Mnemosyne: Lightweight and Fast Error Recovery for LLM
Training in a Just-In-Time Manner

Jinyi Xia Menghao Zhang Jiaxun Huang
Beihang University Beihang University Beihang University
Beijing, China Beijing, China Beijing, China
jinyi.xia@outlook.com zhangmenghao@buaa.edu.cn huangjx@buaa.edu.cn
Yuezheng Liu Xiaohe Hu Xudong Liu
Beihang University Infrawaves Beihang University

Beijing, China
liuyuezheng@buaa.edu.cn

Beijing, China
huxiaohe@infrawaves.com

Beijing, China
liuxd@buaa.edu.cn

Chunming Hu
Beihang University
Beijing, China
hucm@buaa.edu.cn

Abstract

With the rapid scaling of large language model (LLM) training clus-
ters, GPU errors frequently occur and disrupt the training process.
While traditional error recovery methods, such as periodic check-
pointing, are effective, they incur substantial overhead in both daily
operations and recovery processes. Just-in-time checkpointing, a
representative alternative, reduces this overhead by eliminating the
periodic checkpoint saving procedure and optimizing the recovery
workflow. However, its complex GPU context decoupling mecha-
nism and global reinitialization of communication backend remain
resource-intensive and slow. In this paper, we present MNEMOSYNE,
a lightweight and fast error recovery framework for LLM train-
ing. To minimize both daily and recovery overhead, MNEMOSYNE
optimizes the GPU context decoupling component with shared-
memory-based IPC and index-based handle mapping, and designs a
flexible collective communication library that dynamically adjusts
links of built communicators without requiring reinitialization. Pre-
liminary experiments on our open-source prototype demonstrate
that, compared to the state of the art, MNEMOSYNE reduces daily
overhead by up to 58.8% and communication rebuilding time by up
to 91.3%.

CCS Concepts

« Computer systems organization — Reliability; - Computing
methodologies — Machine learning; Distributed computing
methodologies; « Networks — Data center networks.

This work is licensed under a Creative Commons Attribution International
4.0 License.

APNET 2025, Shang Hai, China

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1401-6/25/08
https://doi.org/10.1145/3735358.3735372

157

ACM Reference Format:

Jinyi Xia, Menghao Zhang, Jiaxun Huang, Yuezheng Liu, Xiaohe Hu, Xudong
Liu, Chunming Hu. 2025. Mnemosyne: Lightweight and Fast Error Recovery
for LLM Training in a Just-In-Time Manner. In 9th Asia-Pacific Workshop
on Networking (APNET 2025), August 07-08, 2025, Shang Hai, China. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3735358.3735372

1 Introduction

Large Language Models (LLMs) such as OpenAl o1 [25] and DeepSeek-
R1 [10] have achieved great success in a spectrum of tasks, and their
generality and performance continue to improve with the model
size and the training data increasing [16]. For example, GPT-2 [27]
was released with 1.5 billion parameters in 2019, while three years
later, PaLM [4] was shown with 540 billion parameters. As the
model size and the training data grows, LLM training requires more
hardware, making training failures more frequent. For example,
Meta used 992 NVIDIA A100s to train OPT-175B, and encountered
about 110 failures in two months, causing the waste of 178,000
GPU hours [36]. All these factors bring significant challenges to
the efficiency of model training, and also raise higher requirements
for fault tolerance.

Traditional fault tolerance predominantly relies on periodic
checkpointing (e.g., DeepFreeze [23], CheckFreq [22], Check-N-
Run [7], Gemini [35], etc.), where model states are saved at fixed in-
tervals (e.g., every N iterations) for recovery. Although this method
provides basic recovery capabilities, it introduces significant over-
heads during both training and recovery phases. Frequent check-
pointing slows down the training progress due to the time spent
on serializing large model states. Meanwhile, recovery requires
reloading checkpoints and replaying iterations since the last save,
leading to substantial recomputation. These limitations become
prohibitive as model sizes and cluster scales grow.

Just-in-time checkpointing [11] emerges as a promising alter-
native by leveraging data parallelism (DP) replicas to enable rapid
recovery. This approach minimizes steady-state overhead and re-
stricts iteration recomputation to at most one training step. De-
spite these benefits, existing designs face two primary limitations.

https://orcid.org/0009-0002-5975-5718
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0009-0009-8999-6468
https://orcid.org/0009-0001-5443-2066
https://orcid.org/0000-0003-1487-2419
https://orcid.org/0009-0007-8865-3055
https://orcid.org/0000-0003-3473-9703
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3735358.3735372
https://doi.org/10.1145/3735358.3735372
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735358.3735372&domain=pdf&date_stamp=2025-08-06

APNET 2025, August 07-08, 2025, Shang Hai, China

First, their reliance on complex device proxies, which are ported
directly from Singularity [31] and initially designed for elasticity,
introduces unnecessary overhead during training process. Second,
they only retain computation resources (e.g., GPU buffers) but ne-
glect communication resources during recovery, requiring global
reconstruction of communication backends, e.g., NCCL [24], which
consumes considerable time during recovery (§2).

To address these challenges, we present MNEMOSYNE, a fault
tolerance framework that preserves the benefits of just-in-time
checkpointing while addressing its limitations. MNEMOSYNE first in-
troduces a lightweight device proxy architecture optimized for fault
recovery rather than general elasticity, reducing steady-state opera-
tional costs. Furthermore, MNEMOSYNE designs a flexible collective
communication library (CCL) that supports runtime link adjust-
ment without full reinitialization, enabling partial communication
topology reconstruction localized to failed nodes, and bypassing
global coordination overhead.

The technical foundation of MNEMOSYNE lies in two key tech-
niques. First, the lightweight device proxy employs call interception
to isolate failures and transparently migrate tasks across nodes. Its
shared-memory-based IPC and nearly zero-overhead handle map-
ping bring efficiency to the decoupling of logical tasks from physical
hardware, ensuring minimal interference during normal operations
while facilitating rapid recovery. Second, the flexible CCL adopts
a metadata-driven approach for communication initialization. In-
stead of globally renegotiating connections during recovery, the
framework dynamically updates specific links using predefined
topology templates. This selective adjustment eliminates the need
for full reinitialization and enables runtime node replacement, addi-
tion, and removal via dynamic link adjustment. For validation and
evaluation, we implement an open-source prototype of MNEMO-
SYNE [2] with the basic device proxy and flexible CCL. Preliminary
experiments demonstrate that MNEMOSYNE brings only an average
of 3.6% daily overhead during training process, which is reduced by
up to 58.8% compared with Just-in-time checkpointing [11]. Besides,
the communication reinitialization time is also reduced by up to
91.3% compared with original NCCL [24]. We hope MNEMOSYNE
can inspire truly lightweight and fast fault tolerance mechanisms
for next-generation LLM training frameworks.

2 Background and Motivation
2.1 LLM Training Fault Tolerance

Today’s LLM training system is faced with frequent and various
errors due to the increasing hardware scale, and most training
errors are related to GPU. According to DeepSeek’s records [1],
GPU-related errors include software-caused errors, NVLink errors,
memory ECC errors, uncorrectable GPU failures, etc. Among them,
NVLink errors are the most common one, accounting for 42.57% of
the total [1]. Shanghai AI Lab [12] also reports that GPU-related
errors consume more than 66% of GPU time in a cluster of 2,000+
GPUs, wasting over 2,400,000 GPU minutes in 6 months. Despite
various causes, all these GPU errors can be categorized into two
types: recoverable ones and irrecoverable ones. Recoverable er-
rors, e.g., NVLink errors and memory ECC errors, can be solved
by mere restart, while irrecoverable errors, e.g., GPU system pro-
cessor errors, are usually caused by hardware faults and may need

158

J. Xia, and et al.

Rescheduling
Chkpt load
Chkpt save
Lost time
Useful training

1

Portion (%)

Mean

p75
Quantile

p90 p95

Figure 1: The portion of periodic-checkpoint-related over-
heads by Facebook [19].

manual fixing or even return material authorizations. According to
DeepSeek, they only encountered 1 irrecoverable error among past
year’s GPU-related errors, with a proportion of less than 0.01% [1].
Conclusively, LLM training errors are costly, common, but mostly
recoverable.

The mainstream solution to error recovery for LLM training
is periodic checkpointing, e.g., DeepFreeze [23], CheckFreq [22],
Check-N-Run [7], Gemini [35], MegaScale [15], etc., all of them
sharing the same routine. During the training process, the model
parameters and optimizer states are saved every several iterations.
Once a failure occurs, the training task is restarted and the last
checkpoint is loaded. This method is suitable for all kinds of deep
learning training tasks, but it may consume plenty of extra compu-
tation resources: (1) saving checkpoints interferes with the training
progress, (2) restarting the task and loading the checkpoint take
considerable time, and (3) the lost iterations need to be redone.
Beside the overhead from the periodic checkpointing mechanism
itself, the cluster scheduler needs to find available nodes as alter-
natives for the failed nodes, bringing extra rescheduling overhead.
According to statistics from Facebook [19], periodic checkpointing
leads to a 43% training time drop at most (Figure 1). Therefore,
periodic checkpointing is effective but not efficient enough.

With the development of LLMs, error recovery methods with
higher efficiency are designed based on their unique properties.
LLMs apply multiple parallelism strategies for efficient training [37],
such as data parallelism (DP), tensor parallelism, pipeline paral-
lelism, expert parallelism, etc. Pioneering work, i.e., just-in-time
checkpointing [11], designs mechanisms using LLM’s DP mech-
anism to achieve more efficient checkpointing. It does not need
to save checkpoint periodically in steady state, avoiding interfer-
ence with the training progress. Once an error occurs, only the
restarted nodes need loading checkpoints from the DP replicas,
avoiding loading checkpoints globally, so its recovery is greatly
more lightweight and swift than periodic checkpointing.

2.2 Observation and Motivation

Despite its advantages, just-in-time checkpointing is far from per-
fection. Some of its disadvantages still bring significant efficiency
degradation to LLM training jobs. First, for overhead in steady-state
work, although it avoids checkpointing periodically, its mechanism
still introduces extra daily overhead. To provide users with transpar-
ent just-in-time checkpointing, the framework needs to intercept
error, recover the state for error nodes, and log and replay training
frameworks’ operations. Device proxy, a key component to take on

Mnemosyne: Lightweight and Fast Error Recovery for LLM Training in a Just-In-Time Manner

Node 1
Idle
Node
Device
Proxy Idle
1 Node
Flexbile I
CCL Link | 3 Idle
Node 2 Node 3 Node 4 Node
| —

(a) Steady state. The device proxy and flexible CCL are marked.

APNET 2025, August 07-08, 2025, Shang Hai, China

| 5§ ‘
[Node 1 ‘ Node 1’
:
migration
Intercept !
error Device 0
]
Adjust, '*;
cet Node 2 Node 3 Node 4
links *
.] l—]
GPU state
migration

(b) Recovery state. The key steps of the workflow are marked.

Figure 2: Framework of MNEMOSYNE.

Table 1: Time (seconds) taken for each step of error recovery
in just-in-time checkpointing by Microsoft [11]. Bert-B-FT
and GPT2-S-3D are evaluated with 8XNVIDIA V100s. GPT2-S and
PyramidNet are evaluated with 4xNVIDIA A100s.

Step Bert-B-FT GPT2-S GPT2-S-3D PyramidNet
Delete communicators 1.013 0.779 0.831 0.850

and GPU handles

Recreate NCCL com- 1.054 8.340 15.54 1.038
municators

Reset GPU buffers 0.001 0.001 0.001 0.002
Recreate GPU handles 0.006 0.004 0.004 0.027
Replay minibatch APIs ~ 0.006 0.004 0.002 0.004

Retained

Retained

[Replay Log]
cudaMemcpy
cublasGemmEx
ncclAllReduce
cublasAxpy

Migrate &
Replay

(a) Steady-State
Operation.

(c) Recovery with
Migration.

(b) Recovery
in place.

Figure 3: Workflow Example.

these tasks, is specially introduced to decouple training processes
into client processes and server processes. However, just-in-time
checkpointing’s framework directly uses the device proxy of Singu-
larity [31], which is specially designed for elastic training, not for
fault tolerance. Therefore, many redundant features, such as trans-
parent migration and elasticity, are all reserved in this device proxy.
These redundant features lead to overheads and inefficiency, and
may also introduce new sources of software failure. As evaluated
in §4, Singularity’s device proxy brings 7.1% daily overhead, which
should not be underestimated considering clusters’ huge scale.

159

Second, for overhead in recovery work, resource reinitialization
is the most time-consuming part. Due to just-in-time checkpoint-
ing’s design, healthy nodes’ computation resources, including train-
ing states, model parameters, and optimizer states, can be fully
retained when errors occur. Only error nodes need to copy these
computation resources from DP replicas after restart. However,
communication resources are not considered in recovery, which
means the communication backends (e.g., NCCL) of all nodes will
be aborted and then reinitialized, regardless of whether the node
is affected by errors. Unfortunately, communication backend re-
inijtialization consumes considerable time in recovery, which can
even take up to 90% of the entire restart process [11] (Table 1).
Meanwhile, today’s mainstream communication backends, such
as Gloo [21] and NCCL [24], do not support runtime modifica-
tion, which results in a fixed communicator once created and also
brings difficulties to the design of the upper-level fault-tolerant
framework.

From the analysis above, we can see that while just-in-time
checkpointing introduces new directions for fault tolerance in large-
scale LLM training, its practical efficiency remains bottlenecked by
unoptimized legacy components and naive communication reini-
tialization strategies. The inherent contradiction between its light-
weight design philosophy and inherited infrastructure bloat from
Singularity creates a paradoxical scenario: the framework aims to
reduce overhead yet inadvertently reintroduces latencies through
non-specialized device proxies, and the overlooked temporal domi-
nance of communication backend reinitialization during recovery
undermines its key advantage of swift node resurrection. These
insights motivate a dual-axis redesign: (1) disentangling essential
fault-tolerance mechanisms from elastic training features in de-
vice proxies to achieve true transparency and efficiency, and (2)
pioneering partial or incremental communication reinitialization
techniques compatible with CCLs and deep learning frameworks.

3 MNEMOSYNE Design

To address the problems above, as shown in figure 2, we propose
MNEMOSYNE, a lightweight and fast error recovery framework for

APNET 2025, August 07-08, 2025, Shang Hai, China

LLM training. MNEMOSYNE introduces the device proxy specially
designed for error recovery and the flexible CCL capable of dynam-
ically adjusting links in the runtime (Figure 2(a)), fully unleashing
the efficiency potential of just-in-time checkpointing. When errors
occur, it can provide efficient error recovery via state migration and
link adjustment (Figure 2(b)), which is fully transparent to upper
frameworks.

3.1 Error Recovery Workflow

Similar to just-in-time checkpointing [11], MNEMOSYNE ensures
error recovery for LLM training through three sequential phases:
steady-state operation, error interception, and recovery execution.
These phases collectively enable lightweight state tracking, user-
transparent fault detection, and local restoration while maintaining
minimal overhead during normal execution. Here we take a simple
training task with a DP group of 4 nodes (shown in figure 3) as an
example to show the workflow of MNEMOSYNE.

Steady-State Operation. During normal training iterations, MNEMO-
SYNE maintains a replay log to record all device API activities, e.g.,
CUDA kernel launches, NCCL communications (Figure 3(a)). The
log stores API parameters, GPU object handles (e.g., streams and
events), and buffer addresses. Log record is taken by device proxy, a
carefully designed component able to decouple training jobs from
devices and support job migration (§3.2). Due to our efficient design,
this log brings almost zero overhead to normal training process.
At each minibatch’s boundary, the log is cleared to reduce mem-
ory consumption. This guarantees that logged inputs are complete
enough to deterministically recover GPU states while not taking
up too much space.

Error Interception. The device proxy continuously monitors API
return codes and system-level signals to detect failures. GPU-related
errors (e.g., invalid memory access) are immediately captured via
API wrapper hooks. Upon detection, the layer halts API propagation
to the framework, isolates the faulty GPU, and triggers the recovery
pipeline.

Recovery Execution. Recovery execution are dynamically se-
lected based on error types. For recoverable software or driver
errors, we can directly recover in space (Figure 3(b)). While for
irrecoverable errors (e.g., hardware faults), we can recover with
migration (Figure 3(c)). In this case, the CRIU [5] tool snapshots
CPU process states (e.g., memory, file descriptors), while model
parameters and optimizer states are pulled from DP replicas. After
migration, the system restores the GPU execution context using
the replay log from the last completed minibatch. After these steps,
training task’s CPU state is restored to make errors imperceptible to
the upper framework. This includes GPU-related handle remapping
by our device proxy, and fast communication rebuild via dynamic
link adjustment by our flexible CCL (§3.3).

3.2 Device Proxy

Different from existing device proxy [11, 31] that prioritizes trans-
parent migration and elasticity through full virtualization mecha-
nisms (e.g., fully GPU memory management, handle virtualization,

160

J. Xia, and et al.

barrier, time slicing, etc.), our device proxy focuses on fault toler-
ance with minimal runtime overhead, pursuing lightweight and
efficiency. It introduces three core mechanisms: (1) GPU context
decoupling, (2) CUDA-related call interception, and (3) index-based
handle mapping.

GPU context decoupling. To achieve transparency, error and
recovery details should be hidden to upper frameworks, which re-
quires unnoticeable restart, migration, and GPU operations. There-
fore, the GPU context of training jobs should be decoupled from the
training process. In our design, the device proxy splits a single train-
ing job into two processes, a client and a server, since standalone
processes naturally provide resource isolation. In this dual-process
architecture, clients are responsible for the proceeding of train-
ing jobs, while servers handle all GPU operations committed by
clients. Each worker’s proxy client and server are one-to-one corre-
sponding (Figure 2(a)), different from Singularity’s design where the
correspondence is one-to-n with elasticity taken into consideration.
This difference brings lightweight to our device proxy’s resource
management, thus leading to higher efficiency of decoupling.

Although decoupling is convenient for error recovery, it brings
extra communications, so efficient IPC channels for clients and
servers are of great necessity. In MNEMOsYNE, IPC is carried out
via a message queue based on shared memory, optimizing per-
formance while ensuring functionality. Specially, for some APIs
like cudaMemcpy, servers need to obtain massive information from
clients. For this case, our solution implements a pipelined transfer-
ring mechanism. It first divides source data from client memory
into fixed-size blocks and then transfers in order, so sending and
receiving are overlapped and can be carried out at the same time,
hugely cutting down time consumption.

CUDA-related call interception. Since GPUs are taken over by
the clients, CUDA-related function calls should be redirected to
servers for execution. Therefore, all CUDA-related calls should be
intercepted by clients and then forwarded to servers. Our clients
achieve such interception via LD_PRELOAD [20], a mechanism pro-
vided by Linux for runtime stubbing. After intercepting a call, its
function identifier and parameters are serialized and then com-
mitted to the server via the IPC channel. The server executes the
operation accordingly, and then give the execution result back to
the client. Meanwhile, the separation of interception and execution
inherently provides error isolation between CPU and GPU states.
The server monitors operations’ return values to detect GPU-side
errors. When errors occur, they are contained within the server pro-
cess using three-stage containment: (1) Error state capture through
CUDA API return code validation; (2) Context quarantine via imme-
diate server-side resource release; (3) Transparent error recovery as
described in §3.1. This separation ensures that training frameworks
never observe GPU errors directly since clients remain valid during
server-side restarts or resource migrations.

Index-based handle mapping. During restart or migration, the
handles of allocated resources in GPU side are altered due to replay.
Therefore, raw handles should not be directly exposed to upper
training frameworks since it may be changed during recovery. In

Mnemosyne: Lightweight and Fast Error Recovery for LLM Training in a Just-In-Time Manner

our device proxy, an index-based handle-mapping array is main-
tained by the client, whose indexes are logical handles and elements
are physical handles. Only necessary handles, such as GPU memory
pointers (e.g., allocated memory by cudaMalloc) and GPU-related
objects’ handles (e.g., cudaStream and ncc1Comm), are recorded in
our mapping to reduce overheads. During API call translations: (1)
Client-side logical indexes are converted to server-side physical
addresses, (2) Execution occurs on physical resources by the server,
and (3) Returned physical addresses are re-wrapped as logical in-
dexes to be provided for clients. Both record addition and lookup
is of O(1) time complexity since they are the simplest array ap-
pending and indexing operations with almost zero overhead. When
replay is carried out, the array can be updated sequentially due to
the consistency of original and replayed operations’ orders.

3.3 Flexible CCL

Our flexible CCL is designed based on the incremental development
of NCCL [24]. Through carefully designed APIs and mechanisms,
i.e., metadata-driven node initialization and runtime communica-
tion modification, flexible CCL maintains backward compatibility
with existing NCCL APIs, and introduces two novel features for
today’s CCL, immediate node replacement and dynamic scalability.

Compatibility-preserved efficient APIs. To preserve compat-
ibility with NCCL, we design new NCCL APIs in an incremental
way, introducing new features with no modifications to definitions
and usages of original APIs. Newly added APIs on node adjustment
are all executed by device proxies’ server side, requiring no mod-
ifications to the training frameworks. For node replacement and
addition, we break down the operations into 4 stages: (1) Exporting
metadata. Flexible CCL needs built communicator’s metadata for
new node’s initialization, so required metadata are exported from
any healthy node via API ncc1lCommExportInfo. (2) Initializing new
node. With exported communicator’s info, the new node completes
initialization via APIs like ncc1InitNewNode. (3) Updating commu-
nicator’s metadata. Already existed healthy nodes use APIs like
ncclReplaceNode or ncclAddNode to update themselves’ meta-
data with the ones from the new node. (4) Build channels. Needed
channels are build according to modifications to the communicator
via API ncclCommSetupNewRank. For node removal, we introduce
one API ncclRemoveNode since initialization of new node is not
involved in this case.

Metadata-driven node initialization. Today’s CCLs mostly ini-
tialize communicators in a synchronized manner, where involve
rounds of global information exchange and coordination (e.g., host-
port pair collection, topology profiling). Such procedures are clearly
unsuitable for dynamic localized initialization of flexible CCL. Dif-
ferent from conventional CCLs, flexible CCL initializes newly intro-
duced node with the built communicator’s metadata, which is based
on our observation that initialized nodes inherently keep complete
communicator’s metadata within their ncc1Comm structures.
During the export of metadata, there are two different categories
of exported metadata: raw collected data, which is completely stored
in arrays as gathered (e.g., host-port pairs), and reduced data, of
which only one copy of reduced result is stored after gathered
(e.g., aggregated bandwidths). For raw collected data, we directly

161

APNET 2025, August 07-08, 2025, Shang Hai, China

copy the existing node’s memory structure from exported metadata.
While for reduced data, we use partial re-reduction: the replacement
node combines local computed data with the received reduced value,
exploiting the associativity of reduction operators. This bypasses
the need to reconstruct original per-node data while maintaining
result consistency. This strategy is also applicable for the whole
communicator’s metadata update.

For topology construction, we observe that NCCL optimizes only
intra-machine device connections due to scalability consideration,
so we extend this strategy for node replacement. When substituting
failed nodes, the new node directly takes up original node’s posi-
tion in the topology, and rebuilds links connected to the original
node. Meanwhile, because our replacement granularity is node,
the optimality of intra-node’s topology is guaranteed by NCCL’s
calculation. This hybrid approach maintains native performance
levels for intact communication paths. In the future, we are plan-
ning to design a more flexible topology construction strategy for
more universal fault tolerance.

Runtime communicator modification. Flexible CCL supports
runtime communicator modification. First, runtime communicator
expansion requires careful memory management to accommodate
rank additions. Existing NCCL implementations statically allocate
memory buffers for peer addresses and topology data, creating run-
time fragmentation risks during resizing. Our solution pre-allocates
configurable buffer space during initial communicator creation.
Reserved slots enable seamless insertion of new ranks without
memory reallocation, while pointer stability gets ensured through
contiguous memory layouts and offset-based addressing. Second,
node addition and removal also bring modification to topology.
Currently, the modification strategy for ring topology is designed.
For an added node, flexible CCL directly connect it to two originally
adjacent nodes. For a removed node, flexible CCL directly connect
its previous node to its next node. In future work, we will design
strategies for more topologies, e.g., double binary tree.

4 Implementation and Evaluation

We implement a prototype of MNEMOSYNE to verify our design’s
feasibility and efficiency. The device proxy can support CPU and
GPU context isolation for distributed training tasks, containing over
17,000 lines of C++ source code. The flexible CCL is implemented
based on NCCL with over 1,700 lines of C++ source code modifica-
tion, which supports addition or removal of a single rank from built
communicators. Relevant implementations are now open source [2].
Our experiments are carried out on a node with 3 NVIDIA Quadro
RTX A6000s connected via PCle.

Device proxy. To evaluate the efficiency of our device proxy, we
use small-scale Transformer [33] models with various architectures,
including encoder-only model (e.g., BERT [6]), decoder-only model
(e.g., GPT [26]), and encoder-decoder model (e.g., T5 [28]). Figure 4
shows that the average overhead of our device proxy during steady-
state operation is 3.6%. Compared with Singularity, the performance
overhead is reduced by 49.1% on average, 58.8% at most. Notably,
since our current experiment is conducted on relatively small LLM
models, the API call frequency is relatively high, and the overhead

APNET 2025, August 07-08, 2025, Shang Hai, China

120 | == Native I == NCCL
Mnemosyne __ 5001 Mnemosyne
% 100 mmm Singularity £
£ < 400
2 a0 . ¢
£ =
= 300 A
< 60 it 2
S 5
€ 401 5 2004
2 Q
201 * 1001

Rank Addition

Rank Removal

Encoder Decoder Encoder-
Only Only Decoder

Figure 4: Daily overhead of Figure 5: Acceleration effect
our device proxy. of our flexible CCL.

of the device proxy becomes higher accordingly. In practical deploy-
ments of large-scale LLM models, the kernel computation time of
these models is much longer and the API call becomes less frequent,
so the relative overhead of the device proxy will be significantly
reduced.

Flexible CCL. To validate the availability and efficiency of our
flexible CCL, we select rank as the granularity of operations instead
of node due to the limitations of our experimental environment,
and prioritize addition than replacement since addition not only
includes initialization and update operations of replacement, but
also involves more complex metadata adjustments. Rank addition
adds 1 rank to a communicator of 2 ranks, and rank removal re-
moves 1 rank from a communicator of 3 ranks. Figure 5 shows
that compared to NCCL, the flexible CCL has significant improve-
ment in runtime adjustment, taking an average of 8.7% of global
reinitialization time for removal and 37.6% for addition.

5 Discussion

Limitation on FSDP. The Fully Sharded Data Parallel (FSDP) ap-
proach, such as DeepSpeed ZeRO-3 optimizer [29], reduces GPU

memory consumption through distributed parameter sharding across
data parallel groups. In training scenarios employing FSDP method-
ology, the absence of redundant model parameters precludes the

application of Just-In-Time checkpointing techniques, thereby ren-
dering it incompatible with MNEMOSYNE.

Training anomaly detection. MNEMOSYNE is a framework spe-
cially designed for error recovery of LLM training, and does not
pay attention to training anomaly detection and location. While
our framework can detect GPU errors via execution result of CUDA
operations, additional mechanisms are required to locate the root
cause of some subtle anomalies, e.g., stragglers and framework
hang [15]. Such works are orthogonal to our work, which can be
combined together to achieve more efficient fault tolerance.

Network errors. MNEMOSYNE is designed for GPU errors, and
network errors are overlooked to some extent. On one hand, most
network switches and links have redundancy, which intrinsically
supports fault tolerance. On the other hand, our strategy is also ap-
plicable for network errors, e.g., failures of network links connected
directly to GPU nodes or ToR switches. For errors of network links,

162

J. Xia, and et al.

we can migrate jobs at the granularity of nodes, while for errors of
Tor switches, we can migrate jobs at the granularity of racks.

6 Related Work

LLM training fault tolerance. Besides periodic checkpoint [7, 15,
22, 23, 35] discussed in the main text, another line of LLM training
fault tolerance leverages the characteristics of pipeline parallelism
in LLM training. Bamboo [32] redundantly computes two adjacent
sub-stages on each GPU in the pipeline parallel training mode.
Oobleck [13] employs heterogeneous pipeline templates and in-
stantiates multiple logically equivalent pipeline replicas in large
DNN models. ReCycle [9] utilizes pipeline bubbles to compute the
tasks of the failed rank to reduce the resource overhead. However,
these works incur redundant computation, decreasing the train-
ing throughput and risking running out of GPU memory. More
importantly, when the training job needs to be restarted after a
failure, they all require the global reinitialization of NCCL and incur
significant startup overhead.

Collective communication libraries. In recent years, significant
advancements have been made in optimizing collective communi-
cation, particularly within the context of LLM scenarios. Blink [34]
leverages the heterogeneous communication channels of GPU clus-
ters to optimize the performance of data transmission. OmniRe-
duce [8] takes advantage of the sparsity of models to enhance
bandwidth utilization. CoCoNet [14] jointly optimizes communi-
cation and computation GPU kernels, improving the performance
of distributed workloads. SCCL [3], TACCL [30], TCCL [17], and
TECCL [18] have made optimizations based on the topology in
terms of programmability and communication performance. MNEMO-
SYNE is orthogonal to these aforementioned studies. By integrating
these techniques, MNEMOSYNE is expected to achieve better perfor-
mance while maintaining superior fault tolerance capabilities.

7 Conclusion and Future Work

In this paper, we identify the limitations of current checkpointing
mechanisms, and design MNEMOSYNE, a lightweight and fast error
recovery framework for LLM training. Two key components, de-
vice proxy and flexible CCL, are tailored for MNEMOSYNE to achieve
lower daily and recovery overhead. Our prototype’s implementa-
tion and evaluation demonstrate that MNEMOSYNE can bring more
efficiency than today’s frameworks in various aspects.

Nevertheless, our current design, prototype and evaluations are
still very preliminary, which leaves a lot of future works to con-
tinue. In our ongoing explorations, we plan to further optimize the
steady-state overhead, introduce a pipelined migration mechanism
to accelerate the recovery process, extend flexible CCL’s strategies
for communicator modification to more topologies, design a mecha-
nism for migration destination selection, refine the implementation
of MNEMOSYNE, and evaluate our design in real large-scale LLM
training scenarios.

Acknowledgments

We thank anonymous APNet reviewers for their valuable com-
ments. This work is supported in part by the National Natural
Science Foundation of China (No. 62402025), the Beijing Science

Mnemosyne: Lightweight and Fast Error Recovery for LLM Training in a Just-In-Time Manner

and Technology Plan Project, the Fundamental Research Funds for
the Central Universities and gifts from Huawei-BUAA Joint Lab.
Menghao Zhang is the corresponding author.

References
[1] Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen, Chenggqi Deng, Honghui

[11

[12

[13

[14

(15

[18

]

]

]

]

Ding, Kai Dong, Qiushi Du, Wenjun Gao, Kang Guan, et al. 2024. Fire-Flyer
AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning.
In SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-23.

Anonymous authors. 2025. MNEMOSYNE. https://anonymous.4open.science/r/
Mnemosyne

Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz,
Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing optimal collective algorithms.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 62-75.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research 24, 240 (2023), 1-113.

CRIU. 2024. Checkpoint/Restore in Userspace. https://criu.org/Main_Page
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the North American chapter of the association
for computational linguistics: human language technologies, volume 1 (long and
short papers). 4171-4186.

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. Check-N-Run: A checkpointing system for training deep
learning recommendation models. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 929-943.

Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. 2021.
Efficient sparse collective communication and its application to accelerate dis-
tributed deep learning. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
676-691.

Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, and Christos Kozyrakis.
2024. ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles.
211-228.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Abhishek Vijeev, Bhargav
Gulavani, Nipun Kwatra, Ramachandran Ramjee, and Muthian Sivathanu. 2024.
Just-in-time checkpointing: Low cost error recovery from deep learning train-
ing failures. In Proceedings of the Nineteenth European Conference on Computer
Systems. 1110-1125.

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling
Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, et al. 2024. Characteri-
zation of large language model development in the datacenter. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 709-729.
Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury. 2023.
Oobleck: Resilient distributed training of large models using pipeline templates.
In Proceedings of the 29th Symposium on Operating Systems Principles. 382-395.
Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed
Maleki, Youshan Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi.
2022. Breaking the computation and communication abstraction barrier in dis-
tributed machine learning workloads. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 402-416.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al. 2024. MegaScale: Scal-
ing large language model training to more than 10,000 GPUs. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 745-760.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).
Baojia Li, Xiaoliang Wang, Jingzhu Wang, Yifan Liu, Yuanyuan Gong, Hao Lu,
Weizhen Dang, Weifeng Zhang, Xiaojie Huang, Mingzhuo Chen, et al. 2024.
TCCL: Co-optimizing Collective Communication and Traffic Routing for GPU-
centric Clusters. In Proceedings of the 2024 SIGCOMM Workshop on Networks for
AI Computing. 48-53.

Xuting Liu, Behnaz Arzani, Siva Kesava Reddy Kakarla, Liangyu Zhao, Vincent
Liu, Miguel Castro, Srikanth Kandula, and Luke Marshall. 2024. Rethinking
machine learning collective communication as a multi-commodity flow problem.

163

[19]

[20]

[21

[22

[23

[24

[25

[26

[27

S
&,

[29

[30

@
=

(32

[33

[34

[36

(37]

APNET 2025, August 07-08, 2025, Shang Hai, China

In Proceedings of the ACM SIGCOMM 2024 Conference. 16-37.

Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram Saraph, Bor-
Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, et al. 2021.
Understanding and improving failure tolerant training for deep learning recom-
mendation with partial recovery. Proceedings of Machine Learning and Systems 3
(2021), 637-651.

Linux manual page. 2024. 1d.so. https://man7.org/linux/man-pages/mang/ld.so.
8.html

Meta Platforms, Inc. 2023. Gloo: Collective Communications Library. https:
//github.com/facebookincubator/gloo

Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). 203-216.

Bogdan Nicolae, Jiali Li, Justin M Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. 2020. Deepfreeze: Towards scalable asynchronous checkpoint-
ing of deep learning models. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). IEEE, 172-181.

NVIDIA Corporation. 2023. NVIDIA Collective Communications Library (NCCL).
https://developer.nvidia.com/nccl

OpenAl 2024. Learning to reason with LLMs. https://openai.com/index/learning-
to-reason-with-Ilms/.

Alec Radford. 2018. Improving language understanding with unsupervised
learning. OpenAI Res (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of machine
learning research 21, 140 (2020), 1-67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
memory optimizations toward training trillion parameter models. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC °20). IEEE Press, Article 20, 16 pages.
Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musu-
vathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. 2023.
TACCL: Guiding collective algorithm synthesis using communication sketches.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). 593-612.

Dharma Shukla, Muthian Sivathanu, Srinidhi Viswanatha, Bhargav Gulavani,
Rimma Nehme, Amey Agrawal, Chen Chen, Nipun Kwatra, Ramachandran Ram-
jee, Pankaj Sharma, et al. 2022. Singularity: Planet-scale, preemptive and elastic
scheduling of Al workloads. arXiv preprint arXiv:2202.07848 (2022).

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia
Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bamboo: Making pre-
emptible instances resilient for affordable training of large {DNNs}. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
497-513.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,
Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and generic collectives for
distributed ml. Proceedings of Machine Learning and Systems 2 (2020), 172-186.
Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng,
and Yida Wang. 2023. Gemini: Fast failure recovery in distributed training with in-
memory checkpoints. In Proceedings of the 29th Symposium on Operating Systems
Principles. 364-381.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yinggian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 1, 2 (2023).

https://anonymous.4open.science/r/Mnemosyne
https://anonymous.4open.science/r/Mnemosyne
https://criu.org/Main_Page
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://developer.nvidia.com/nccl
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LLM Training Fault Tolerance
	2.2 Observation and Motivation

	3 Mnemosyne Design
	3.1 Error Recovery Workflow
	3.2 Device Proxy
	3.3 Flexible CCL

	4 Implementation and Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

