
Fast Multi-string Pa�ern Matching using PISA
Shicheng Wang, Chang Liu, Ying Liu, Guanyu Li, Menghao Zhang, Yangyang Wang, Mingwei Xu

Tsinghua University

CCS CONCEPTS
• Security and privacy→ Network security; • Networks→ Net-
work algorithms;

KEYWORDS
String Matching; Programmable Switch; PISA

ACM Reference Format:
ShichengWang, Chang Liu, Ying Liu, Guanyu Li,Menghao Zhang, Yangyang
Wang, Mingwei Xu. 2019. Fast Multi-string Pattern Matching using PISA. In
The 15th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’19 Companion), December 9–12, 2019, Orlando, FL,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3360468.
3368184

1 INTRODUCTION
Multi-string pattern matching serves as a fundamental build block
for many network security applications, especially network intru-
sion/prevention systems (IDS/IPS) [2], web application �rewalls
(WAF) [8], and application identi�cation systems [6]. It typically
expresses certain attack signatures (rules) with multiple strings,
which are then used to examine whether the payload of a packet
matches any of the prede�ned rules. Unfortunately, this often be-
comes a bottleneck of these systems because every byte of the
packet has to be scanned by a large ruleset of strings.

Existing works often alleviate this bottleneck with algorithm im-
provement [1] or GPU/FPGA acceleration [3, 7]. However, neither
these software-improved nor hardware-accelerated approaches pro-
vide the desired performance that catches up with the dramatic
increase of the network bandwidth and network tra�c today (e.g.,
from multi-10s of Gbps to multi-100s of Gbps). We argue this per-
formance gap lies in the performance capability of the hardware
for acceleration, and the powerful programmable switch provides
an unprecedented opportunity to bridge this gap. After all, the
programmable switch is able to easily reach multi-Tbps through-
put within a single box, which further reduces the per unit capital
expense signi�cantly.

Despite this vision being promising, implementing multi-string
pattern matching on the programmable switch (i.e., Protocol Inde-
pendent Switch Architecture (PISA)) is non-trivial. A recent work,
PPS [4], has already demonstrated the feasibility of achieving fast

∗Supported by National Key R&D Program of China (2018YFB1800405 and
2017YFB0801701) and National Science Foundation of China (No.61872426 and
No.61772307).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7006-6/19/12. . . $15.00
https://doi.org/10.1145/3360468.3368184

p1 ∧ p2 ∧ ¬p3
p1 ∧ p4 ∧ ¬p5

110** ⟶ R1 matched
1**10 ⟶ R2 matched

……
0000001* 0100000*
⟶ p1 matched

……

encoding
and

transition
sharing

…

…
strings

relational
operations

R1
content: "POST"
content: "<NAME>"
content: ! "</NAME>"

R2
content: "POST"
content: "<URL>"
content: ! "</URL>"

Snort rules

DFA

DNF

DFA Table

Policy Table

Controller PISA Switch

converting

①

③

②

④

……

p1: "POST"
p2: "<NAME>"
p3: "</NAME>"
p4: "<URL>"
p5: "</URL>"

Figure 1: B��� architecture and work�ow.

string searching on PISA at ⇠Tbps. However, we identify two es-
sential questions which remain unanswered. First, current security
applications usually require a large set of rules (e.g., the latest com-
munity ruleset of Snort has ⇠4000 rules), which also indicates that
the translated deterministic �nite automaton (DFA) would also be
large. Simply mapping the DFA into the match action tables as
PPS [4] requires an extremely large number of match action entries,
which are challenging to be stored in the limited memory of the pro-
grammable switch. Second, many security applications also require
correlated strings to express attack signatures (rules). For example,
Figure 1 shows two simpli�ed snort rules (sid: 25355⇠25336) where
only "content" �elds are saved. Rule #1 requires "POST", "<NAME>"
both exist while "</NAME>" does not appear in the packet, and rule
#2 requires "POST", "<URL>" both exist while "</URL>" does not
appear. This requires that the programmable switch should support
relational operations for multiple strings, which is challenging to
be e�ciently achieved on the restricted computational model of
the programmable switch.

To address these problems, we propose B���, a fast multi-string
pattern matcher with the programmable switch. We utilize the tran-
sition sharing to compress pattern entries to �t them into the limited
memory on the programmable switch (§2.1). And we design a policy
table at the end of the switch pipeline to express relational opera-
tions among multiple strings (§2.2). Finally, we give a preliminary
implementation and evaluation to demonstrate the e�ectiveness of
B��� (§3).

2 BOLT DESIGN
The overall architecture and work�ow of B��� are shown in Fig-
ure 1. B��� controller extracts the strings and the relational opera-
tions among strings from the given pattern rules separately, and
translates them into di�erent match action tables. And the data
plane of B��� conducts pattern matching with DFA match action
tables and policy match action table. Details to achieve the compact
DFA tables and the e�ective policy table are elaborated in §2.1 and
§2.2.

2.1 Minimizing the entry number
B��� employs Aho-Corasick algorithm to construct an equivalent
DFA for given strings, and then transforms the DFA into match
action tables, similar to PPS [4]. During the mapping from the DFA

74

CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA Shicheng Wang et al.

Src State Character Dst State
10 (S0)

01110000 (p)

00 (S1)
00 (S1) 01 (S2)
01 (S2) 01 (S2)
11 (S3) 00 (S1)
10 (S0) 01110100 (t) 11 (S0)

** ******** 10 (S0)

Src State Character Dst State
0*

01110000 (p)
01

1* 00
10 01110100 (t) 11
** ******** 00

S0

S1

S2

p

p

t
p

p

S3

Encode

S0: 10
S1: 00
S2: 01
S3: 11

Compress"ppt"

DFA DFA Table Compressed DFA Table

Figure 2: B��� compression procedure. Figure 3: Compression e�ciency.

to the match action entries, we observe that many transition edges
have the same input character and destination state, and they only
di�er in their source states. This implies that we can share some
transitions to reduce the transition number and save the switch
memory.

However, directly merging multiple transitions is not always
feasible. Take the DFA in Figure 2 as an example, although the state
S0 and S3 have the same transitions with "p" to S1, they can not
be merged if we choose "00" and "11" to encode them separately.
But if we encode S0 with "10" instead of "00", then the state S0
and S3 can be represented by state "1*", and the transitions ("10",
"p", S1) and ("11", "p", S1) can be merged into a single transition
("1*", "p", S1). To achieve an e�cient state encoding, we de�ne two
transitions with the same input character and the destination state
as a redundancy pair. To re-encode each state, we �rst construct a
complete graph for all states where the weight of each edge is the
number of redundancy pairs between the edge’s two vertices. Then
we calculate the maximum spanning tree for this complete graph,
so a node in this tree is likely to have many redundancy pairs with
its father/children nodes. Finally, we use codes with the same pre�x
to re-encode nodes with descendent/ancestor relations. After the
state encoding, the next step is to seek out an e�ective compressing
solution to produce theminimumnumber of transitions.We observe
that sharing transitions always have the same input character, so
we group re-encoded DFA match action entries according to the
input character, and then employ the classic dynamic programming
method in routing table compression [5] to obtain an e�ective
compression for each group. We do not claim our scheme will
get the optimal compression rate, only that they are empirically
e�ective and can get a reasonable compression result. We will seek
the optimal algorithm in future.

2.2 Correlated multi-string matching
To achieve multi-string matching with complex relational opera-
tions, our high level idea is to transform those operations in one
rule into an entry (entries) in the policy table, as shown in Figure 1.
First, B��� represent each rule in Boolean algebra as a Boolean
expression, in which each Boolean variable indicates whether the
corresponding string should be matched for this rule. Second, each
obtained Boolean expression is normalized to a more compact Dis-
junctive Normal Form (DNF), which is a disjunction of multiple
conjunctions. To accommodate these DNFs, we put them in the
policy table whose match �elds represents the Boolean variables of

the DNFs: each entry in the policy table represents one conjunc-
tion in the DNF, and the relationship between di�erent entries also
corresponds to the disjunctive relations of di�erent conjunctions.
Therefore, the DNF is �nally transformed into one entry (entries),
the number of which is the same as that of conjunctions in the DNF.
Since any Boolean expression can be converted to a DNF, all pattern
rules containing AND, OR, and NOT relations can be eventually
converted into entries of the policy table on the programmable
switch.

At runtime, for each packet, B��� maintains a bit vector to store
the Boolean variables, which indicates whether the corresponding
strings are matched. Once a single string is found in the payload of
the packet, B��� sets the corresponding bit in its bit vector. When
completing the detection for the whole payload of the packet, B���
match the policy table with the full bit vector, to see whether the
packet contains some rules. On the programmable switch, the bit
vector of the packet is stored in the metadata.

3 EVALUATION AND FUTUREWORK
We implement an open-source B��� prototype with 400 lines of
P4 code for the data plane and 500 lines of Python code for the
controller1. We select "content" patterns from snort rules and join
them with relational operations as the original rule. As depicted
in Figure 3, comparing with PPS [4], B��� reduces the number of
entries by ⇠80%, which makes it possible to �t 2000 patterns within
10K match-action entries in one hardware switch. Besides, B���
can function normally under correlated multiple strings in one
rule, which also demonstrates the e�ectiveness of our policy table.
In future, we plan to further optimize the compression algorithm,
implement B��� on the hardware To�no switch and conduct more
evaluations in real-world scenarios.

REFERENCES
[1] Byungkwon Choi and et al. 2016. {DFC}: Accelerating String Pattern Matching

for Network Applications. In NSDI. 551–565.
[2] Cisco. 2019. Snort. https://www.snort.org/.
[3] Muhammad Asim Jamshed and et al. 2012. Kargus: a highly-scalable software-

based intrusion detection system. In CCS. ACM, 317–328.
[4] Theo Jepsen and et al. 2019. Fast String Searching on PISA. In SOSR.
[5] Alex X Liu and et al. 2010. TCAM Razor: A systematic approach towards minimiz-

ing packet classi�ers in TCAMs. TON 18 (2010).
[6] ntop. 2019. nDPI. https://www.ntop.org.
[7] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression matching

using FPGAs. In FCCM. IEEE, 227–238.
[8] Trustwave. 2019. ModSecurity. https://modsecurity.org/.
1https://github.com/LamperougeWang/P4PatternMatch

75

