SmartNICs
own a complex hierarchical memory, which is composed of
CLS, CTM, IMEM, and EMEM, with increasing sizes but
higher access latencies, as shown in Figure 8. These memories
are shared by processing cores, e.g., CLS and CTM are only
shared by cores on the same island while IMEM and EMEM
are shared by all cores. To avoid memory contention where
different cores access the same address of the same memory,
we manipulate the ingress Network Block Interface (NBI) of
NFP to distribute packets to cores on a per-IP basis.

Furthermore, SuperFE optimally maps group states across
different memory hierarchies according to their sizes and ac-
cess patterns to enhance memory access performance. We
formulate the group table placement problem as follows. ( de-
notes the set of states required by the given feature extracting
policy, and SuperFE analyzes each state B ∈ ( to obtain its
sizes 1B and access times CB per packet. The hierarchical mem-
ory architecture can be represented by " , and each level of
memory< ∈ " has the access latency ;< and the maximum
access data-bus width F< . And the width of the group table
in the memory< is =< , which can be configured by users to
balance the hash collision rate and lookup performance. We
define the binary variable ?B,< = 1 if and only if the state B

is placed into the group table in the memory <, otherwise
?B,< = 0. Then the group table placement problem can be
solved based on Integer Linear Programming (ILP):

<8=
∑

B∈(

∑

<∈"

?B,<CB;< (3)

B .C . ∀B ∈ ( :

∑

<∈"

?B,< = 1 (4)

∀< ∈ " : =<

∑

B∈(

?B,<1B ≤ F< (5)

Equation (3) indicates that the objective is to minimize the
total access latency to all states. Equation (4) specifies that
each state must be placed into one memory hierarchy, and
Equation (5) specifies that the data bus of each memory must
hold access to the group table. Note that this ILP problem
happens only when a new SuperFE policy is declared, so the

time to solve the ILP problem is not a concern. Additionally,
as the scale of ILP constraints is not large, the ILP problem
can be quickly solved with existing optimization toolboxes
like Gurobi [23]. Given the output {?B,<}, we can determine
the optimal group table placement strategy.

7 Implementation

We develop a SuperFE proof-of-concept prototype, includ-
ing a policy enforcement engine, an MGPV batching engine
(FE-Switch), and a feature computing engine (FE-NIC).

We implement the policy engine on the x86 platform with
∼1K lines of Python code. It is a simple translator, which
analyzes the input feature extraction policy described in §4,
extracting operators groupby and filter to configure the pro-
gram of FE-Switch, and assemble the program of FE-NIC by
translating the rest of the operators.

The MGPV batching engine is implemented with ∼2K
lines of P4-16 for the Intel Tofino ASIC and ∼4K lines of
C for the control plane. We set the size and number of short
buffers as 4 and 16384, and that of long buffers as 20 and
4096. We set the size of the FG table as the same size of short
buffers, i.e., 16384. The aging threshold T is set according to
traffic patterns.

The feature computing engine is implemented with ∼3K
lines of Micro-C for Netronome NFP-4000. It realizes ba-
sic frameworks for operators map, reduce, synthesize and
collect, and provides a set of corresponding functions for
Table 5 in Appendix A.

8 Evaluation

In this section, we evaluate SuperFE by answering the fol-
lowing key questions: (1) How expressive is the SuperFE pol-
icy language in supporting diverse feature extractors (§8.2)?
(2) How well can our system work with state-of-the-art traffic
analysis applications (§8.3)? (3) How effective is FE-Switch

in batching packet feature metadata (§8.4)? (4) How efficient
is FE-NIC in computing various feature vectors (§8.5)?

8.1 Experimental Setup

We deploy a real-world testbed and conduct trace-driven
experiments to evaluate SuperFE. Our testbed consists of
one 3.3 Tb/s Intel Tofino switch and two Dell R740 servers.
Each server is equipped with Intel(R) Xeon(R) Gold 6230R
CPUs and 64 GB memory. In particular, one server runs as
the backend server, installed with two 40Gbps Netronome
NFP-4000 SmartNICs. The other server runs as the traffic
generator, connected to the switch via a 40 GbE Intel XL710
NIC. The prototype of SuperFE consists of the Tofino switch
and the backend server. Limited by available facilities in our
lab, we do not have access to GPUs currently, so we run the
behavior detector on CPUs of the backend server.

Our workload traffic traces have different flow lengths and
packet size distributions (Table 2), which are all collected
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Table 2. Workload traffic traces.

Traffic Trace Average Flow Length Average Packet Size

MAWI-IXP 104 packets/flow 1246 Bytes/packet
ENTERPRISE 9.2 packets/flow 739 B/packet

CAMPUS 58 packets/flow 135 Bytes/packet

Table 3. Lines of code to implement different feature
extractors with SuperFE.

Application
Objective of

Traffic Analysis

Feature

Dimension

LOC in

SuperFE

CUMUL [49] Website fingerprinting 104 29
AWF [55] Website fingerprinting 5000 9
DF [60] Website fingerprinting 5000 9
TF [61] Website fingerprinting 5000 9

PeerShark [43] Botnet detection 4 22
N-BaIoT [38] Botnet detection 65 34

MPTD [7] Covert channel detection 166 101
NPOD [67] Covert channel detection 37 24

HELAD [80] Intrusion detection 100 49
Kitsune [41] Intrusion detection 115 49

from the real world to cover three different scenarios: (1)
Trace MAWI is collected from a main Internet Exchange (IX)
link, which is available on the online dataset [51]. (2) Trace
ENTERPRISE is collected from a cloud gateway server of
a cloud provider. (3) Trace CAMPUS is collected from the
core router of our department, which records half-hour net-
work activities of our colleagues. We also use four public
application-specific traces to train and test our system, i.e.,
trace in [61] for website fingerprinting, trace in [38] for bot-
net detection, trace in [67] for covert channel detection and
trace in [41] for intrusion detection. In our experiments, we
replay these traces with MoonGen [16] to generate experi-
mental traffic up to 40 Gbps. For experiments requiring a
larger traffic volume, we employ techniques in [35, 82] to
amplify the traffic by replicating and modifying packets with
the programmable switch.

8.2 Policy Expressiveness

To demonstrate the expressiveness of the SuperFE policy
interface, we re-implement feature extractors of 10 state-of-
the-art traffic analysis applications using primitives provided
by SuperFE. Table 3 lists the lines of code to implement

them with SuperFE. As we can see, SuperFE allows concise
specifications of the feature extraction policies and shields
the complexities of the underlying hardware. Here we present
a brief description of each example.
Website Fingerprinting. Early works rely on machine learn-
ing and per-flow statistical features of packet size and packet
number, e.g., CUMUL [49]. Recent works attempt to apply
deep learning and simplify input features to a fixed-length
(5000) sequence of [-1, 1] representing packet directions of
flows, e.g., AWF [55], DF [60], TF [61]. SuperFE supports
both types of feature extractors (§4.2).
Botnet Detection. Researchers usually monitor the conver-
sational pattern of each IP-pair to identify stealthy P2P com-
munications. For example, PeerShark [43] and N-BaIoT [38]
both compute per-IP-connection statistical features based on
packet size and inter-packet time. In addition, N-BaIoT also
utilizes similar per-host statistics to identify bot hosts. These
basic statistical features are all available in SuperFE.
Covert Channel Detection. Existing works only focus on
per-flow features to locate suspicious flows hiding covert
channels. MPTD [7] depends on various statistical features,
while NPOD [67] employs the distribution of packet size and
inter-packet time of each flow. We discuss packet frequency
distributions in detail in §4.2.
Intrusion Detection. State-of-the-art works, e.g., Kitsune [41]
and HEALD [80], extract mixed statistical features from mul-
tiple granularities, i.e., host, channel, and socket. SuperFE
proposes the group-based model to enable multi-granularities
feature extraction and provides a set of reducing functions to
compute these statistical features.

From the discussions above, we can see SuperFE policy
interface is expressive and flexible to support generic traffic
analysis applications. Such usability and flexibility are missed
in recent hardware-accelerated feature extraction works. For
instance, FlowLens [8] only supports the feature vector of
packet distributions, which only satisfies NPOD [67].

8.3 Application Study

To illustrate that SuperFE is a powerful component to
construct scalable traffic analysis applications, we seek rep-
resentative works from four common types of applications
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Figure 14. Optimization of aging design.

and reconstruct them with SuperFE to accelerate their fea-
ture extractors. Specially, we select TF [61], N-BaIoT [38],
NPOD [67] and Kitsune [41] from Table 3 as state-of-the-
art works. We rewrite their open-source codes to replace the
software-based feature extractors with SuperFE, and reuse
the original behavior detectors, i.e., triplet networks for TF,
deep autoencoders for N-BaIoT, decision trees for NPOD, and
autoencoders for Kitsune. We then conduct experiments to
evaluate the scalability of SuperFE integrated with real-world
traffic analysis applications.
Multi-100Gbps performance. To give a general insight into
the performance of SuperFE, Figure 9 depicts the throughput
of our system when it accelerates traffic analysis applications.
This figure shows that SuperFE empowers these applications
to handle multi-100Gbps raw traffic and generate feature
vectors at rates of ∼Gbps, which is nearly two orders of
magnitude higher than their original implementations. The
throughput and scalability gains can be attributed to the ar-
chitecture of SuperFE, which offloads batching on the switch
and computing on the SmartNIC separately. Although solu-
tions [8, 15, 28, 59, 71, 73, 81] that leverage programmable
switches or SmartNICs can achieve similar performance, they
lack the flexibility to support generic and versatile traffic
analysis applications. SuperFE takes both advantages of pro-
grammable switches and SmartNICs to realize scalable and
flexible feature extractors.
Detection accuracy. The feature vectors produced by Su-
perFE must promise fidelity to the user-defined feature set. To
illustrate this, we take Kitsune, which has the most complex
feature computation, as the representative. We first calculate
the relative error of feature vectors produced by SuperFE and
the original Kitsune implementation, comparing them with
the standard feature definitions. Results in Figure 10 indicate
that the extraction error of SuperFE is below 4%, much bet-
ter than that of the original Kitsune applying approximate
algorithms. We further examine the detection accuracy of Kit-
sune models trained with these feature vectors, and Figure 11
shows Kitsune can achieve accurate detection under different
scenarios with feature vectors generated by SuperFE.
Resource overhead. To evaluate the resource overhead of
SuperFE, we profile its resource usage on our test switch and

Table 4. Hardware resource utilization.

Switch SmartNIC
Tables sALUs SRAM Memory

TF 26.04% 68.75% 16.56% 49.17%
N-BaIoT 30.73% 72.92% 18.23% 57.30%
NPOD 26.04% 68.75% 16.56% 74.46%
Kitsune 31.77% 77.08% 18.75% 60.81%

SmartNICs, when SuperFE is deployed with different applica-
tions. Table 4 displays several key hardware resources in our
system. Utilization for most resources on the switch is low, ex-
cept for stateful ALUs, which are heavily used by FE-Switch

to implement the aggregation mechanism. But it still leaves
enough resources for the concurrent execution of common
forwarding behaviors, which do not require much stateful
processing [63]. The utilization of hierarchical memory on
SmartNICs is not a concern, as the SmartNIC is dedicated to
feature computation intrinsically.

8.4 Batching on Switch

Effective batching. To illustrate that our MGPV batching
mechanism of FE-Switch significantly reduces the workload
of SmartNICs, we measure the ratio between the MGPV
traffic sent from the switch to SmartNICs and the original
traffic received by the switch, which is referred to as the
aggregation ratio. We run TF, N-BaIoT, NPOD, and Kitsune
with FE-Switch and replay three traffic traces to conduct the
same measurement, and the results are shown in Figure 12.
We can see that our design on the switch enables an over 80%
reduction both in receiving rate and receiving throughput
for SmartNICs, which effectively protects SmartNICs from
processing massive original traffic directly.
Powerful MGPV. To demonstrate the advantage of MGPV in
supporting multi-granularity packet feature metadata, we com-
pare the memory occupation and switch-SmartNIC bandwidth
consumption of MGPV and GPV when they support appli-
cations having different grouping requirements. In particular,
we select three traffic analysis applications, TF, N-BaIoT, and
Kitsune, which group packets by one, two, and three granular-
ities, respectively, and take the FE-Switch resource utilization
of k-fingerprinting as the baseline. As shown in Figure 13,
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MGPV can maintain an approximately constant resource foot-
print while the resources desired by GPV increase linearly
with the grouping granularities utilized by applications. This
is because the dependency chain of granularities helps MGPV
store only one copy of feature metadata for each packet.
Aging mechanism. The aging mechanism further optimizes
the resource utilization of MGPV, whose efficiency is decided
by the parameter T, i.e., the timeout period. To find a suitable
value for T, we deploy TF on FE-Switch and configure differ-
ent values for T to seek how T affects the aggregation ratio
and buffer efficiency, i.e., the ratio of active flows in MGPV
buffers. As shown in Figure 14, the aging mechanism can
reduce the aggregation ratio and increase the buffer efficiency,
which manifests FE-Switch can handle more active flows.
Furthermore, too small T would cause entries of MGPV to be
frequently evicted by timeout, and too large T would cause
the aging mechanism to fail. Figure 14 also indicates the
appropriate value of T depends on the flow distribution of
the traffic. For instance, the average flow length of ENTER-
PRISE is short so a small T is applicable. Besides, the aging
mechanism also imposes an upper limit on the batching delay,
which does not exceed O(10) milliseconds.

8.5 Computing on SmartNIC

Efficient computing. To illustrate that FE-NIC efficiently
computes features by performing streaming algorithms, we
measure the total memory consumption and the average fea-
ture computation time of the feature extractor with and with-
out streaming algorithms. Since Kitsune applies some rep-
resentative features, we experiment by re-implementing its
feature extractor with naïve algorithms and accelerating it
using streaming algorithms. Figure 15 presents FE-NIC sus-
tains rapid feature computing with a small memory footprint
on SmartNICs even when dealing with heavy traffic, which
benefits from the adoption of streaming algorithms. On the
contrary, naïve algorithms ask for a large amount of on-chip
memory, which exceeds the capacity of our SmartNICs.
Scalable performance. To determine whether FE-NIC takes
full advantage of the multi-core scalability of SoC-based ar-
chitecture, we profile the performance gain of FE-NIC by
allocating more SoC cores to the system, from a single core

to 120 cores of two SmartNICs. Figure 16 shows the scalabil-
ity of our design when SmartNICs execute different feature
computations, where WFP owns the simplest feature extrac-
tor so it achieves the highest throughput. From these results,
we can see FE-NIC is able to scale almost linearly as an in-
creasing number of SoC cores are involved, because FE-NIC

nearly eliminates all the resource contention between cores.
We can also add more SmartNICs to scale up FE-NIC further,
with a simple load-balance mechanism implemented on the
switch to distribute the MGPV traffic across them evenly.
Advanced optimizations. To testify the effect of optimiza-
tions that FE-NIC adopts for performance improvement, we
estimate the throughput of SoC cores when these optimiza-
tions are enabled incrementally and the results are displayed
in Figure 17. When all optimizations are enabled, the total
throughput of FE-NIC rises to as much as 4 times when com-
pared to the baseline setup without any optimizations applied.
The elimination of division shows the most significant perfor-
mance improvement, as the division takes up to hundreds of
times more cycles than other arithmetic operations.

9 Discussion

More complex granularity dependency relationships. Fu-
ture traffic analysis applications may require features of more
granularity to locate malicious behaviors more accurately.
This means the used granularity may be abstracted into a
dependency graph instead of a dependency chain. A possible
solution is to split the dependency graph into a minimum
number of dependency chains and allocate resources for each
granularity chain to apply MGPV separately. Such a depen-
dency graph cutting algorithm is left for our future work.
Traffic analysis v.s. network monitor. Although seeming
similar, traffic analysis applications have quite different se-
mantics from network monitor applications [22, 44, 50, 62,
63]. Traffic analysis pays more attention to host behaviors,
e.g., whether a host is compromised, or accesses a malicious
website. By contrast, network monitoring emphasizes more
on packet/network behaviors, e.g., whether there is conges-
tion, packet loss, or a deep switch queue. Because of such
differences, traffic analysis applications are transitioning to
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use machine learning, especially deep learning, to achieve bet-
ter detection accuracy, while traffic monitor applications are
not so interested in emerging deep learning algorithms [65].

10 Related Work

Besides the most relevant works discussed in the main text,
our work is also inspired by the following topics.
Policy languages. There are many domain-specific policy
languages in the networking community [3, 4, 19, 22] and
the security community [9, 72, 75, 78] to simplify policy
expression. Although our key idea of using programmable
switches and SmartNICs to accelerate the feature extractor is
not tied to any specific policy language, to hide the underlying
hardware complexity, we extend SuperFE policy interface
based on Spark-style stream processing operators [76], which
is tailored for feature extraction in ML-based traffic analysis
applications.
Programmable switches. SuperFE builds on the recent trends
that leverage programmable switches to accelerate various ap-
plications in networking [22, 40, 44], distributed systems [30,
31] and security [36, 39, 78], but focuses on a different
problem: accelerating feature extractor in ML-based traffic
analysis applications. To achieve this, we design the multi-
granularity Group Packet Vector (MGPV) abstraction to batch
packet feature metadata in programmable switches.
SmartNICs. Recent research has increasingly demonstrated
the benefits of SmartNICs in offloading and accelerating net-
work functions [17, 34, 52], key-value storage [33, 37], trans-
port protocol [5, 42], and packet inspection [26, 50]. SuperFE
is along with these lines and explores the utility of SmartNICs
in enhancing feature extractors for ML-based traffic analysis
applications. Specially, we propose a design that coordinates
the multi-core parallel and hierarchical memory of SoC-based
SmartNICs to achieve efficient streaming algorithms.

11 Conclusion

In this paper, we identify the current feature extractor is
becoming the key bottleneck of ML-based traffic analysis
applications, and introduce SuperFE, a scalable and flexible
feature extraction framework leveraging the capabilities of
programmable switches and SmartNICs. SuperFE presents
a user-friendly and extensible interface to support custom
feature extraction policies without considering underlying
hardware complexities, introduces a high-performance multi-
granularity key-vector cache system in the programmable
switches to batch necessary feature metadata, and exploits the
multi-core parallel and hierarchical memory of SoC-based
SmartNICs to achieve efficient feature computation with
streaming algorithms. Our implementation and evaluation
demonstrate that SuperFE allows various state-of-the-art traf-
fic analysis applications to efficiently extract features from
multi-100Gbps raw traffic without compromise in detection
accuracy, and provides nearly two orders of magnitude higher

throughput than their software-based counterparts. We hope
SuperFE can serve as the foundation of the next-generation
feature extractor for ML-based traffic analysis applications.
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Appendix

A Parameters supported by SuperFE

The parameters supported by SuperFE policy interfaces
are listed in Table 5. The Granularity is used as the argument
of the groupby operator and is customized beyond the above
ones. The Mapping Function, the Reducing Function, and
the Synthesizing Function are used in the operator map, re-

duce and synthesize respectively, which specify the concrete
operations.

Table 5. Description of parameters in SuperFE interface.

Parameter Description

Granularity (g)

flow Group packets by the 5-tuple.
host Group packets by the source IP and record direction infor-

mation of each packet.
channel Group packets by the IP-pair and record direction informa-

tion of each packet.
socket Group packets by the 5-tuple and record direction informa-

tion of each packet.
Mapping Function (mf )

f_one Add a key-value pair whose value is "1".
f_ipt Add a key-value pair to record the inter-packet time.
f_speed Add a key-value pair to compute the speed.
f_burst Add structured key-value pairs to identify bursts.
f_direction Add a key-value pair to record the direction of the packet.
Reducing Function (rf )

f_sum Calculate the sum.
f_mean Calculate the mean.
f_var Calculate the variance.
f_std Calculate the stddev.
f_max Calculate the max.
f_min Calculate the min.
f_kur Calculate the kurtosis.
f_skew Calculate the skew.
f_mag Calculate the magnitude of bidirectional sequences.
f_radius Calculate the radius of bidirectional sequences.
f_cov Calculate the covariance between bidirectional sequences.
f_pcc Calculate the correlation coefficient of bidirectional se-

quences.
f_card Calculate the cardinality.
f_array Pack fields as an array.
f_pdf Estimate the probability density function.
f_cdf Estimate the cumulative distribution function.
ft_hist{} Obtain the histogram.
ft_percent{} Estimate the quantile.
Synthesizing Function (sf )

f_marker Add a structure at each direction change to reflect the
bytes/packet numbers previously sent.

f_norm Normalize the sequence.
ft_sample Sample from a sequence.
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